
EasyChair Preprint
№ 3169

Logic Programming with Bounded Quantifiers

Andrei Voronkov

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

April 13, 2020

tehnial report ECRC{92{29

Logi Programming with Bounded

Quanti�ers

Andrei Voronkov

EUROPEAN COMPUTER-INDUSTRY RESEARCH CENTRE

ECRC GMBH, ARABELLASTR. 17 D-8000 M

�

UNCHEN 81, GERMANY - TEL +49 89/926 99 0 - FAX 926 99 170 - TLX 521 6910

European Computer-Industry Researh Centre, Otober 1992

Neither the authors of this report nor the European Computer-Industry Researh

Centre GmbH, Munih, Germany, make any warranty, express or implied, or assume

any legal liability for the auray, ompleteness or usefulness of any information,

apparatus, produt or proess dislosed, or represent that its use would not in-

fringe privately owned rights. Permission to opy in whole or in part is granted

for non-pro�t eduational and researh purposes, provided that all suh whole or

partial opies inlude the following: a notie that suh opying is by the permission

of the European Computer-Industry Researh Centre GmbH, Munih, Germany;

an aknowledgement of the authors and individual ontributors to the work; all

appliable portions of this opyright notie. Copying, reproduing or republishing

for any other purpose shall require a liense with payment of fee to the European

Computer-Industry Researh Centre, GmbH, Munih, Germany. All rights reserved.

About authors:

On leave from the International Laboratory of Intelligent Systems (SINTEL), Universitetski

Prospet 4, 630090 Novosibirsk 90, Russia

ii

Abstrat

This paper desribes an extension of Horn lause logi programs by bounded quanti�ers. Boun-

ded quanti�ers had been extensively used in a part of mathematial logi alled the theory of

admissible sets [Barwise 75℄. Later some variants of bounded quanti�ers had been introdued

in logi programming languages [Gonharov 85, Shwartz 86, Turner 86, Kuper 87, Dovier 91,

Hentenryk 91℄. We show that an extension of logi programs by bounded quanti�ers has several

equivalent logial semantis and is eÆiently implementable using a variant of SLD-resolution,

whih we all SLDB-resolution. We give examples showing that introdution of bounded quan-

ti�ers results in a high level logial spei�ation language. The expressive power of subsets of

Horn lauses and subsets of logi programs with bounded quanti�ers is ompared. We also show

that the use of bounded quanti�ers sheds new light on lassial negation in logi programming.

iii

Contents

1 Introdution : 2

1.1 Related work : 3

2 Logi programs with bounded quanti�ers : 6

2.1 Sorts and lists : 6

2.2 Bounded quanti�ers and generalized logi programs : : : : : : : : : : : : 7

2.3 Examples : 8

3 Semantis of generalized logi programs : 10

3.1 Model-theoreti semantis : 10

3.2 Least �xedpoint semantis : 13

3.3 Classial provability : 14

3.4 Construtive provability : 16

3.5 The natural alulus : 18

4 Proedural semantis: SLDB-resolution : 21

4.1 Uni�ation : 21

4.2 SLDB-resolution : 21

5 Expressive power : 30

5.1 Translation to Horn lauses : 30

5.2 A metainterpreter for Horn lause programs : : : : : : : : : : : : : : : : : 32

6 Negation : 39

7 Conluding remarks : 48

7.1 Other kinds of bounded quanti�ers : 48

7.2 Constraint logi programming : 48

7.3 Other appliations : 49

8 Aknowledgments : 50

iv

List of Figures

3.1 List theories Clt(P) and Ilt(P) : 15

3.2 Natural alulus Nat(P) : 19

5.1 Translation of bounded quanti�ers into Horn lause logi programs : : : : : : : : 31

5.2 Non-reursive metainterpreter for Horn lause programs : : : : : : : : : : : : : : 33

5.3 Expressibility of subsets of Horn lause logi programs and generalized logi pro-

grams : 38

1

1 Introdution

Although Horn lause programs are suÆiently rih to express all omputable prediates, they

are not suÆiently expressive to naturally represent some relations whih are easily expressed

in riher languages, for example in full �rst order logi. Sine the publiation of early papers

on logi programming and on Prolog there have been many attempts to extend Horn lauses

programs in various ways. Examples of pratial extensions are numerous in di�erent implemen-

tations of Prolog. These are usually ontrol primitives like ut or built-in primitives. Among

more theoretial extensions are programming with full �rst order logi, higher order logi pro-

gramming, et.

There are many foundational problems with extensions of Horn lauses. The pratial solutions

are mostly non-logial whih means that they have no natural logial semantis. As a onse-

quene, suh programs are more diÆult to understand and to verify. The problem with more

theoretial extensions is that most of them annot be eÆiently implemented. In most ases the

ineÆieny is inherent | for example negation ombined with reursion leads to non-omputable

prediates. Similar problems arise when using universal quanti�ers.

Here we present an extension of logi programming with bounded quanti�ers { i.e. quanti�ers

over �nite domains. We prove that this extension an be eÆiently implemented. Moreover we

show on examples that bounded quanti�ers an be used in pratial ases to express iterative

algorithms and to speify the exhaustive searh over �nite domains. Our extension is logial

in the sense that it enjoys a omplete and sound model-theoreti semantis while still being

eÆiently implementable.

This paper extends [Voronkov 92a℄. In [Voronkov 92a℄ we used a di�erent treatment of sorts

whih, in partiular, allowed us to onsider built-in sorts and prediates. The extended sorts

require a ompliated uni�ation algorithm. Here we do not onsider built-in sorts for simpliity.

Intuitively, bounded quanti�ers are quanti�ers ranging over �nite domains, in partiular over

�nite lists or sets. The domains are strutured suh that bounded quanti�ers reet the struture

of the domains. Expressions ontaining bounded quanti�ers give natural and elegant examples

of exeutable spei�ations. Consider, for example, the spei�ation of disjoint sets

disjoint(S

1

,S

2

) i� (8x

1

2S

1

)(8x

2

2S

2

)x

1

6=x

2

This spei�ation implies an obvious way to hek if two given sets are disjoint. Similar uses

of bounded quanti�ers an be found already in the language SETL [Shwartz 86℄ in whih the

onept of a set is a �rst-lass onept. SETL is an e�ort to inorporate sets in a logial

way into the proedural language paradigm. It seems very natural to use expressions with

bounded quanti�ers in logi programs as well. Combining the tehnique of �nite searh with the

logi programming tehnique (a variant of SLD-resolution) allows one to use suh spei�ations

for onstruting sets with given properties. The use of suh spei�ations also makes logi

programming more logial.

Although the semantis of the above expression is quite lear, its usual representation in Horn

lause logi programming

disjoint([℄,S).

disjoint([A|As℄,S) :-

nonmember(A,S),

disjoint(As,S).

2

nonmember(A,[℄).

nonmember(A,[B|Bs℄) :-

A 6=B,

nonmember(A,Bs).

is in ontrast not so easy to understand. The Prolog program for disjoint also laks in elegane

ompared to the spei�ation using bounded quanti�ers.

This paper is onerned with the logial justi�ation of logi programming with bounded quanti-

�ers. We restrited our attention only to two types of bounded quanti�ers, originally introdued

in [Gonharov 85℄ following [Moor 81℄, but our tehnique is quite general and is also appliable

to other kinds of bounded quanti�ers.

In this Setion 2 we give the basi de�nitions of sorts, lists and generalized logi programs.

