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ABSTRACT 

In  this  research  paper,  we  consider  matrix  quadratic  equations in  which  the  coefficient 

matrices  as  well  as  unknown  matrix  are  2 x 2 matrices. It  is  shown  that  linear  algebraic  

techniques  enable  complete  characterization  of  matrix  solutions  of  such  equations. 

Specifically  such  matrix  equations  arising  in  queueing  theory  are explicitly  studied.  

1.  INTRODUCTION: 

                                   The development  of  algebraic  symbolism  was,  in  part,  motivated  

by  the  concepts:  zero,  negative  numbers.  Solutions  of   linear  algebraic  equations  in  

one  variable  with  coefficients  being  rational  numbers  lead  to  the  concept  of  rational  

numbers.  As  a  natural  generalization, solving  quadratic  equations  was  attempted  by  

mathematicians  across  the  planet.  Indian  mathematicians  solved  quaratic  equations  

using  the   “completion  of  square”  technique. Efforts  to  solve  higher  degree  polynomial  

equations  led  to  the  research  area  of  “group  theory”.  

 

Mathematicians  such  as  Gauss  attempted  solving  a  system  of  linear  equations  in  

multiple  variables  leading  to  the  research  area  of  “linear  algebra”. Using  the  method  

of  elimination, Gauss  successfully  solved  system  of  linear  equations  ( so  called  

“Gaussian Elimination” ).  As  a  natural  generalization,  polynomial  equations  with  

matrix  coefficients  and  single  matrix  unknown  are  attempted  for  solution.  

Mathematicians  proved  interesting  theorems  related  to  the  solution  of  matrix  

polynomial  equations. 

 

Bezout  proved  an  interesting  theorem  related  to  multi-variate  polynomial  equations  

of  finite  degree.  This  theorem  was  a  central  contribution  to  the  research  area  of  

“algebraic  geometry”. It  was  realized by  the  authors  that  matrix  polynomial  equation  

in  a  single  matrix  unknown  represents  a  structured  system  of  multi-variate  polynomial  

equations.  Thus,  determination  of their  solutions  is  a  contribution  to  algebraic  

geometry.  In [RaA],  the  authors  showed  that  solution of  a  matrix  quadratic  equation,  

with  unknown  matrix  as  well  as  coefficient  matrices  being  2 x 2  matrices,  can  be  

determined  by  a  formula  involving  coefficient  matrices  under  some  conditions. 

Spcifically,  such  a structured  matrix quadratic  equation  arising  in  queueing  theory  

was  considered  and  one  of  its  matrix  zeroes  was  determined  by  a  formula  involving  

coefficient  matrices  and  its  eigenvalues.  Such  a  result  motivated  us  to  study  arbitrary  



matrix quadratic  equations  in  which the  unknown  matrix  as  well  as  coefficient  

matrices  are  2 x 2  matrices.  The  results  of  such  an  effort  are  documented  in this  

research  paper. 

 

2. MATRIX QUADRATIC  EQUATIONS:  2 X  2  COEFFICIENT  MATRICES: 

SOLUTIONS:      

 

Consider  an  arbitrary  matrix  quadratic  equation  in  which  the unknown  matrix, X  as  well  

as the  coefficient  matrices  { 𝐵0, 𝐵1, 𝐵2 }  are  2 x 2  matrices  i.e. 

𝑋2𝐵2 + 𝑋𝐵1 + 𝐵0 ≡ 0̅  … … … … … … . (1). 
Let  the  unknown  matrix, X  be  given  by 

𝑋 = [     
𝑥1 𝑥2

𝑥3 𝑥4
 ] . 

              The  above  matrix  quadratic  equation  corresponds  to  the  following  system  of  4-variate   

               equations.  Thus,  the  problem  of  finding unknown  matrix  falls  in  the  research  area  of   

                algebraic  geometry. But mathematicians  capitalized  the  fact  that  the  system  of  equations   

                are  structured  and  proved  interesting  results. Specifically,  linear  algebraic  tools  are   

                utilized  to  determine  the  unknown  matrix  solutions of  equation (1).  We  now  summarize   

                 the  well  known  results [Gan].                             

