

Z-Class and O-class of Zero-One (In)finity Representation in Binary Representations.

Frank Appiah

EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair.

April 15, 2021

Z-Class and O-class of Zero-One (In)finity Representation in Binary Representations.

Prof Frank Appiah appiahnsiahfrank@yahoo.com 14.04.2021

Abstract. This is an introduction to Z-Class and O-class to 1/0 binary representation in order to create an alternative way of representing long binary numbers. Zolean is the terminology for ZO-classes in transforming binary number representation. I will now show the zolean operation on binary representation.

Keywords. Z-Class, O-class, binary number, zeroes, ones, operation.

1 Introduction

Given a binary number 100001001111,

it can be represented in ZO-classes as OZ⁴OZ²O⁴,

for the Z-Class apartment compress we have $1Z^41Z^21111$.

Binary Number	ZO-classes	Z-class
100001001111	OZ ⁴ OZ ² O ⁴	1Z ⁴ 1Z ² 1111

Again O - class alone considers ones without respect to the Z - classes. We have O-class pattern as

OooooOooO⁴.

Ambiguity has risen due to shapes of zero and alphabet-0 and it can be solve by lowering the zeros in an O-class just for the beauty of simplicity. The fun lies in the sound of pattern. It is a pattern of *Z0Z0*, *Z1Z1* and *0000* sounds and will make one a good dancer. A fine sound pattern can be :

Z1Z1 Z0Z0 00 00 0000 Z1Z1 ZOZO 0000 Z0Z0 Z1Z1 Z1Z0O000 00Z1Z1Z0 Z1Z0Z0Z1 0Z1Z0 00Z1Z0 Z1Z0Z0Z1 0Z1Z0 00Z1Z0 000Z1Z0 00Z1Z1 000Z1Z1 0000Z1Z1 00ZOZ0 000Z0Z0 0000Z0Z0 00Z1 000Z1 0000Z0Z1 And more.

Pattern in ZO Class	Binary Number
Z0Z0 Z1Z1 0000	0101 0101 0000
0000 Z1Z1 ZOZO	1111 0101 0000
0000 Z0Z0 Z1Z1	0000 0000 0101
Z0000 Z1000 Z1Z0	01111 01111 0100
Z1Z0Oooo ooZ1Z1ZO Z1Z0Z0Z1	0100111 11010100 01000001
0Z1Z0 ooZ1Z0 oooZ1Z0	00100 110100 111010

These patterns are called **Z-lot** and **O-lot**. The incressely smooth sounding pattern takes into consideration height of 0 and 0. O is sounded with a bigger voice than o so it's their height.

There are many ZO-classes, Z1-classes and more classes from the pattern application. The above binary number has a count 12 count of 1s and 0s but has being reduced to 5 count. The analysis of the binary number shows a reduction

12-5=7 counts. The alternative analysis gives the ZO classes a total 8 counts and this alternative count is a reduction of 12-8=4 count. The O class and Z class superscript can be eliminated by concatenating to the class. This gives a ZO-topology: $0Z^40Z^20^4$ to concatenate $0Z40Z^20^4$ to concatenate.

The classical truth values can represented 0-class as T-class and Z-Class as F-class.

Given 0Z⁴0Z²0⁴,

TF - Class: $TF^4TF^2T^4$,

CON-CLASS: TF4TF2T4.

ZO class	TF class	Con-class
ZOZO Z1Z1 Z ⁴	F ⁴ FTFT F ⁴	F4 FTFT 4F
0000 Z1Z1 Z0Z0	T ⁴ FTFT F ⁴	T4 FTFT 4F
0000 Z0Z0 Z1Z1	F ⁴ F ⁴ FTFT	F4F4FTFT
Z0000 Z1000 Z1Z0	FT ⁴ FT ⁴ FTFT	FT4FT4FTFT

These are Z^F0^T-class spectrum. The binary number of 1 million ones and zeros can be chaotic. One will need Chao theory for this situation. The representation of 1 million ones and zeros is uncertain by human writes. The ZO-classes can device a method to help the human writer. An efficient binary number can be called by Z0-Class binary representation of zeroes and ones. This is termed as Z0-class number. This shows that the 10-class binary number allows for additional ones. The choice of binary number representation left to the hand engineer. ZO-classes are interesting and potential model of 10-class binary number. The real world of 10-classes in the computer is the actual situation. Is the Z-Class ready in the real world of a computer? The computer engineer would do what to deal with hard Z0-class in the rational and sensible way of 10-classes. The merit of ZO-classes is

still zolean set. **Zolean logic** uncertain in the eyes of the pure 10-logician. The Z0 - classes can be called Zolean. The pure 10 logician will want a result as efficient and very short. Then the pure 10 logician has attended the Zolean thought class and uses the zolean approach. Zolean is too boolean.

It is like eating a sandwich with fork(1) and knife(0). The ZO-classes of thing conforms to physical world of boolean logic. The representation of 0 with Z class is the Zolean technique. On the other hand, the representation of 1 with O-class is the Onelean technique. These classes play a role in human thinking, particularly in the field of number theory, pattern recognition, communication of information and abstraction. There is no bureaucratic battle between Zolean logic and Boolean logic--- Is it Red Tape or Red Bush?.

Conclusion.

The following claims were made in this work:

- Z-Class is a binary representation in zero binary system
- O-class is a binary representation in one binary system.
- ZO-classes are binary representation in both zero-one system.
- TF-class is a truth interpretation of binary representation.
- Con-class is a concatenation of powers in ZO-classes and TF-classes.

Further Reading

- 1. Jamil, T. (2002). The complex binary number system. IEEE potentials, 20(5), 39-41.
- 2. Brown, B. (1999). Binary arithmetic. Computer science, 1-9.
- 3. Jamil, T., Blest, D., & Al-Habsi, A. (2002). Towards Formulation of a Complex Binary Number System. Science and Technology, 7, 199-209.
- 4. Reitwiesner, G. W. (1960). Binary arithmetic. In Advances in computers (Vol. 1, pp. 231-308). Elsevier.
- 5. Yates, R. (2009). Fixed-point arithmetic: An introduction. Digital Signal Labs, 81(83), 198.