Some natural examples of spei�ations using bounded quanti�ers are given in Setion 2.3. In

Setion 3 we introdue several semantis of logi programs with bounded quanti�ers and prove

their equivalene. Setion 4 desribes the proedural semantis of the language, whih gener-

alizes SLD-resolution. In Setion 5 we disuss the expressive power of subsets of the language

with bounded quanti�ers. For the lass of all generalized logi programs it is equivalent to

the expressive power of the Horn lauses | both kinds of languages an express exatly all

omputable prediates in the least Herbrand model semantis. First in Setion 5.1 we show a

natural translation from the language with bounded quanti�ers to Horn lauses. This trans-

lation an for example be used to automatially obtain from the above de�nition of disjoint

with bounded quanti�ers a de�nition of disjoint in the language of Horn lauses. Then we

onstrut a non-reursive metainterpreter for Horn lause programs, written in the language

with bounded quanti�ers. Setion 6 is onerned with the use of negation in logi programs.

Finally, in Setion 7 we disuss some other possible appliations of logi programming with

bounded quanti�ers.

1.1 Related work

Bounded quanti�ers were onsidered among others in the following papers

1

[Gonharov 85,

Gonharov 86a, Gonharov 86b, Kuper 87, Kuper 88, Dovier 91, Hentenryk 91, Barklund 92℄.

Also related are papers on introduing set onstruts in logi programming [Beeri 87, Kuper 87,

Kuper 88, Jayaraman 89℄. Somewhat similar in spirit are safe formulas [Niolas 83, Topor 87℄.

For us the main motivation was the series of papers on �-programming [Gonharov 85,

Gonharov 86a, Gonharov 86b℄ and some of our results on semantis of �-programs and on

a translation of �-programs into logi programs [Voronkov 86a, Voronkov 87, Voronkov 89℄.

Bounded quanti�ers were already introdued in the �rst of the above-mentioned papers

[Gonharov 85℄ whih was inspired by the Kripke-Platek formalization of the theory of admissi-

ble sets [Barwise 75℄. However there were no satis�able proedural semantis in [Gonharov 85℄.

Later ideas for de�ning suh a semantis were introdued in our paper [Voronkov 87℄ based on

the translation of �-programs to Horn lause programs desribed in [Voronkov 86a, Voronkov 89℄

(some ideas ould even be found in even earlier preprints [Voronkov 86, Voronkov 86d℄, written

in 1985).

Later bounded quanti�er were introdued in [Kuper 87, Kuper 88℄ with the purpose of enrihing

logi programming languages with sets. But the absene of the set onstrutor in Kuper's lan-

guage leads to problems with the proedural semantis of his language. The set onstrutor was

1

Some kind of bounded quanti�ers had been implemented in the seventies in a Prolog-like language developed

in Hungary (we do not have any exat referenes).

3

introdued later [Dovier 91℄ where a more satis�able proedural semantis for a logi program-

ming language with �nite sets was de�ned. However sets are not easy to handle: the uni�ation

problem for �nite sets is NP-omplete [Dovier 91℄. The language presented in our paper has

a proedural semantis omparable with SLD-resolution for Horn lauses. As we try to show,

most of the appliations of logi programming with sets are easily expressed in our language.

Bounded quanti�ers were also onsidered in onstraint logi programming [Hentenryk 91℄. In

most of the programming literature they are alled restrited quanti�ers, but bounded quanti�ers

introdued earlier in the mathematial literature (e.g. [Barwise 75℄) seem to better apture the

idea of the searh on �nite domains.

Bounded quanti�ers are usually quanti�ers over �nite domains represented by lists or sets. In

the papers [Gonharov 85, Gonharov 86a, Gonharov 86b, Kuper 87, Kuper 88℄ lists and sets

are onsidered as a superstruture of the usual Herbrand universe, whih prohibits using terms

like f([℄), sine [℄ is a list. Our two-sorted models allow lists to be treated as an ordinary sort.

In [Dovier 91℄ funtion symbols are also allowed to have set arguments. In that paper sorts are

not expliitely introdued but they are used in the uni�ation algorithm, and without sorts the

proedural semantis from [Dovier 91℄ beomes inorret.

The proof theory varies from approah to approah. In [Gonharov 85℄ an analog of Kripke-

Platek theory for admissible sets [Barwise 75℄ alled GES is used for proving properties of

�-programs. In [Kuper 87℄ the underlying proof system is the alulus with the extensionality

axiom 8z(z2x�z2y)�x=y. In [Voronkov 92a℄ we used two types of aluli to provide a proof

theory for our language. The �rst is an analog of GES, whih treats lists as a speial kind of

objets with indution axioms for lists. The seond is a theory of indutive de�nitions, whih

seems more exible for proving properties of programs. For the two-sorted strutures of this

paper a theory like GES or the list theory of [Moor 81℄ is more appropriate.

Our approah to de�ning a proedural semantis for our language, whih we all SLDB-resoluti-

on, is more eÆient ompared to the ited papers. In [Dovier 91℄ an exponential uni�ation

algorithm for sets is used. In [Kuper 87℄ no satis�able proedural semantis is provided. For

example given the program

q :- (8x2Y)fail.

and the query ?-q. Kuper's system has to make a substitution [Y fg℄ during uni�ation of q

from the query with q from the head of the lause. In [Gonharov 85℄ the proposed proedural

semanti omprises an exhaustive searh over in�nite universes. Aording to that paper, the

answer to the query ?-X=5, where X ranges over rational numbers, should be found by the

exhaustive searh for the substitution for X over all rational numbers.

However both [Kuper 87℄ and [Dovier 91℄ have other motivations and for some appliations �nite

sets ould be more appropriate than lists used in our paper.

In [Barklund 92℄ bounded quanti�ers are de�ned via formulas of the form 8xf�[x℄ ! �[x℄g,

where � is a formula, \whih is \obviously" true for only a �nite number of values of x". Suh

quanti�ers may easily be translated to our quanti�ers, if we add the findall prediate to the

language. (As far as we understand, \obviousness" should allow the findall onstrution.) to

be used. An essential di�erene of our use of bounded quanti�ers is that it also allows sets

with the given properties to be onstruted, while the approah from [Barklund 92℄ an only

be used for given sets. The paper [Barklund 92℄ is interesting, beause it ontains an extensive

treatment of bounded quanti�ers from the viewpoint of (onurrent) implementations.

The advantages of lists over sets are illustrated by examples given in this paper and by results

4

about expressiveness from Setion 5, whih essentially use bounded quanti�ation over tails of

lists, whih has no analog for sets. It an also be noted that lists form a struture extensively

used in programming languages.

Also similar to bounded quanti�ers are some of Zermelo-Frenkel set theory expressions of the

funtional programming language Miranda [Turner 86℄.

5

2 Logi programs with bounded quanti�ers

In this setion we introdue main notions of the paper. In our presentation of generalized logi

programs sorts are assigned to terms. In Setion 2.1 we introdue sorts and lists. Lists are used

in de�ning bounded quanti�ers and generalized logi programs in Setion 2.2. We give some

examples in Setion 2.3 to show the pratial importane of bounded quanti�ers.