                                                                         The  following  lemma  enables  determination of  all  possible 

               eigenvalues  of  unknown  matrix  solutions  of  equation (1).    We  denote  the  following   result   

               as  “Factorization  Lemma”. 

                Lemma  1:  ( 𝜇2𝐵2 + 𝜇𝐵1 + 𝐵0) ≡ ( 𝜇 𝐼 − 𝑋 )( 𝜇 𝐵2 + 𝑋𝐵2 + 𝐵1 ) .  Thus, we have  that 

                                        𝑓(𝜇 )  =  𝐷𝑒𝑡 ( 𝜇2𝐵2 + 𝜇𝐵1 + 𝐵0) = 𝐷𝑒𝑡 ( 𝜇 𝐼 − 𝑋 ) 𝐷𝑒𝑡 ( 𝜇 𝐵2 + 𝑋𝐵2 + 𝐵1 ).           

                    Thus,  all  possible  eigenvalues  of  unknown  matrix  solutions  are  a  subset  of  zeroes  of  the   

               determinental  polynomial  𝑓(𝜇) =  𝐷𝑒𝑡 ( 𝜇2𝐵2 + 𝜇𝐵1 + 𝐵0) .                       

               Proof:   The  result  follows  by  showing  that  RHS  and  LHS  agree.  Details  are  avoided  for   

               brevity.                     

              Note:  𝑓(𝜇)  is  a  polynomial  of  degree  2 N  (  where { 𝑋, 𝐴𝑖
, 𝑠 }  are  N x N  square  matrices ). 

              Once  the  eigenvalues  are  known, the  following  theorem  enables  determination of  unknown   

              matrix  X ( with  those  eigenvalues )  as  a  solution  of  homogeneous  linear  systems  of  equations. 

              Theorem  1:  Consider  an  arbitrary  matrix  quadratic  equation  of  the  form  in  equation (1).   

              Let  the  dimension  of  X  be  N.  Then  all  possible  solutions  of  (1)  are  divided  into  atmost  



              (
2𝑁
𝑁

)  equivalence  classes  (  equivalence  classes  are  specified  based  on  same  set  of   

            Eigenvalues )  and  solution  in  each  class  is  determined  as  the  solution  of  a  linear  system  of   

             equations. 

             Proof:  Refer [Gan].  

 The  above  results are  applicable  to  unknown  matrix  ( as  well as  coefficient  matrices )  

of  arbitrary  dimension  ‘N’.   

   

 Now  we  consider  the  case  where N = 2.  In  this  case  𝑓(𝜇) is a  polynomial  in  ′𝜇′  of  

degree ‘4’.  Hence,  its  zeroes  can  be   explicitly  determined by  algebraic  formulae  in  

its  coefficients. Thus,  all  possible  eigenvalues  of  unknown  matrix  solutions  can  be  

determined  by  algebraic  formulae. 

 

 Now, we reason  that  in  this  case  ( N = 2  ),  the  unknown  matrix  can  be  expresses  by 

an  algebraic  formula  involving  coefficient  matrices  and  its  eigenvalues.  Details  are  

provided  below. 

 

Let { 𝛼, 𝛽 }  be  the  eigenvalues  of  2 x 2  unknown  matrix  X,  and  let  its  characteristic  

polynomial  𝑔(𝜇 ) be  given  by 

𝑔(𝜇 ) =   ( 𝜇 − 𝛼 ) ( 𝜇 − 𝛽 ) =   𝜇2 − 𝜇 ( 𝛼 + 𝛽 ) +   𝛼𝛽 =   𝜇2 +  𝑏1  𝜇 +   𝑏0 , 𝑤ℎ𝑒𝑟𝑒 

𝑏0 = 𝐷𝑒𝑡(𝑋)  𝑎𝑛𝑑  𝑏1 = −𝑇𝑟𝑎𝑐𝑒(𝑋). 

 

By  Cayley-Hamilton  theorem,  we  have  that 

𝑔(𝑋) =   𝑋2 + 𝑏1  𝑋 +   𝑏0 𝐼 ≡ 0̅ . 

                          Hence, 

𝑋2 =  − 𝑏1  𝑋 −   𝑏0 𝐼. 
 

Thus,  substituting  in  the  matrix  quadratic   ,  there  are  infinitely  many   

                         solutions  of  the  matrix  quadratic  equation  (1)  with  { 𝛼, 𝛽 } as  the  eigenvalues. 

