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Abstract. In this paper, we analysed 2D problem of thermoelasticity with the
fractional order derivative of order 0 < α ≤ 2 and determine temperature and
thermal deflection of a circular disk. The zero initial condition are assumed.
The inner and outer circular edges are kept at temperatures f1(z, t) and f2(z, t).
The lower and upper surfaces are kept at temperatures f3(r, t) and f4(r, t). The
solution is obtained applying Laplace, finite Fourier and Hankel transforms.
Numerical results are illustrated graphically with the help of PTC Mathcad
software.
Keywords: Capito Fractional Derivative, Heat Conduction, Thermal Deflec-
tion, Hollow Circular Disk, Mittag-Leffler Functions.

1. Introduction

Biot [1] introduced the generalization of the classical coupled thermoelasticity

theory. Green and Nagdhi [2] introduced the thermoelastic material behavior with-

out energy dissipation with linear and nonlinear theories. Povstenko [3] solved the

heat conduction problem with time fractional derivative and its thermal stresses.

Sherief et. al. [4] discussed the coupled and generalized theory of thermoelasticity

with some limiting cases using the method of fractional calculus. Sur and Kano-

ria [5,8] developed the new theory of thermoelastic distribution of two temperature

with new heat conduction equation and FGVM with fractional order. Gaikwad

et. al. [6, 7] solved the nonhomogeneous thermoelastic problem of thermal deflec-

tion with internal heat generation and thermoelastic deformation with partially

distributed heat supply in a circular disk. Raslan [9] discussed the 2D problem of

fractional order thermoelasticity in a circular plate with temperature distribution

is axisymmetric. Gaikwad [10] solved 2D problem of thermoelasticty under steady

state temperature distribution of thin plate with internal heat generation. Gaik-

wad [11] have been solved axisymmetric thermoelastic temperature distribution of

thin circular plate with internal heat source. Some contribution of these theory

have been discussed in [12–33].

In this paper, the work of Gaikwad et. al. has been modified and prepare a

new thermoelastic model with time fractional derivative of order 0 < α ≤ 2 and
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use of Mittag-Leffler function and determined the temperature, thermal deflection

in a thin hollow circular plate. The zero initial condition are assumed. The inner

and outer circular edges are kept at temperatures f1(z, t) and f2(z, t). The lower

and upper surfaces are kept at temperatures f3(r, t) and f4(r, t). The solution

is obtained applying Laplace, finite Fourier and Hankel transforms. Numerical

results are illustrated graphically with the help of PTC Mathcad software.

2. Formulation of The Problem

We consider a 2D problem for a thin hollow circular disk with zero initial con-

dition occupying the region a ≤ r ≤ b, 0 ≤ z ≤ h. The inner and outer circular

edges are kept at temperatures f1(z, t) and f2(z, t). The lower and upper sur-

faces are kept at temperatures f3(r, t) and f4(r, t). The mathematical model is

constructed for nonlocal Caputo type time fractional heat conduction equation of

order α for a thin hollow disk and temperature and thermal deflection are required

to be determined.

The Caputo type fractional derivative given by [36]

Dαf(t) =











1

Γ(n− α)

∫ t

0

fn(τ)

(t− τ)α+1−n
dτ, n− 1 < α < n;

df(t)

dt
, n = 1.

For finding the Laplace transform, the Caputo derivative requires information

of the initial values of the function f(t) and its integer derivative of the order

k = 1, 2, ..., n− 1

L{Dαf(t); s} = sαF (s)−
n−1
∑

k=0

sα−k−1f (k)(0), n− 1 < α < n

The governing heat conduction equation in the form of fractional order parameter

for a thin hollow circular disk satisfies the differential equation,

∂2T

∂r2
+

1

r

∂T

∂r
+

∂2T

∂z2
=

1

k

∂αT

∂tα
in a ≤ r ≤ b, 0 ≤ z ≤ h, for t > 0, (1)

with the boundary conditions,

T = f1(z, t), at r = a, for t > 0, (2)

T = f2(z, t), at r = b, for t > 0, (3)

T = f3(r, t), at z = 0, for t > 0, (4)

T = f4(r, t), at z = h, for t > 0. (5)

The zero initial condition are assumed,

T = 0, at t = 0, 0 < α ≤ 2 , (6)