2.1 Sorts and lists

Consider a simple expression (8x2l)'(x) ontaining a bounded quanti�er. Intuitively this ex-

pressions means that for every element x of the list l '(x) holds. If suh an expression ours

in a query, we need to hek that l is a list. However aording to the logi programming phi-

losophy l may be any term, for example a variable. Of ourse we an all a prediate stating

that l is a list or a prediate generating all lists eah time when suh a query is posed. But it

would in general be ineÆient and it would obsure the semantis of our language. So we need

to distinguish lists from all other elements. To this end we introdue a two-sorted language. In

[Voronkov 92a℄ we used ompliated sort strutures with the aim of handling lists and built-in

prediates. The sort de�nitions that we used in that paper are similar to sorts of PDC-prolog

[PDC 90℄. However we prefer to use two-sorted language whih is suÆient for our purposes.

The use of non-sorted strutures for our purposes is ineÆient and leads to some semanti prob-

lems. For example, in [Gonharov 85, Gonharov 86b℄ it is not lear what version of a (many

sorted) prediate alulus is used in the list theory GES introdued there, whih makes some

onsiderations quite obsure. The operational semantis of the extended logi programming

language introdued in [Gonharov 85, Gonharov 86a℄ is based on model theory and there-

fore omprises an exhaustive searh over an in�nite universe. The two-sorted language of our

paper helps to provide an eÆient operational semantis for the language with bounded quan-

ti�ers. The possibility of uni�ation-based operational semantis was noted in earlier papers

[Voronkov 86a, Voronkov 89℄, but in those papers we used an algorithm verifying if the terms

from the binding expressions are lists.

The �rst order language of this paper ontains two sorts: the universal sort univ and the sort of

lists list. We assume that we have ountable sets of variables V

univ

and V

list

. Let L be a language

onsisting of two sets C of onstants and F of funtion symbols with arities. We assume that C

ontains the onstant nil and F ontains a binary funtion symbol ons. Below we de�ne the

sets of terms for both sorts.

De�nition 2.1 (The sets Term

univ

and Term

list

of terms of the language L)

1. If t2Term

list

then t2Term

univ

.

2. nil2Term

list

.

3. V

univ

� Term

univ

and V

list

� Term

list

4. C � Term

univ

.

5. If f 2F is an n-ary funtion symbol and t

1

; : : : ; t

n

2Term

univ

, then f(t

1

; : : : ; t

n

)2Term

univ

.

6. If s2Term

univ

and t2Term

list

then ons(s,t)2Term

list

.

Instead of writing nil and ons we shall adopt the standard Prolog notation:

6

[℄ stands for nil;

[s|t℄ stands for ons(s,t);

[s

1

,: : : ,s

n

|t℄ stands for ons(s

1

,: : : ,ons(: : : ,ons(s

n

,t): : :));

[s

1

,: : : ,s

n

℄ stands for ons(s

1

,: : : ,ons(: : : ,ons(s

n

,nil): : :)).

De�nition 2.2 (Ground terms and formulas) A term is ground i� no variable ours in

it. A formula is ground i� all variables in it are bound.

In mathematial logi ground formulas are usually alled losed. We all them ground formulas

for the sake of uniformity.

De�nition 2.3 (Herbrand universe HU) The Herbrand universe HU is the set of all

ground terms from Term

univ

.

De�nition 2.4 (Lists) Lists are ground terms of Term

list

.

We do not de�ne here lists as a superstruture of the ordinary terms as it was done in

[Gonharov 85℄ following the theory of admissible sets [Barwise 75℄. Suh a superstruture is

onvenient for more theoretial purposes (to distinguish sets from urelements in the theory of

admissible sets), but from the viewpoint of programming it has some disadvantages. In parti-

ular, it forbids to use terms with subterms ontaining lists, e.g. f([℄,[a℄). Our sorts allow to

use suh terms.

We de�ne two relations 2, v on lists as follows:

De�nition 2.5 (Relations 2 and v)

x2[y

1

; : : : ; y

n

℄ i� for some i2f1; : : : ; ng we have x=y

i

;

xv[y

1

,: : : ,y

n

℄ i� x=[℄ or for some i2f1; : : : ; ng we have x=[y

i

,: : : ,y

n

℄.

2.2 Bounded quanti�ers and generalized logi programs

Here we introdue bounded quanti�ers. Apart from sorts they are basially equivalent to

bounded quanti�ers introdued in [Gonharov 85℄.

De�nition 2.6 (Bounded quanti�ers) Bounded quanti�ers are expressions of the form

(8x2t), (9x2t), (8xvt), (9xvt), where the variable x does not our in the term t of the sort list.

De�nition 2.7 (�-formulas and �

0

-formulas) A �-formula is any formula onstruted

from atoms using ^, _, 9, and bounded quanti�ers. To distinguish the ordinary existential

quanti�er 9 from bounded quanti�ers we shall all the former unrestrited existential quanti�er.

A �

0

-formula is a �-formula ontaining no ourrenes of the unrestrited quanti�er 9.

De�nition 2.8 (Generalized logi programs) A generalized logi program P is a set of

lauses of the form

P

i

(�x

i

):-'

i

(�x

i

);

where i = 0; : : : ; n, P

i

are prediate symbols, '

i

are �-formulas, whose all free variables are in

�x

i

and whose prediate symbols are in the set P

0

; : : : ; P

n

;=.

7

To make the generalized logi programs shorter and to make the syntax loser to that of the

ordinary logi programs we introdue some notation. The set of expressions

P (

�

t

1

) :- '

1

.

.

.

P (

�

t

n

) :- '

n

will denote the lause

P (�x) :- 9�y

1

(�x =

�

t

1

^'

1

)_: : :_9�y

n

(�x =

�

t

n

^'

n

),

where �x are new variables, �y

i

are all the variables of t

i

. This notation is similar to the translation

used in [Clark 78℄.

De�nition 2.9 (Queries) Query to a generalized logi program P is any �-formula.

In the literature on logi programming with sets only one kind of bounded quanti�ers is used,

namely 82. The quanti�er 8v was introdued in [Gonharov 85℄ following [Moor 81℄. This

quanti�er is very expressive. For example in Setion 5.2 we present a non-reursive metainter-

preter for Horn lause logi programs, whih uses only unrestrited existential quanti�ers and

the bounded quanti�er 8v. It is diÆult to introdue this bounded quanti�er for sets, beause

there is no analog of the relation v.

2.3 Examples

To explain the use of the bounded quanti�ers we give some examples below. The interesting

property of these examples is that they are not reursive. Before giving the examples we will

make the following agreement about syntax.

In all examples of this paper we use the standard Prolog notation: variable names start

from upper-ase letters, while all other symbols start from lower-ase letters.

We also need notation to distinguish sorts of variables in programs. By default we assume the

following:

A variable v is of sort list i� it ours in a bounded quanti�er in one of the following

expressions:

1. (Qx2v);

2. (Qx2[t

1

; : : : ; t

n

|v℄);

3. (Qxvv);

4. (Qxv[t

1

; : : : ; t

n

|v℄);

5. (Qvvt).

where Q is 8 or 9

8

Example 2.1 A program omputing whether a list L is ordered:

ordered(L) :-

(8XvL)(X=[℄_singleton(X)_ordered2(X)).

singleton([X℄).

ordered2([X,Y|Z℄) :-

X�Y.

We assume that � is de�ned separately.

Example 2.2 A program omputing whether all elements of a list L satisfy a property p:

allp(L) :-

(8X2L)p(X).

Example 2.3 A program omputing the subset relation:

subset(L1,L2) :-

(8X12L1)(9X22L2)X1=X2.

Example 2.4 A program verifying whether a given list L has no repetitions:

norep(L) :-

(8XvL)(X=[℄_norep1(X)).

norep1([A|As℄) :-

(8X2As)A=/X.