                         Now,  we  identify  conditions  under  which ( 𝐵1 − 𝑏1𝐵2)  is  singular.   It  can  be  readily 

                          seen  that 

𝐷𝑒𝑡( ( 𝐵1 − 𝑏1𝐵2) = 𝑏1
2 𝐷𝑒𝑡(𝐵2) + 𝑏1𝜃 + 𝐷𝑒𝑡( 𝐵1 ), 𝑤ℎ𝑒𝑟𝑒 𝜃′ ′ 𝑖𝑠  𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑒𝑑 

                    In  terms  of  elements  of  { 𝐵1, 𝐵2 }. Thus,  there  are  atmose  ‘2’  values  of  Trace(X)  for   

                   which ( 𝐵1 − 𝑏1𝐵2)  is  singular.  These  values  of  Trace(X)  can  be  real  values  or  complex   

                   numbers. 

                                                                                We  know  that  there  are  exactly  (
4
2

) = 6  pairs  of  zeroes    



                     of  𝑔(𝜇 ) . Hence,  we  readily  infer  that  the  number  of  UNIQUE  solutions  of (1)  can  be   

                determined  by  the  following  equation: 

            Number  of  Unique  Solutions  of (1) ≥ 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 { 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓  𝐷𝑖𝑠𝑡𝑖𝑛𝑐𝑡 𝑇𝑟𝑎𝑐𝑒 𝑉𝑎𝑙𝑢𝑒𝑠 − 2 , 0 }. 

           Note: There  are  6  possible  trace  values  and  some  of  them  could  be  equal. 

          Note:  Given  a  pair  of  zeroes   of  𝑔(𝜇 )  that  are  potential  eigenvalues  of  a  solution X ( of (1) ),    

                      either a  unique  X,  exists  or  infinitely  many  solutions  exist  ( with  those  pair  of eigenvalues). 

         𝑵𝒐𝒕𝒆:  Suppose  { 𝐵0, 𝐵1, 𝐵2 }  are  matrices  with  real  valued  components. Then,  it  readily  follows  

that  the  zeroes  of  𝑔(𝜇 )  occur  in  complex  conjugate pairs.   

 We   now  now  consider  a  solution  X  of   (1)  and  arrive  at  another  related  matrix, H  

which  satisfies  a  dual  matrix  quadratic  equation  of  the  following  form: 

𝐵2𝐻2 + 𝐵1𝐻 + 𝐵0 ≡ 0̅  … … … … … … . (2). 

𝑆𝑢𝑝𝑝𝑜𝑠𝑒  𝐵2  𝑖𝑠  𝑛𝑜𝑛 − 𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟.   

𝐿𝑒𝑡  𝑢𝑠  𝑑𝑒𝑓𝑖𝑛𝑒  𝑡ℎ𝑒  𝑚𝑎𝑡𝑟𝑖x  H  as   𝐻 = −𝐵2
−1( 𝑋 𝐵2 + 𝐵1).  It  readily  follows  that 

𝐻2 = 𝐵2
−1( 𝑋 𝐵2 + 𝐵1) 𝐵2

−1( 𝑋 𝐵2 + 𝐵1)  

 

                                            𝐻2 =   𝐵2
−1( 𝑋 + 𝐵1 𝐵2

−1)( 𝑋 𝐵2 + 𝐵1)  

 𝐵2𝐻2 =  ( 𝑋 + 𝐵1 𝐵2
−1)( 𝑋 𝐵2 + 𝐵1) =   𝑋2 𝐵2 + 𝑋 𝐵1 + 𝐵1 𝐵2

−1( 𝑋𝐵2 + 𝐵1) 

𝑈𝑠𝑖𝑛𝑔  𝑡ℎ𝑒 𝑓𝑎𝑐𝑡  𝑡ℎ𝑎𝑡  𝑋 𝑖𝑠 𝑎  𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 (1), 𝑤𝑒  ℎ𝑎𝑣𝑒   

𝐵2𝐻2 = −𝐵0 − 𝐵1𝐻. 
𝐻𝑒𝑛𝑐𝑒, 𝑖𝑡  𝑟𝑒𝑎𝑑𝑖𝑙𝑦  𝑓𝑜𝑙𝑙𝑜𝑤𝑠  𝑡ℎ𝑎𝑡   𝐻  𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠  𝑡ℎ𝑒  𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔  𝑚𝑎𝑡𝑟𝑖𝑥  𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛  

𝐵2𝐻2 + 𝐵1𝐻 + 𝐵0 ≡ 0̅ . 