∂T

∂t
= 0, at t = 0, 1 < α ≤ 2 . (7)
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The differential equation satisfied the deflection function w(r, t) defined in [6] as

∇2∇2w = − 1

(1 − ν)D
∇2MT (8)

where

∇2 =
∂2

∂r2
+

1

r

∂

∂r
(9)

and MT is the thermal moment of the disk, ν is the Poisson’s ratio of the disk

material, D is the flexural rigidity of the disk denoted by

D =
Eh3

12(1− ν2)
, (10)

The term MT is defined in [6] as

MT = atE

∫ h

0

(

z − h

2

)

T (r, z, t)dz, (11)

at and E are the coefficients of the linear thermal expansion and the Young mod-

ulus respectively.

Since the inner and outer edges of the hollow circular disk are clamped,

w = 0 at r = a and r = b, (12)

Initially, T = w = 0, at t = 0.

Equations (1) to (12) constitute the mathematical formulation of the problem

under consideration.

3. Solution of The Heat Conduction Problem

Firstly we define the finite Fourier transform and their inverse transform over

the variable z in the range 0 ≤ z ≤ h defined in [34] as

T (r, ηp, t) =

∫ h

z′=0

K(ηp, z
′).T (r, z′, t).dz′ (13)

T (r, z, t) =

∞
∑

n=1

K(ηp, z).T (r, ηp, t) (14)

where

K(ηp, z) =

√

2

h
sin(ηpz).

and η1, η2, . . . are the positive roots of the transcendental equation

sin(ηph) = 0, p = 1, 2, 3, . . .

i.e.

ηp =
pπ

h
, p = 1, 2, 3, . . .
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Applying the finite Fourier transform with respect to the axial coordinates z,

defined in equation (13) to equation (1) and using the conditions (2)-(7), one

obtains
∂2T

∂r2
+

1

r

∂T

∂r
− η2pT =

1

k

∂αT

∂tα
(15)

with

T = f1(ηp, t), at r = a, for t > 0, (16)

T = f2(ηp, t), at r = b, for t > 0, (17)

T = 0, at t = 0, 0 < α ≤ 2, (18)

∂T

∂t
= 0, at t = 0, 0 < α ≤ 2 , (19)

where T = T (r, ηp, t).

Secondly, we define finite Hankel transform and their inverse transform over the

variable r in the range a ≤ r ≤ b as defined in [34] as,

T (βm, ηp, t) =

∫ b

r′=a

r′.K0(βm, r
′).T (r′, ηp, t).dr

′ (20)

T (r, ηp, t) =
∞
∑

m=1

K0(βm, r).T (βm, ηp, t) (21)

where

K0(βm, r) =
π√
2

βmJ0(βmb).Y0(βmb)
[

1− J2
0 (βmb)

J2
0 (βma)

]1/2

[

J0(βmr)

J0(βmb)
− Y0(βmr)

Y0(βmb)

]

and β1, β2, β3, . . . are the positive root of transcendental equation

J0(βa)

J0(βb)
− Y0(βa)

Y0(βb)
= 0.

Applying the finite Hankel transform with respect to the radial coordinate r,

defined in equation (20) to equation (15) and using the conditions (16)-(20), one

obtains

∂αT (βm, ηp, t)

∂tα
+ k(β2

m + η2p)T (βm, ηp, t) = A(βm, ηp, t) (22)

T (βm, ηp, t) = 0, for t = 0, (23)

T (βm, ηp, t)

∂t
= 0, for t = 0, (24)

where

A(βm, ηp, t) = k

{

a
dK0(βm, r)

dr
f 1(ηp, t)

∣

∣

∣

r=a
− b

dK0(βm, r)

dr
f 2(ηp, t)

∣

∣

∣

r=b

+
dK0(ηp, z)

dz
f 3(βm, t)

∣

∣

∣

z=0
+

dK0(ηp, z)

dz
f 4(βmt)

∣

∣

∣

z=h

} (25)
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Applying the Laplace transform with respect to time t and their inverse the solution

of the equation (22) is obtained as

T (βm, ηp, t) =
A(βm, νn, t)

k(β2
m + ν2

n)
[1−Eα(−k(β2

m + ν2
n)t

α)] (26)

Here Eα(.) represents the Mittag-Leffler function.