Example 2.5 A program �nding a route in a graph. We assume that two verties a and b are

onneted in the graph i� the fat ar(a,b) is in the program.

route(A,B,C) :-

path(C)^start(A,C)^finish(B,C).

path(P) :-

(8SvP)(S=[℄_singleton(S)_onneted(S)).

singleton([X℄).

onneted([X,Y|Z℄) :-

ar(X,Y).

start(X,[X|Xs℄).

finish(X,Xs) :-

(9SvXs)(S=[X℄).

9

3 Semantis of generalized logi programs

The theory of logi programming is based on the fundamental fat that the (delarative) model-

theoreti semantis oinides with the provability by SLD-resolution and some other kinds of

provabilities, e.g. those of intuitionisti and lassial logis.

In this setion we shall adapt these semantis to generalized logi programs. The feature spei�

to generalized logi programs are bounded quanti�ers. The semantis of Horn lause programs

must be modi�ed so as to handle them.

In Setion 3.1 we introdue a model-theoreti semantis for generalized logi programs, whih

simply expresses the intended delarative meaning of programs with bounded quanti�ers. In

Setion 3.2 a least �xedpoint semantis is introdued whih serves as a bridge between the

delarative model-theoreti semantis and the proedural interpretation introdued later. Then,

in Setions 3.3 and 3.4, we de�ne two types of lassial and onstrutive provabilities | one

with axioms for lists from [Gonharov 85℄, and another one whih onsiders lists as elements

generated by indutive de�nitions.

Setion 3.5 presents the so alled natural semantis for generalized logi programs whih was

originally introdued in [Voronkov 87℄. The alulus Nat(P) from this setion represents in a

delarative way ideas from the proedural semantis introdued in Setion 4.

3.1 Model-theoreti semantis

The main semantis of generalized logi programs is the model theoreti semantis whih allows

for a delarative reading of programs. Our semantis is similar to the semantis introdued in

the papers [Gonharov 85, Kuper 87, Dovier 91℄. The main di�erene between our semantis

and that of [Gonharov 85℄ is that we allow funtion symbols to be onstrutors, whih means

that we an de�ne new terms, whereas in [Gonharov 85℄ the model is �xed | the set of all lists

with atoms from the basi model.

To treat lists we have to restrit the lass of models. To this end we introdue so alled admissible

models:

De�nition 3.1 (Admissible models) Let M be a two-sorted model with sorts univ and list.

Let atoms be either [℄ or elements of M whih are not of the sort list. The model M is admissible

i� the following statements are true:

1. The interpretation of the relation = is equality.

2. The interpretation of the sort list is a subset of the interpretation of the sort univ.

3. All elements of M of the sort list either are [℄ or an be built from atoms by a �nite

number of appliations of ons.

4. M [x|y℄=[u|v℄�x=u^y=v.

5. M :[x|y℄=[℄.

In other words, admissible models are models the sort list is generated by free onstrutors nil

and ons.

10

Now to introdue the model-theoreti semantis of our programs we have to de�ne the meaning

of quanti�ed expressions. First let us note that it is possible to introdue the relations 2 and v

on admissible models in the same way as in De�nition 2.5.

De�nition 3.2 (Truth) Let M be an admissible model. The notion of truth for formulas with

bounded quanti�ers is de�ned similar to the standard de�nition [Chang 77℄ with the following

items for quanti�ers:

1. M 8x'(x) i� for every element a of M of the same sort as x we have M '(a).

2. M 9x'(x) i� for some element a of M of the same sort as x we have M '(a).

3. M (8x2t)'(x) i� M 8x(x2t�'(x)).

4. M (9x2t)'(x) i� M 9x(x2t^'(x)).

5. M (8xvt)'(x) i� M 8x(xvt�'(x)).

6. M (9xvt)'(x) i� M 9x(xvt^'(x)).

De�nition 3.3 A lause A(�x):-'(�x) is true on a model N i� the formula 8�x('(�x)�A(�x)) is

true on M.

De�nition 3.4 (Model of a program) A model M is a model of the program P i� all lauses

from P are true on M.

De�nition 3.5 (Relation �) Relation � between models of a program P is de�ned in the

following way: N

1

� N

2

i� for any ground �-formula ', N

1

j= ' implies N

2

j= '.

The main notion for this setion is Herbrand models.

De�nition 3.6 (Herbrand models) An admissible model M is a Herbrand model i� the in-

terpretation of the sort univ on M is the set HU of all ground terms and the relation = is

interpreted as identity on the set of terms.

Lemma 3.1 Let N

1

;N

2

be Herbrand models of a program P. Then N

1

� N

2

i� for any ground

atomi formula ', from N

1

j= ' follows N

2

j= '.

Proof. In one diretion obvious, beause eah atomi formula is a �-formula. In the

other diretion follows from the fat that on Herbrand models the truth of a ground

quanti�ed expression Qx'(x), where Q is either 8 or 9, is fully determined by the

truth of ground formulas of the form '(t).

Generalized logi programs do not have the model intersetion property for �-formulas. Indeed,

if is straightforward to onstrut two Herbrand models, suh that the formula A_B is true on

both, but neither A nor B are.

However we an prove that the model intersetion property holds for atomi formulas, using the

following two lemmas.

11

De�nition 3.7 (Intersetion of models) Let fM

i

j i2 Ig be Herbrand models. The interse-

tion

T

i2 I

M

i

of M

i

is the model M suh that for any atomi ground formula ', we have M '

i� M

i

', for all i2 I.

Lemma 3.2 Let ' be a ground �-formula whih is false on M

i

, for some i2 I. Then

T

i2 I

M

i

'.

Proof. Denote

T

i2 I

M

i

by M. We will use indution on the depth of '.

1. For atomi ', straightforward from de�nitions.

2. Let ' take the form _� and M

i

 _�. Then M

i

 and M

i

�. The indu-

tion hypothesis gives M and M � and hene M '_�.

3. Let ' take the form ^� andM

i

 ^�. ThenM

i

 orM

i

�. The indution

hypothesis gives M or M � and hene M '^�.

4. Let ' take the form 9x (x) and M

i

9x (x). Then, M

i

 (t), for all ground

terms t. The indution hypothesis gives M (t), for all ground terms t. Sine

M is a Herbrand model, then M 9x (x).

5. Let ' take the form (9x2[t

1

; : : : ; t

n

℄) (x). Then ' is equivalent to disjuntion

 (t

1

)_ : : :_ (t

n

) and the proof is equivalent to ase 2.

The other ases are similar.

Lemma 3.3 Let fM

i

j i2 Ig be Herbrand models of a generalized logi program P. Then

T

i2 I

M

i

is also a model of P.

Proof. Denote

T

i2 I

M

i

by M. Let P (�x):-'(�x) be a lause from P . We have to

show M '(

�

t)�P (

�

t), for every tuple

�

t of ground terms. Assume that M '(

�

t)�P (

�

t).

Then M '(

�

t) and M P (

�

t). By Lemma 3.2 we have that M

i

'(

�

t), for all i2 I.

From M P (

�

t) it follows that for some j 2 I, M

j

P (

�

t). Hene M

j

is not a model

for P .

Theorem 1 For every generalized logi program P there exists a Herbrand model M of P whih

is minimal among Herbrand models w.r.t. �.

Proof. By Lemma 3.3 the intersetion of all Herbrand models of P is a model of P .

Obviously this model is minimal.