𝑇ℎ𝑢𝑠, 𝑡ℎ𝑒  𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠  𝑋, 𝐻  𝑠𝑎𝑡𝑖𝑠𝑓𝑦  𝑑𝑢𝑎𝑙  𝑚𝑎𝑡𝑟𝑖𝑥  𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐  𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠.  It   readily  

follows  that  given  solution H,  we  can  obtain  X  in  the  following  manner: 

𝑋 =  −( 𝐵2𝐻 + 𝐵1 ) 𝐵2
−1. 

 

𝑵𝒐𝒕𝒆:  𝐼𝑛  𝑞𝑢𝑒𝑢𝑒𝑖𝑛𝑔  𝑡ℎ𝑒𝑜𝑟𝑦  𝑠𝑢𝑐ℎ  𝑎  𝑚𝑎𝑡𝑟𝑖𝑥 , 𝐻  𝑛𝑎𝑡𝑢𝑟𝑎𝑙𝑙𝑦  𝑎𝑟𝑖𝑠𝑒𝑠.    

𝑊𝑒  𝑏𝑟𝑖𝑒𝑓𝑙𝑦  𝑑𝑖𝑠𝑐𝑢𝑠𝑠 𝑡ℎ𝑖𝑠  𝑖𝑠𝑠𝑢𝑒  𝑖𝑛  𝑠𝑒𝑐𝑡𝑖𝑜𝑛  3.  

 

3. MATRIX  QUADRATIC  EQUATIONS:  QUEUEING  THEORY:   

 

Structured  matrix  polynomial  equations  naturally  arise  in  the  equilibrium analysis  

of  a  class  of  Markov  chains  ( in  discrete  time  as  well  as  continuous  time )  called  

G/M/1-type  Markov  processes  as  well  as  M/G/1-type  Markov  processes. Among  

them, in  the  equilibrium  analysis  of  Quasi-Birth-and-Death (QBD) processes, 

structured  matrix  quadratic  equations  of  the  following  form  naturally  arise: 

𝑅2𝐴2 + 𝑅𝐴1 + 𝐴0 ≡ 0̅ … … (3), 𝑤ℎ𝑒𝑟𝑒   

𝑅  𝑖𝑠  𝑐𝑎𝑙𝑙𝑒𝑑  𝑡ℎ𝑒 𝑟′ 𝑎𝑡𝑒 𝑚𝑎𝑡𝑟𝑖𝑥′ 𝑎𝑛𝑑  𝑐𝑜𝑛𝑠𝑡𝑖𝑡𝑢𝑡𝑒𝑠  𝑡ℎ𝑒 𝑚𝑖𝑛𝑖𝑚𝑎𝑙 𝑛𝑜𝑛 − 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒   

𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑜𝑓  𝑡ℎ𝑒  𝑎𝑏𝑜𝑣𝑒  𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑑  𝑚𝑎𝑡𝑟𝑖𝑥  𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐  𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 ( ′minimal' in the sense  



that  the sum of  𝑎𝑙𝑙 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠  𝑜𝑓  𝑡ℎ𝑒  𝑚𝑎𝑡𝑟𝑖𝑥  𝑖𝑠  𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ). { 𝐴0, 𝐴2 } are  non-

negative  matrices  and  the  matrix 𝐴1  is  diagonally  dominant  with  negative  diagonal  

elements  and  non-negative  off-diagonal  elements.  Further 

𝐴 = 𝐴0 + 𝐴1 + 𝐴2   𝑖𝑠  𝑎  𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟  𝑚𝑎𝑡𝑟𝑖𝑥 𝑖. 𝑒. 𝑑𝑖𝑔𝑜𝑛𝑎𝑙  𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠  𝑜𝑓 𝐴′ ′  𝑎𝑟𝑒 

𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑎𝑛𝑑 𝑜𝑓𝑓 − 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙  𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠  𝑎𝑟𝑒 𝑛𝑜𝑛 − 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒  𝑎𝑛𝑑  𝑎𝑙𝑙  𝑡ℎ𝑒   

𝑟𝑜𝑤𝑠𝑢𝑚𝑠 ( 𝑖. 𝑒. 𝑠𝑢𝑚  𝑜𝑓  𝑎𝑙𝑙 𝑟𝑜𝑤𝑤𝑖𝑠𝑒  𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 ) 𝑎𝑟𝑒 𝑧𝑒𝑟𝑜.  

