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Abstract

In mathematics, Catalan’s constant G is defined by

G = β(2) =

∞∑
n=0

(−1)n

(2n+ 1)2
=

1

12
− 1

32
+

1

52
− 1

72
+

1

92
− · · · ,

where β is the Dirichlet beta function.
Catalan’s constant has been called arguably the most basic constant whose irrationality and transcen-

dence (though strongly suspected) remain unproven. In this paper we show that G is indeed irrational.

Proof

Keeping in mind the Riemann series theorem (also called the Riemann rearrangement theorem), we have

1
12 - 1

32 + 1
52 - 1

72 + 1
92 - · · · G

- 2
32 + 2

52 - 2
72 + 2

92 - · · · 2G - 2
12

+ 2
52 - 2

72 + 2
92 - · · · 2G - 2

12 + 2
32

- 2
72 + 2

92 - · · · 2G - 2
12 + 2

32 - 2
52

+ 2
92 - · · · 2G - 2

12 + 2
32 - 2

52 + 2
72

. . . . . .

1
1 - 1

3 + 1
5 - 17 + 1

9 - . . .

Notice that the Leibniz formula for π states that

π

4
= β(1) =

∞∑
n=0

(−1)n

2n+ 1
=

1

1
− 1

3
+

1

5
− 1

7
+

1

9
− · · · .

Moreover, it is easy to see that
∞∑
n=0

(−1)n
2n+1 is conditionally convergent. On the another hand,

∞∑
n=0

(−1)n
(2n+1)2

is absolutely convergent and we are able to rearrange the terms as we want.
Let’s assume the contrary: G is a rational number s

2kt
, where t is odd. Hence, we have

stG = st

∞∑
n=0, n-t

(−1)n

(2n+ 1)2
+ st

∞∑
m=0

(−1)mt+bt/2c

t2(2m+ 1)2
=

st

∞∑
n=0, n-t

(−1)n

(2n+ 1)2
+ ((−1)bt/2c2kG

∞∑
m=0

((−1)t)m

(2m+ 1)2
) = st

∞∑
n=0, n-t

(−1)n

(2n+ 1)2
+ ((−1)bt/2c2kG2).
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In other words, we obtain the following quadratic equation for G:

G2 − (−1)bt/2c
st

2k
G+ (−1)bt/2c

st

2k

∞∑
n=0, n-t

(−1)n

(2n+ 1)2
.

The last is equal to

G2 − (−1)bt/2c
st

2k
G+ (−1)bt/2ct2G

∞∑
n=0, n-t

(−1)n

(2n+ 1)2
.

Since G 6= 0, we have the next equation

G = (−1)bt/2c
st

2k
− (−1)bt/2ct2

∞∑
n=0, n-t

(−1)n

(2n+ 1)2
.

Indeed, we have

G = (−1)bt/2c
st

2k
− (−1)bt/2ct2(G+ ε),

G = (−1)bt/2ct2G− (−1)bt/2ct2(G+ ε),

G = −(−1)bt/2ct2ε,

where

ε = −
∞∑
m=0

(−1)mt+bt/2c

t2(2m+ 1)2
= −(−1)bt/2c

G

t2
.

According to the above, we consider the following quadratic equation for t:

G = (−1)bt/2c
st

2k
− (−1)bt/2ct2(G+ ε),

t2 − s

2k(G+ ε)
t+ (−1)bt/2c

G

(G+ ε)
= 0.

Since s
2k(G+ε)

> 0 due to t > 1 (G can not be s
2k

for natural s, k: it goes around with the representation
∞∑
n=0

(−1)n
(2n+1)2 ), we get

t =
s

2k+1(G+ ε)
(1±

√
1− 4(−1)bt/2cG(G+ ε)222k

(G+ ε)s2
) =

=
s

2k+1(G+ ε)
(1±

√
1− (−1)bt/2cG(G+ ε)22k+2

s2
).

Using the Taylor series of
√

1 + x, we come to

t+ ∼=
s

2k(G+ ε)
− (−1)bt/2cG2k

s
, t− ∼=

(−1)bt/2cG2k

s
,

where t− is impossible as G = s
2kt

and t > 1.
Substituting G = s

2kt+
, we derive

t+ ∼=
s

2k(G+ ε)
− (−1)bt/2cG2k

s
=

s

2k(G+ ε)
− (−1)bt/2c

t+
=

t+G

(G+ ε)
− (−1)bt/2c

t+
.

According to the above, we consider the following quadratic equation for t+:

t2+
ε

(G+ ε)
+ (−1)bt/2c ∼= 0.

Substituting ε = −(−1)bt/2c Gt2 , we derive

−G
(G+ ε)

+ 1 ∼= 0.

So, on the one hand, ε can not be close to 0 with any accuracy (it is 1/t2), but, on the other hand,
accuracy of ∼= in the Taylor expansion is O(1/t4). Note that 1/(1 ± x) and

√
1± x are different as series.

Hence, the last equation can not be fulfilled. Q.E.D.
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Remark 1. There exists the following integration∫ ∞
0

1

1 + x2
cos(kx)dx =

π

2
e−k.

One way to see it is via the Fourier inversion theorem: we know that the Fourier transform of a function
has a unique inverse. This carries over to the cosine transform as well. Moreover, the unique continuous
function on the positive real axis with Fourier transform 1

1+x2 is e−k.
Notice that if

In =

∫
xn

1 + x2
dx,

then

In+2 + In =
xn

n+ 1
+ C.

Remark 2. Are all {1,n π | n ∈ N} linearly independent over Q, where nx is tetration? Meaning none of

exponents is an integer (we have not known that ππ
ππ

(56 digits) is not an integer).

Moreover, at least one of ee and ee
2

must be transcendental due to W. D. Brownawell.

Remark 3. Is e+ π irrational?
Note that (x − e)(x − π) = x2 − (e + π)x + eπ. So, at least one of the coefficients e + π, eπ must be

irrational.

Remark 4. Is ln(π) irrational?
There exists such representation

sin(x)

x
=

∞∏
n=1

(1− x2

n2π2
).

Let x = π
2 and then we have the Wallis product formulae for π

2 :

π

2
=

∞∏
n=1

2n

2n− 1

2n

2n+ 1
.

Taking logarithms of this, we come to

ln(π) = ln(2) +

∞∑
n=1

(2 ln(2n)− ln(2n− 1)− ln(2n+ 1)).

Remark 5. Is the Euler–Mascheroni constant γ irrational?

γ = lim
n→∞

(
n∑

m=1

1

m
− log(n)

)
.

Remark 6. Is the Khinchin’s constan K0 irrational?

K0 =

∞∏
n=1

(1 +
1

n(n+ 2)
)log2 n.
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