De�nition 3.8 (Mod(P)) Given a generalized logi program P, let Mod(P) denote the set

of all ground �-formulas whih are true in the minimal Herbrand model of P.

We shall use the following de�nition extensively throughout the paper:

De�nition 3.9 Let P be a program. Then prediate P omputes or de�nes the set S in P i�

S = ft j P (t)2Mod(P)g.

12

3.2 Least �xedpoint semantis

The de�nition of the least �xedpoint semantis is similar to the de�nitions given in

[Gonharov 85℄ and to the formalization of logi programming proposed in [Apt 82℄: a (gen-

eralized) logi program is onsidered as a monotoni mapping from interpretations to interpre-

tations.

De�nition 3.10 (Interpretations) An interpretation I is any set of ground �-formulas sat-

isfying the following properties:

1. For all terms s; t, s=t2I i� s is idential to t.

2. '^ 2I i� '2 I and 2I;

3. '_ 2I i� '2 I or 2 I;

4. 9x'(x)2I i� for some term t of the same sort as x, '(t)2 I;

5. (9x2s)'(x)2I i� for some term t2s of the same sort as x, '(t)2I;

6. (8x2s)'(x)2 I i� for every term t2s of the same sort as x, '(t)2 I;

7. (9xvs)'(x)2I i� for some term tvs we have '(t)2 I;

8. (8xvs)'(x)2I i� for every term tvs we have '(t)2 I;

De�nition 3.11 (Atom(I)) For an interpretation I, we denote by Atom(I) the set of all atomi

formulas from I.

Lemma 3.4 Let I, J be two interpretations. Then I � J i� Atom(I) � Atom(J).

Proof. Straightforward.

Lemma 3.5 Any interpretation is uniquely haraterized by the set of its atomi formulas.

Proof. Diretly from Lemma 3.4.

De�nition 3.12 (P

�

) Let P be a program. We use P

�

to denote the set of all ground instanes

of lauses from P.

De�nition 3.13 (The immediate onsequene operator I

P

) The immediate onsequene

operator de�ned by a program P is the funtion I

P

on the set of all interpretations de�ned as

follows: for an interpretation I and a ground atomi formula , 2 I

P

(I) i� P

�

ontains a

lause '� suh that '2 I.

13

Lemma 3.6 The operator I

P

is monotoni, i.e. for any two interpretations I,J, from I � J it

follows that I

P

(I) � I

P

(J).

Proof. Straightforward from Lemma 3.4.

De�nition 3.14 (The minimal interpretation I

0

) The minimal interpretation I

0

is de�ned

by

Atom(I

0

) = ft=t j t is a ground termg

From Lemma 3.5 follows that I

0

is unique.

Theorem 2 There is the least �xed point Lfp(P) of the operator I

P

among all interpretations

ontaining I

0

. It an be omputed as

Atom(Lfp(P)) =

1

[

i=0

Atom(I

i

);

where I

0

is as de�ned, and Atom(I

i+1

) = Atom(I

i

)

S

Atom(I

P

(I

i

)). Moreover Lfp(P) oin-

ides with Mod(P).

Proof.

1. Lfp(P) is a �xedpoint.

(a) Obviously, I

P

(I

i

) � I

i+1

, and thus I

P

(Lfp(P)) � Lfp(P).

(b) By the de�nition of I

j

and by Lemma 3.6, we have I

i

� I

i+1

, and thus

Lfp(P) � I

P

(Lfp(P)).

2. Lfp(P) is a least �xedpoint. Let J be any �xedpoint of I

P

, ontaining I

0

. Then,

by repeated appliations of the monotoniity of I

P

(Lemma 3.6), we have that

I

i

� J, and hene Lfp(P) � J.

3. Lfp(P) = Mod(P). By indution on i one an prove that all atoms from I

i

belong to any model of P. It is straightforward to prove that any �xedpoint is

a model.

3.3 Classial provability

Classial proof systems for lists are obtained from the lassial prediate alulus by adding

axioms expressing properties of lists. In [Voronkov 92a℄ we used two ways to de�ne appropriate

extensions of the prediate alulus. The �rst approah is similar to the approah used in

[Barwise 75℄ for hereditarily �nite sets, in [Gonharov 85℄ for lists and in [Kuper 88℄ for �nite

sets. Aording to this approah all elements exept lists are onsidered as urelements and some

axioms expressing properties of list are added to the prediate alulus. The seond approah

from [Voronkov 92a℄ is to treat sort de�nitions (inluding the de�nition of lists) as indutive

14

Figure 3.1: List theories Clt(P) and Ilt(P)

1. Axioms for P . If a lause P (�x) :- '(x) belongs to P , then the formula 8�x('(�x)�P (�x))

is an axiom of Clt(P);

2. Axioms for lists:

[s

1

|t

1

℄=[s

2

|t

2

℄�s

1

=s

2

^t

1

=t

2

:s=[℄

r2[s|t℄�(r=s_r2t)

tv[℄�t=[℄

t

1

v[s|t

2

℄�t

1

=[s|t

2

℄_t

1

vt

2

where s

i

,r

i

are arbitrary terms of the sort univ, t

i

arbitrary terms of the sort list.

3. Indution axioms:

'([℄)^8x8y('(y)�'([xjy℄))�8y'(y),

where ' is any formula, x a variable of the sort univ, y a variable of the sort list.

de�nitions. Indutive de�nitions for sorts de�ne universes for these sorts and also give indution

rules for proving properties of elements of the sorts. Here we have only two sorts, so the �rst

approah is more appropriate.

The order-sorted prediate alulus we use di�ers from the ordinary non-sorted prediate alulus

in the following restritions on the axioms for the quanti�ers. In the axioms 8x'(x)�'(t) and

'(t)�9x'(x), if the variable x is of the sort �, then t must be a term of the same sort.

We also do not onsider in this setion bounded quanti�ers as primitives, but as notations:

(8x�t)'(x) stands for 8x(x�t � '(x)),

(9x�t)'(x) stands for 9x(x�t^'(x)),

where � denotes 2 or v.

De�nition 3.15 (Calulus Clt(P)) The alulus Clt(P) (the lassial list theory) is obtained

from the lassial prediate alulus with equality by adding the axioms given in Figure 3.1 on

page 15.

This theory is almost idential to GES de�ned in [Gonharov 85℄. We have omitted the founda-

tion axiom from [Gonharov 85℄. The use of the foundation axiom requires hanging the system

of sorts. One possibility is to use one-sorted logi as in [Barwise 75℄ whih is not onvenient for

our purposes. Another possibility a use of the foundation axiom is the introdution of a more

ompliated sort struture as in [Voronkov 92a℄.

Theory Clt(P) an be used as the proof theory for logi programming with bounded quanti�ers.

Using this theory one an prove properties of lists and programs. The following theorem shows

ompleteness and orretness of Clt(P) w.r.t. other semantis.

15

Theorem 3 A ground �-formula ' is provable in Clt(P) i� '2Mod(P).

Proof.

1. In one diretion straightforward: it is easy to see that a formula, provable in

Clt(P), is true in any model of P.

2. We shall the use haraterization of the minimal model proved in Theorem 2:

a ground �-formula ' is true in the minimal model i� '2I

i

, for some i. Thus

it suÆes to show that all formulas from I

i

are provable in Clt(P), for all i.

Using axioms for lists and the indution axiom of Clt(P), one an prove the

following properties of Clt(P)(ompare with De�nition 3.10).

(a) For every ground term t we have Clt(P)` t=t.