            Thus, it  readily  follows  that  factorization  lemma  and  Theorem 1  readily  apply   

             to  the solutions  of  above  structured  matrix  quadratic  equation ( i.e.  equation (3) .   

             In  fact,  all  the  results  discussed  in  Section 2,  naturally  apply. In  [Rama1, RaKC],   

             computation  of  Jordan  Canonical  form  of  rate  matrix, R  is  discussed  in  complete   

             detail.  We  now  study  issues  related  to  all  other  matrix  solutions  of  (3).  In  that   

             effort,  the  following  lemma  related  to  the  zeroes  of  𝑔(𝜇) =  𝐷𝑒𝑡 ( 𝜇2𝐴2 + 𝜇𝐴1 + 𝐴0) 

               readily  follows. 

 

               Lemma 2:  

                           All  the  zeroes  of  𝑔(𝜇) ( i.e. eigenvalues  of  all  possible  solutions  of  equation (3 )  ) 

                                are  distinct.  Hence  all  matrix  solutions  of  (3)  are  diagonalizable. 

 

Proof:  It  is  well  known [Neu]  that  the spectral  radius  of  rate  matrix ‘R’  is  strictly  less  

than  one.  Since ‘R’  is  an  irreducible  non-negative  matrix,  by  Perron-Frobenius  Theorem,  

the  spectral  radius  is  real, positive, simple  and  the  corresponding  left/ right  eigenvector  has  

strictly  positive  components. 

                   Since, ‘R’  has  real  valued  components,  the  trace ( R )  is  a  real  number.  Hence,  the  

other  eigenvalue  of  R  is  real  and  strictly  less  than  spectral  radius  𝜏 .  Let  us  label, the  smaller  

eigenvalue or ‘R’ as ‘𝛼′. 

By  factorization  lemma,  we  have  that 

                                                            ( 𝜇2𝐴2 + 𝜇𝐴1 + 𝐴0) ≡ ( 𝜇 𝐼 − 𝑅 )( 𝜇 𝐴2 + 𝑅𝐴2 + 𝐴1 ). 

Hence   

               ( 𝐴2 + 𝐴1 + 𝐴0) �̅�  =  0̅   ( where  �̅�  is  a  column  vector  all  of  whose  components  are ‘1’ ), 

since       𝐴 =  ( 𝐴2 + 𝐴1 + 𝐴0)    is  a   generator  matrix.  Hence  ‘1’  is  a  zero  of  𝑔(𝜇), a  4𝑡ℎ degree  

polynomial.   The  following  lemma  deals  with  the  remaining  zero                          Q.E.D. 

                     Now,  we  reason  in  the  following  lemma   that  the  other  remaining  zero  of 𝑔(𝜇)  is  

strictly  larger  than  one.  Let such  zero  be  denoted  by  ′𝛿′. 



Lemma  3:  There  are  two distinct  zeroes  of 𝑔(𝜇) that  are  on  or  outside  unit  circle 

Proof:  In  the  above  lemma,  we  reasoned  that  ‘1’  is  a  zero  of  𝑔(𝜇).  Using  factorization  lemma  

with  𝜇 = 1,  we  have  that 

𝐴 =  ( 𝐴2 + 𝐴1 + 𝐴0) ≡ (  𝐼 − 𝑅 )( 𝐴2 + 𝑅 𝐴2 + 𝐴1 ). 

Since  ‘A’  is  a  generator  matrix,  we  have  that   ( 𝐴2 + 𝐴1 + 𝐴0) �̅�  =  0̅  .  Using  the  fact  that  the  

spectral  radius  of  irreducible  rate  matrix, R  is  strictly  less  than  one, we  have  that 

( 𝐴2 + 𝑅 𝐴2 + 𝐴1 ) �̅�  =  0̅  =   𝑅 𝐴2 𝑒 ̅ + ( 𝐴2 + 𝐴1 ) �̅�. 