Finally taking inverse finite Hankel transform defined in equation (21) and in-

verse finite Fourier transform defined in equation (14), the expressions of the tem-

perature T (r, z, t) as

T (r, z, t) =

∞
∑

p=1

∞
∑

m=1

K(ηp, z)K0(βm, r)
1

k(β2
m + η2p)

[1− Eα(−k(β2
m + η2p)t

α)].bpm

(27)

where

bpm =

[

k.a.K1(βm, a)

∫ h

z′=0

K(ηp, z
′).f1(z

′, t′).dz′

− k.b.K1(βm, b)

∫ h

z′=0

K(ηp, z
′).f2(z

′, t′).dz′

+

√

2

π
k.ηp.

∫ b

r′=a

r′.K0(βm, r
′).f3(r

′, t′).dr′

+

√

2

π
k.ηp. cos(ηph).

∫ b

r′=a

r′.K0(βm, r
′).f4(r

′, t′).dr′

]

4. Determination of Thermal Deflection

Assume the solution of (8) satisfying conditions (12) as

w(r, t) =

∞
∑

m=1

Cm(t)

[

J0(βmr)

J0(βmb)
− Y0(βmr)

Y0(βmb)

]

(28)

where β1, β2, β3, . . . are the positive root of transcendental equation

J0(βa)

J0(βb)
− Y0(βa)

Y0(βb)
= 0.

It can be easily shown that

w = 0 at r = a and r = b, (29)

Hence the solution (28) satisfies the condition (12).

Now,

∇2∇2w =

(

∂2T

∂r2
+

1

r

∂T

∂r

)2 ∞
∑

m=1

Cm(t)

[

J0(βmr)

J0(βmb)
− Y0(βmr)

Y0(βmb)

]

(30)

Using the well-known result
(

∂2T

∂r2
+

1

r

∂T

∂r

)

J0(βmr) = −β2
mJ0(βmr) (31)

(

∂2T

∂r2
+

1

r

∂T

∂r

)

Y0(βmr) = −β2
mY0(βmr) (32)
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in equation (30), one obtains

∇2∇2w =

∞
∑

m=1

Cm(t)β
4
m

[

J0(βmr)

J0(βmb)
− Y0(βmr)

Y0(βmb)

]

(33)

Using equation (27) in equation (11), one obtains

MT = −
√

2

h
atEh

∞
∑

p=1

∞
∑

m=1

[cos(ηph) + 1]

ηp
K0(βm, r)

1

k(β2
m + η2p)

[1−Eα(−k(β2
m + η2p)t

α)].bpm

(34)

Now,

∇2MT = −
(

∂2T

∂r2
+

1

r

∂T

∂r

)

1√
2π

atEh

∞
∑

p=1

∞
∑

m=1

[cos(ηph) + 1]

ηp
K0(βm, r)

1

k(β2
m + η2p)

[1− Eα(−k(β2
m + η2p)t

α)].bpm

(35)

solving equation (35), one obtains

∇2MT =
1√
2π

atEh

∞
∑

p=1

∞
∑

m=1

[cos(ηph) + 1]

ηp
β2
mK0(βm, r)

1

k(β2
m + η2p)

[1− Eα(−k(β2
m + η2p)t

α)].bpm

(36)

Substituting equation (33) and (36) into equation (8), one obtains

∞
∑

m=1

Cm(t)β
4
m

[

J0(βmr)

J0(βmb)
− Y0(βmr)

Y0(βmb)

]

= − 1√
2π

atEh
1

(1− ν)D

∞
∑

p=1

∞
∑

m=1

[cos(ηph) + 1]

ηp
β2
m

× π√
2

βmJ0(βmb).Y0(βmb)
[

1− J2
0 (βmb)

J2
0 (βma)

]1/2

[

J0(βmr)

J0(βmb)
− Y0(βmr)

Y0(βmb)

]

1

k(β2
m + η2p)

[1− Eα(−k(β2
m + η2p)t

α)].bpm

(37)

Solving equation (37), one obtains

Cm(t) = − 1√
2π

atEh
1

(1− ν)D

∞
∑

p=1

∞
∑

m=1

[cos(ηph) + 1]

ηp

1

β2
m

× π√
2

βmJ0(βmb).Y0(βmb)
[

1− J2
0 (βmb)