(b) Clt(P)`'^ , if Clt(P)`' and Clt(P)` .

() Clt(P)`'_ , if Clt(P)`' or Clt(P)` .

(d) Clt(P)`9x'(x), if for some term t of the same sort as x, Clt(P)`'(t).

(e) Clt(P)` (9x2s)'(x), if Clt(P)`'(t) for some term t2s.

(f) Clt(P)` (8x2s)'(x), if Clt(P)`'(t) for every term t2s.

(g) Clt(P)` (9xvs)'(x), if Clt(P)`'(t) for some term tvs.

(h) Clt(P)` (8xvs)'(x), if Clt(P)`'(t) for every term tvs.

Using these properties, one an prove that Clt(P)`', for all '2 I

0

. Similarly,

from the axioms for P and the above mentioned properties, one an prove, that

if Clt(P)`', for all '2 I

i

, then Clt(P)`', for all '2I

i+1

.

This theorem has an interesting orollary whih shows that Clt(P), being based on lassial

logi, has some onstrutive properties:

Corrollary 3.1 (Disjuntion property and expliit de�nability property of Clt(P))

1. If '_ is a ground �-formula, and Clt(P)`'_ , then Clt(P)`' or Clt(P)` .

2. If 9x'(x) is a ground �-formula, and Clt(P)`9x'(x), then Clt(P)`'(t), for a ground

term t.

Proof. Straightforward from Theorem 3.

3.4 Construtive provability

De�nition 3.16 (System Ilt(P)) The system Ilt(P) (intuitionisti list theory) has the same

axioms and rules as Clt(P) but is based on intuitionisti prediate logi instead of the lassial

one.

The intuitionisti variant of list theory was introdued in [Voronkov 86b℄. In [Voronkov 91℄ we

proved that it is onstrutive from the viewpoint of a onstrutive semantis, whih in partiular

means that it has a variant of the expliit de�nability property: if a ground formula 9x'(x)

16

is provable then it is possible to e�etively �nd a term t suh that '(t) holds. Below we shall

prove a stronger form of this property.

For (suitably represented) Horn lauses, provability in lassial logi oinides with the prov-

ability in intuitionisti logi. We an prove the same result for the generalized programs, if we

onsider Ilt(P) instead of the intuitionisti prediate alulus.

Theorem 4 For a ground atomi �-formula ', Ilt(P) ' i� '2Mod(P).

Proof. The same as for Theorem 3.

The theory Clt(P) has the disjuntion property and the expliit de�nability property for ground

�-formulas. Below we show that Ilt(P) has this important properties for arbitrary formulas.

The onstrutiveness of Ilt(P) is important, beause it allows one to synthesize logi programs

from proofs in this theory, in the style of [Voronkov 86, Voronkov 86d℄ or [Wiggins 91℄.

Theorem 5 (Disjuntion property and expliit de�nability property of Ilt(P))

1. If '_ is a ground formula, and Ilt(P)`'_ , then Ilt(P)`' or Ilt(P)` .

2. If 9x'(x) is a ground formula, and Ilt(P)`9x'(x), then Ilt(P)`'(t), for a ground term

t.

Proof. We shall use the tehnique, introdued by Kleene [Kleene 62℄. First we

introdue a few de�nitions.

The set of Harrop formulas [Harrop 60℄ is de�ned as follows.

De�nition 3.17 (Harrop formulas)

1. Any atomi formula is a Harrop formula;

2. If '; are Harrop formulae and � is an arbitrary formula then the formulae

'^ , 8x', �� , :� are Harrop formulae.

The relation j (Kleene's slash) between sets of formulae and formulae is de�ned

in the following way. During the de�nition we assume that T ' means T j' and

T `', where ` stands for the provability in intuitionisti logi.

De�nition 3.18 (Kleene's slash j)

1. For atomi formulas ', T j' i� T `';

2. T j'^ i� T j' and T j ;

3. T j'_ i� T ' or T ;

4. T j'� i� from T ' follows T j ;

5. T j:' i� not T ';

6. T j8x'(x) i� for every ground term t we have T j'(t);

7. T j9x'(x) i� for some ground term t, we have T '(t).

17

The relation is idential to Kleene's slash from [Kleene 62℄ exept for minor

hanges for the quanti�er ases.

As in [Kleene 62℄ it is possible to prove that logi obtained from intuitionisti

logi by adding a set of formulae S as axioms has the disjuntion property and the

expliit de�nability property i� for any '2S we have S j'.

Thus it suÆes to show that for any axiom ' of Ilt(P) we have Ilt(P) j'.

1. All axioms for P are Harrop formulas. For Harrop formulas the proof is trivial

as in e.g. [Kleene 62℄.

2. Axioms for lists. Consider, for example, the formula r2[s|t℄ � (r=s_r2t). It

suÆes to show that Ilt(P) jr2[s|t℄ � (r=s_r2t), for any ground terms r; s; t

of appropriate sorts. To this end assume Ilt(P) r2[s|t℄. Thus, in partiular,

Ilt(P)` r2[s|t℄. By Theorem 4 the formula r2[s|t℄ is true in the minimal

model. Hene, either r is idential to s, or r2t. Applying Theorem 4 one more,

we get that either Ilt(P)` r=s or Ilt(P)` r2t. In both ases Ilt(P) jr=s_r2t.

3. Indution axioms. One has to show that Ilt(P) j'([℄)^8x8y('(y)�'([x|y℄))�

8y'(y). To this end assume Ilt(P) '([℄) and Ilt(P) 8x8y('(y)�'([x|y℄)),

and prove Ilt(P) j'(t) for every ground term t of the sort list.

The proof is by indution on the length of t.

(a) t=[℄. Straightforward from assumptions.

(b) t=[r|s℄. The indution hypothesis gives Ilt(P) '(s). From this and

Ilt(P) 8x8y('(y)�'([x|y℄)) one an easily show Ilt(P) j'([r|s℄).

The other ases are onsidered similarly.

If we extend the system of sorts to inlude sorts from [Voronkov 92a℄, we may also prove these

properties for the system with the foundation axiom [Barwise 75, Gonharov 85℄.

3.5 The natural alulus

We all this alulus natural beause it gives a natural semantis to the formulas with bounded

quanti�ers. The rules of the natural alulus treat these formulas in a very natural and elegant

way. The alulus Nat(P) introdued below is similar to the ground positive hyperresolution

on Horn lauses. At the same time the natural alulus serves as a basis for the proedural

semantis of generalized logi programs. The natural semantis for �-programs [Gonharov 85℄

was introdued in [Voronkov 87℄ with the aim of showing that �-programs an be eÆiently

exeuted using uni�ation instead of the exhaustive searh.

Another reason for introduing the natural alulus as an intermediate semantis between the

denotational (model theoreti) semantis and the proedural (SLDB-resolution of Setion 4)

semantis, is that the least �xedpoint onstrution does not diretly orrespond to omputations,

as in the ase of SLD-resolution [Lloyd 84℄. Indeed, from the results of Setion 5 it follows that

there are non-reursive generalized logi programs, onsisting of only one de�nition, whih an

express arbitrary omputable sets. For suh programs the least �xedpoint onstrution stabilizes

on the �rst step (I

1

), whih does not orrespond to real omputations. The natural semantis

introdued here does reet omputations by SLDB-resolution, whih is the main proedure to

exeute generalized logi programs.

De�nition 3.19 (Calulus Nat(P)) Calulus Nat(P) onsists of the axioms and inferene

rules given in Figure 3.2 on page 19.