Hence,  it  follows  that    

𝑅 𝐴2 �̅�  =   𝐴0𝑒 ̅ . 

  Since, 𝐴1 is  diagonally  dominant  and   ( 𝐴1 ) �̅�  =  −( 𝐴0 +  𝐴2 ) �̅�  ,  ( 𝑅 𝐴2 + 𝐴1)  is  strictly  

diagonally  dominant   since  𝐴2 �̅� >  0̅.  Hence  ( 𝑅 𝐴2 + 𝐴1)  is  non-singular.  Further 

( 𝑅 𝐴2 + 𝐴1)  −1  ( 𝐴2 + 𝑅 𝐴2 + 𝐴1 ) 𝑒 ̅ =  0̅ . 

Thus,  we  have  that  

−( 𝑅 𝐴2 + 𝐴1) −1  𝐴2 𝑒 ̅  =  �̅�. 

Also,  since  ( 𝑅 𝐴2 + 𝐴1)  is  strictly  diagonally  dominant  ( with  negative  diagonal  elements and  non-

negative  off-diagonal  elements ),  −( 𝑅 𝐴2 + 𝐴1) −1    is  a  non-negative  matrix.  Hence   

−( 𝑅 𝐴2 + 𝐴1) −1  𝐴2  is  a  stochastic  matrix   with  spectral  radius  ONE.  Hence,  if  𝜇  is  an  

eigenvalue  with  the  corresponding  right  eigenvector  𝑓 ̅ ,  we  have  that 

−( 𝑅 𝐴2 + 𝐴1) −1  𝐴2 𝑓 ̅  =  𝜇 𝑓̅  𝑤𝑖𝑡ℎ  |𝜇| < 1. 

Thus,                ( 𝜇(𝑅 𝐴2 + 𝐴1) +  𝐴2 ) 𝑓 ̅ = 0̅  for  every  eigenvalue  𝜇.   Let  
1

𝜇 
=  𝜃. 

Hence,  it  readily  follows  that   

( (𝑅 𝐴2 + 𝐴1) + 𝜃 𝐴2 ) 𝑓 ̅ = 0̅. 

Hence  all  the  zeroes  of  𝑔(𝜇),  other  than  those  of  rate  matrix  R   are  all  on  or  outside  the  

unit  circle.  There  is  exactly  one  zero  lying  at  ‘1’.                                                  Q.E.D. 

Note:  The  above  proof   is  more  general  and  applies  to  the  case  where  the  dimension  of  

coefficient  matrices  ( i.e  𝐴0, 𝐴1, 𝐴2 )   is  an  arbitrary  integer  value  N  (  not just  N=2 ). 

Uniqueness  of  Solutions  of   Rate  Matrix  based  Matrix  Quadratic  Equation: 

 From  the  above  discussion,  it  is  clear  that  all  the  four  zeroes  of   

𝑔(𝜇)  𝑎𝑟𝑒  𝑟𝑒𝑎𝑙  𝑎𝑛𝑑  𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡.  Specifically 𝛼 < 𝜏 < 1 < 𝛿. 

 

 Hence,  all  6  possible  trace  values  are   

 

{ 𝛼 + 𝜏, 𝛼 + 1, 𝛼 + 𝛿, 𝜏 + 1, 𝜏 + 𝛿, 1 + 𝛿 }. 



 

In  view  of  the  above  discussion  on  the  values  of  four  zeroes  of  𝑔(𝜇) , 

the  following  inequalities  hold  true 

 

                    𝛼 + 𝜏 <  𝛼 + 1 <  𝛼 + 𝛿 < 𝜏 + 𝛿 <  1 + 𝛿. 

 

Thus,  there  are  5  distinct  values  of  trace  of  potential  matrix  solutions.  Hence  

based  on  earlier  reasoning  (  equation  (  )  ),  there  are  atleast  3  UNIQUE  matrix  

solutions  of  the  structured  matrix  quadratic  equation  arising  in  the  equilibrium  

analysis  of  Quasi-Birth-and-Death  process. 