J2
0 (βma)

]1/2

1

k(β2
m + η2p)

[1− Eα(−k(β2
m + η2p)t

α)].bpm

(38)
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Finally, substituting equation (38) in equation (28), one obtains the expression for

the quasi-static thermal deflection w(r, t) as

w(r, t) = − 1√
2π

atEh
1

(1− ν)D

∞
∑

p=1

∞
∑

m=1

[cos(ηph) + 1]

ηp

1

βm

× π√
2

J0(βmb).Y0(βmb)
[

1− J2
0 (βmb)

J2
0 (βma)

]1/2

[

J0(βmr)

J0(βmb)
− Y0(βmr)

Y0(βmb)

]

1

k(β2
m + η2p)

[1− Eα(−k(β2
m + η2p)t

α)].bpm

(39)

5. Numerical Results and Discussion

Setting

f1(z, t) = f2(z, t) = (z2 − h2)2.e−At

f3(r, t) = f4(r, t) = (r2 − a2)2(r2 − b2)2.e−At

where A > 0.

Dimension

The constants associated with the numerical calculation are taken as

Inner radius of a circular disk a = 1 m,

Outer radius of a circular disk b = 2 m,

Thickness of circular disk h = 0.1 m,

Roots of the transcendental equation

The first five positive root of the transcendental equation
J0(βa)

J0(βb)
− Y0(βa)

Y0(βb)
= 0

as defined in [34] are β1 = 3.1965, β2 = 6.3123, β3 = 9.4445, β4 = 12.5812,

β5 = 15.7199.

Material Properties

The cooper material was chosen for purpose of numerical calculation for a thin

circular hollow disk as

Thermal diffusivity k = 4.42 m2/s

Density ρ = 558 kg/m3

Specific heat cp = 0.091 J/(kg K)

Poisson ratio ν = 0.36

Coefficient of linear thermal expansion at = 16.5×10 −6 /K

Young’s modulus E = 117 GPa
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The numerical calculation are carried out according to the values of parameter

α reflecting the characteristic features of the solution for various order of the frac-

tional derivative. There distinguishing values of the parameter α are considered,

0 < α < 1, α = 1 and 0 < α ≤ 2 depicting weak, normal and strong conductivity.

Figure 1. Temperature distribution for different values of α.

Figure 2. Thermal Deflection for different values of α.

Figure 1, shows the variation of temperature along radial direction for the different

values of fractional order parameters α = 0.5, 0.75, 1, 1.25, 2. The temperature

decreases within the annular region 1 ≤ r ≤ 1.5 and increases within the circular
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region 1.5 ≤ r ≤ 2. The temperature is zero at both the inner and outer radii r = 1

and r = 2. Also it is zero at the center r = 1.5 of the annular disk. We observe

that, the speed of propagation of the thermal signals is directly proportional to

the values of fractional order parameter α within the annular region 1 ≤ r ≤ 1.5

and inversely proportional to the circular region 1.5 ≤ r ≤ 2.

Figure 2, shows the variation of thermal deflection along radial direction for

the different values of fractional order parameters α = 0.5, 0.75, 1, 1.25, 2. It is

clear that, the thermal deflection is maximum within the regions 1 ≤ r ≤ 1.5 and

1.5 ≤ r ≤ 2. The temperature is zero at both the inner and outer edges r = 1

and r = 2. Also it is zero at the center r = 1.5 of the annular disk. We observe

that, the speed of propagation of the thermal signals is inversely proportional to

the values of fractional order parameter α.

6. Conclusion

We investigate the temperature and thermal deflection in a thin hollow circu-

lar disk in a theory of thermoelasticity based on fractional heat conduction with

the Caputo time-fractional derivative of order 0 < α < 2. The present method

is based on the direct method, using the finite Hankel transform, the generalized

finite Fourier transform and Laplace transform.The numerical results shows the

significant influence of the order of time derivative on the temperature as well as

thermal deflection with radial coordinate. The time fractional order parameter α

within the range 0 < α < 1 and 1 < α < 2 represent the weak and strong conduc-

tivity, while α = 1 represents the normal conductivity. The results presented here

will be more useful in studying the thermal characteristics of circular bodies in

real-life engineering problems, mathematical biology by considering the fractional

derivative in the field equations.
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