18

Figure 3.2: Natural alulus Nat(P)

1. Axioms are all formulas of the form t=t, where t is a ground term.

2. Rules for P :

'

A

;

if A:-' belongs to P

�

.

3. Rules for the logial onnetives:

'

'_

'_

'

'^

4. A rule for the existential quanti�er:

'(t)

9x'(x)

where x is a variable of a sort �, t is a term of the same sort.

5. Rules for the bounded quanti�ers (here t is a term of the sort list, s is an arbitrary

term):

'(s)

(9x2[s|t℄)'(x)

(9x2t)'(x)

(9x2[s|t℄)'(x)

(8x2[℄)'(x)

'(s) (8x2t)'(x)

(8x2[s|t℄)'(x)

'(t)

(9xvt)'(x)

(9xvt)'(x)

(9xv[s|t℄)'(x)

'([℄)

(8xv[℄)'(x)

'([s|t℄) (8xvt)'(x)

(8xv[s|t℄)'(x)

19

Theorem 6 For any ground �-formula ', '2Mod(P) i� Nat(P)` '.

Proof.

1. It is easy to see that the rules of Nat(P) are admissible in Clt(P). Thus by

Theorem 3 we have that Nat(P)`' implies '2Mod(P).

2. Consider interpretations I

i

from Theorem 2. Obviously, all atomi formulas

from I

0

are provable in Nat(P) (by axioms for equality). Rules for the on-

netives, the existential quanti�er and bounded quanti�ers allow all �-formulas

from an interpretation to be proved from atomi formulas, true in this inter-

pretation (see De�nition 3.10 of interpretations). Finally, rules for P allow all

atomi formulas of I

i+1

to be obtained from formulas of I

i

. Appliation of

Theorem 2 on oinidene of Lfp(P) with Mod(P) onludes the proof.

20

4 Proedural semantis: SLDB-resolution

The natural alulus of Setion 3.5 represents in a delarative way the main ideas of the op-

erational semantis. This alulus treats only ground formulas. To produe the operational

semantis from the alulus it is suÆient to show how to treat non-ground formulas and how to

formalize the top-down searh. To this end we introdue a uni�ation algorithm for two-sorted

terms in Setion 4.1 and SLDB-resolution in Setion 4.2.

4.1 Uni�ation

The sorts introdued here require a speial uni�ation algorithm, whih reets two-sorted stru-

tures. However the algorithm is not very di�erent from the standard uni�ation algorithm, and

we shall only sketh the di�erenes. These are:

1. Uni�ation of a variable v of the sort list with a variable u of the sort univ gives the

substitution [u v℄ (but not [v u℄).

2. Uni�ation of a variable v of the sort list with a non-variable term di�erent from [℄ and

[s|t℄ fails.

One an easily prove standard statements about uni�ation [Eder 85℄ for our two-sorted stru-

tures

1

.

4.2 SLDB-resolution

In this setion we give a proedural semantis of our language whih generalizes SLD-resolution

for Horn lause programs. We all it SLDB-resolution (SLD-resolution with Bounded quanti-

�ers). There is no di�erene between SLDB-resolution and SLD-resolution in the treatment of

program lauses, but there are speial features in proessing built-in prediates and omplex

formulas.

De�nition 4.1 (Goals) A goal is any list of �-formulas.

We assume that the reader is familiar with the notion of SLD-resolution (see e.g. [Lloyd 84℄).

De�nition 4.2 (Computation rule) The omputation rule is a funtion from the set of all

non-empty goals to the set of �-formulas suh that the value of the funtion on a goal is a

formula, alled the seleted formula, in that goal.

De�nition 4.3 (Suessor) Let '

1

; : : : ; '

n

be a goal, R a omputation rule and '

i

be the

seleted formula in that goal under R. Then the goal ('

1

; : : : ; '

i�1

;�; '

i+1

; : : : ; '

n

)�, where �

is a substitution and � is a list of �-formulas, is a suessor of the goal '

1

; : : : ; '

n

with the

substitution � under the omputation tule R i� one of the following onditions holds:

1. '

i

is an atom t

1

=t

2

, � is empty, � is a most general uni�er of t

1

and t

2

.

1

See also [Walther 90℄ for more referenes on order-sorted uni�ation

21

2. '

i

takes the form

1

_ : : :_

n

, � is

i

, i2f1; : : : ; ng, � is the empty substitution.

3. '

i

takes the form

1

^ : : :^

n

, � is

1

; : : : ;

n

, � the empty substitution.

4. '

i

takes the form 9x (�x), � is (�y), � the empty substitution, �y are new variables of the

same sort as �x.

In the following y is a new (not ourring in the original goal) variable of the sort list, z

a new variable of the sort univ.

5. '

i

takes the form (9x2t) (x), � is (z), � a most general uni�er of t and [z|y℄.

6. '

i

takes the form (9x2t) (x), � is (9x2y) (x), � is a most general uni�er of t and [z|y℄.

7. '

i

takes the form (8x2t) (x), � is empty, � is a most general uni�er of t and [℄.

8. '

i

takes the form (8x2t) (x), � is (z);(8x2y) (x), � is a most general uni�er of the pair

(x; t) and (z; [z|y℄).

9. '

i

takes the form (9xvt) (x), � is (x), � is the substitution [x t℄.

10. '

i

takes the form (9xvt) (x), � is (9xvy) (x), � is a most general uni�er of t and [z|y℄.

11. '

i

takes the form (8xvt) (x), � is ([℄), � is a most general uni�er of t and [℄.

12. '

i

takes the form (8xvt) (x), � is ([z|y℄);(8xvy) (x), � is a most general uni�er of the

pair (x; t) and ([z|y℄; [z|y℄).

13. '

i

is an atom P (

�

t), � is '(

�

t), � is the empty substitution, if P ontains a lause of the

form P (�x):-'(�x).

De�nition 4.4 (SLDB-derivation) Let R be a omputation rule. An SLDB-derivation under

R is any sequene of pairs h�

0

; �

0

i; : : : ;

h�

n

; �

n

i of goals and substitutions suh that for every i2f1; : : : ; ng there exists a substitution �

suh that

1. �

i

is a suessor of �

i�1

with the substitution � under R;

2. �

i

= � Æ �

i�1

.

De�nition 4.5 (Provability by SLDB-resolution) We say that a goal � is provable under

a omputation rule R with the answer substitution � i� there is an SLDB-derivation under this

omputation rule, whih starts from h�; "i and ends at h�; �i, where " is the empty substitution

and � is the empty goal.

SLDB-resolution is di�erent from SLD-resolution in several aspets. Firstly, speial rules for

handling bounded quanti�ers are added, and seondly, some steps of SLDB-resolution are not

expliitly mentioned in the usual de�nitions of SLD-resolution. These orrespond to steps whih

are impliit in SLD-resolution.

Let us give an example of SLDB-derivation.

Example 4.1 Let P be the program obtained from the program from Example 2.5 by adding two

fats

22

ar(a,b).

ar(b,).

We remember that these lauses denote the program

route(A,B,C) :-

path(C)^start(A,C)^finish(B,C).

path(P) :-

(8SvP)(S=[℄_singleton(S)_onneted(S)).

singleton(Y) :-

9X(Y=[X℄).

onneted(U) :-

9X9Y9Z(U=[X,Y|Z℄^ar(X,Y)).

start(X,Y) :-

9Xs(Y=[X|Xs℄).

finish(X,Xs) :-

(9SvXs)(S=[X℄).

ar(X,Y) :-

(X=a^Y=b) _ (X=b^Y=).