              Using  an  alternative   reasoning,  we  prove  that  for  the  trace  value  of  (𝛼 + 1),  the  

associated  matrix  solution  is  UNIQUE  i.e.  we  essentially   reason  that ( 𝐴1 + (1 + 𝛼)𝐴2 ) is  

non-singular 

Lemma  4:  ( 𝐴1 + (1 + 𝛼)𝐴2 )  is  strictly  diagonally  dominant  and  hence  is  non-singular 

Proof:  𝐴1 + (1 + 𝛼)𝐴2 =  𝐴1 + 𝐴2 + 𝛼𝐴2.  Also,  we  readily  know  that   

( 𝐴2 + 𝐴1 + 𝐴0) �̅�  =  0̅   ( where  �̅�  is  a  column  vector  all  of  whose  components  are ‘1’ ). 

Hence,  it  is  sufficient to  show  that                    𝛼𝐴2 �̅� <  𝐴0�̅�,         𝑤ℎ𝑒𝑟𝑒  𝑡ℎ𝑒  𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦   

ℎ𝑜𝑙𝑑𝑠  𝑓𝑜𝑟 𝑎𝑙𝑙  𝑡ℎ𝑒  𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠  𝑜𝑓  𝑡ℎ𝑒  𝑣𝑒𝑐𝑡𝑜𝑟𝑠.   From  Lemma (),  it is  clear  that 

 𝑅𝐴2�̅� = 𝐴0�̅�  𝑤𝑖𝑡ℎ  𝑅 =  𝛼 𝐸1 + 𝜏 𝐸2 , 𝑤ℎ𝑒𝑟𝑒 𝐸1, 𝐸2 𝑎𝑟𝑒 𝑟𝑒𝑠𝑖𝑑𝑢𝑒  𝑚𝑎𝑡𝑟𝑖𝑐𝑒𝑠  𝑠𝑢𝑐ℎ  𝑡ℎ𝑎𝑡   

 𝐸1 + 𝐸2 = 𝐼 𝑖. 𝑒. 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦  𝑚𝑎𝑡𝑟𝑖𝑥  ( 𝑎𝑙𝑙  𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 𝑜𝑓 𝐸2  𝑎𝑟𝑒  𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑏𝑦 𝑃𝑒𝑟𝑟𝑜𝑛′𝑠 𝑇ℎ𝑒𝑜𝑟𝑒𝑚 ). 

Thus,  𝑅 >  𝛼 𝐸1 + 𝛼 𝐸2   ( componentwise  inequality ).  Equivalently  𝑅 >  𝛼 𝐼.  

Since  𝐴2  𝑖𝑠  𝑎  𝑛𝑜𝑛 − 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒  𝑚𝑎𝑡𝑟𝑖𝑥, 𝑤𝑒  ℎ𝑎𝑣𝑒  𝑡ℎ𝑎𝑡  𝛼 𝐴2�̅� > 𝐴0�̅�  .  

Since  𝐴1  is  a  diagonally  dominant  matrix  with  negative  diagonal  elements  and  non-negative   

off-digonal  elements,  from  the  above  discussion,  it   readily  follows  that   ( 𝐴1 + (1 + 𝛼)𝐴2 )  is  

strictly  diagonally  dominant  and  hence  is  non-singular                        Q.E.D. 

Corollary:  Suppose  𝐴2 = 𝐴0.  Using   the  same  reasoning,  it  follows  that ( 𝐴1 + (1 + 𝜏)𝐴2 )  

is  strictly  diagonally  dominant  and  hence  is  non-singular. 

 

FUTURE  RESEARCH  WORK: 

                                                     In  future  versions  of  this  preprint, we  propose  to  document  our  

results  related   to  the  following  topics. 

 

4. RELATED  MATRIX  QUADRATIC  EQUATIONS: SOLUTIONS 



 

5. GENERALIZATION  TO  MATRIX  POLYNOMIAL  EQUATIONS 

 

6. CONCLUSIONS: 

 

                                   In  this  research  paper,  we  provide  interesting  results  related  to  

solving  matrix  quadratic  equations  in  which  the  coefficient  matrices  as  well  as  

unknown  matrix  are  2 x 2  matrices.  We  readily  realize  that  the  results  can  easily  

be  generalized  to  such  matrix polynomial  equations  of  arbitrary  degree. 
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