Then, given the query

?-route(X,,Y).

the following is an SLDB-derivation. The omputed answer substitution is written at the end of

eah goal. The seleted formula is put in a box.

1. route(X,,Y) [℄

2. path(Y)^start(X,Y)^finish(,Y) [℄

3. path(Y),

start(X,Y) ,

finish(,Y) [℄

4. path(Y),

9Xs(Y=[X|Xs℄) ,

finish(,Y) [℄

5. path(Y),

Y=[X|Z℄ ,

finish(,Y) [℄

6. path([X|Z℄) ,

finish(,[X|Z℄) [Y [X|Z℄℄

7. (8Sv[X|Z℄)(S=[℄_singleton(S)_onneted(S)) ,

finish(,[X|Z℄) [Y [X|Z℄℄

23

8. [X|Z℄=[℄_singleton([X|Z℄)_onneted([X|Z℄) ,

(8SvZ)(S=[℄_singleton(S)_onneted(S)),

finish(,[X|Z℄) [Y [X|Z℄℄

9. onneted([X|Z℄) ,

(8SvZ)(S=[℄_singleton(S)_onneted(S)),

finish(,[X|Z℄) [Y [X|Z℄℄

10. 9U9V9W([X|Z℄=[U,V|W℄^ar(U,V)) ,

(8SvZ)(S=[℄_singleton(S)_onneted(S)),

finish(,[X|Z℄) [Y [X|Z℄℄

11. [X|Z℄=[U,V|W℄^ar(U,V) ,

(8SvZ)(S=[℄_singleton(S)_onneted(S)),

finish(,[X|Z℄) [Y [X|Z℄℄

12. [X|Z℄=[U,V|W℄ ,

ar(U,V),

(8SvZ)(S=[℄_singleton(S)_onneted(S)),

finish(,[X|Z℄) [Y [X|Z℄℄

13. ar(U,V) ,

(8Sv[V|W℄)(S=[℄_singleton(S)_onneted(S)),

finish(,[U,V|W℄) [Y [U,V|W℄,X U℄

14. (U=a^V=b)_(U=b^V=) ,

(8Sv[V|W℄)(S=[℄_singleton(S)_onneted(S)),

finish(,[U,V|W℄) [Y [U,V|W℄,X U℄

15. (U=a^V=b) ,

(8Sv[V|W℄)(S=[℄_singleton(S)_onneted(S)),

finish(,[U,V|W℄) [Y [U,V|W℄,X U℄

16. U=a ,

V=b,

(8Sv[V|W℄)(S=[℄_singleton(S)_onneted(S)),

finish(,[U,V|W℄) [Y [U,V|W℄,X U℄

17. V=b ,

(8Sv[V|W℄)(S=[℄_singleton(S)_onneted(S)),

finish(,[a,V|W℄) [Y [a,V|W℄,X a℄

18. (8Sv[b|W℄)(S=[℄_singleton(S)_onneted(S)) ,

finish(,[a,b|W℄) [Y [a,b|W℄,X a℄

19. [b|W℄=[℄_singleton([b|W℄)_onneted([b|W℄) ,

(8SvW)(S=[℄_singleton(S)_onneted(S)),

finish(,[a,b|W℄) [Y [a,b|W℄,X a℄

20. onneted([b|W℄) ,

(8SvW)(S=[℄_singleton(S)_onneted(S)),

finish(,[a,b|W℄) [Y [a,b|W℄,X a℄

21. 9X9Y9Z([b|W℄=[X,Y|Z℄^ar(X,Y)) ,

(8SvW)(S=[℄_singleton(S)_onneted(S)),

finish(,[a,b|W℄) [Y [a,b|W℄,X a℄

24

22. [b|W℄=[X1,Y1|Z1℄^ar(X1,Y1) ,

(8SvW)(S=[℄_singleton(S)_onneted(S)),

finish(,[a,b|W℄) [Y [a,b|W℄,X a℄

23. [b|W℄=[X1,Y1|Z1℄ ,

ar(X1,Y1),

(8SvW)(S=[℄_singleton(S)_onneted(S)),

finish(,[a,b|W℄) [Y [a,b|W℄,X a℄

24. ar(b,Y1) ,

(8Sv[Y1|Z1℄)(S=[℄_singleton(S)_onneted(S)),

finish(,[a,b,Y1|Z1℄) [Y [a,b,Y1|Z1℄,X a℄

25. (b=a^Y1=b)_(b=b^Y1=) ,

(8Sv[Y1|Z1℄)(S=[℄_singleton(S)_onneted(S)),

finish(,[a,b,Y1|Z1℄) [Y [a,b,Y1|Z1℄,X a℄

26. b=b^Y1= ,

(8Sv[Y1|Z1℄)(S=[℄_singleton(S)_onneted(S)),

finish(,[a,b,Y1|Z1℄) [Y [a,b,Y1|Z1℄,X a℄

27. b=b ,

Y1=,

(8Sv[Y1|Z1℄)(S=[℄_singleton(S)_onneted(S)),

finish(,[a,b,Y1|Z1℄) [Y [a,b,Y1|Z1℄,X a℄

28. Y1= ,

(8Sv[Y1|Z1℄)(S=[℄_singleton(S)_onneted(S)),

finish(,[a,b,Y1|Z1℄) [Y [a,b,Y1|Z1℄,X a℄

29. (8Sv[|Z1℄)(S=[℄_singleton(S)_onneted(S)) ,

finish(,[a,b,|Z1℄) [Y [a,b,|Z1℄,X a℄

30. [|Z1℄=[℄_singleton([|Z1℄)_onneted([|Z1℄) ,

(8SvZ1)(S=[℄_singleton(S)_onneted(S)),

finish(,[a,b,|Z1℄) [Y [a,b,|Z1℄,X a℄

31. singleton([|Z1℄) ,

(8SvZ1)(S=[℄_singleton(S)_onneted(S)),

finish(,[a,b,|Z1℄) [Y [a,b,|Z1℄,X a℄

32. 9X([|Z1℄=[X℄) ,

(8SvZ1)(S=[℄_singleton(S)_onneted(S)),

finish(,[a,b,|Z1℄) [Y [a,b,|Z1℄,X a℄

33. [|Z1℄=[X1℄ ,

(8SvZ1)(S=[℄_singleton(S)_onneted(S)),

finish(,[a,b,|Z1℄) [Y [a,b,|Z1℄,X a℄

34. (8Sv[℄)(S=[℄_singleton(S)_onneted(S)) ,

finish(,[a,b,℄) [Y [a,b,℄,X a℄

35. [℄=[℄_singleton([℄)_onneted([℄)) ,

finish(,[a,b,℄) [Y [a,b,℄,X a℄

36. [℄=[℄ ,

finish(,[a,b,℄) [Y [a,b,℄,X a℄

37. finish(,[a,b,℄) [Y [a,b,℄,X a℄

25

38. (9Sv[a,b,℄)(S=[℄) [Y [a,b,℄,X a℄

39. (9Sv[b,℄)(S=[℄) [Y [a,b,℄,X a℄

40. (9Sv[℄)(S=[℄) [Y [a,b,℄,X a℄

41. [℄=[℄ [Y [a,b,℄,X a℄

42. � [Y [a,b,℄,X a℄

The derivation is quite lengthy for the reasons explained above: some steps of SLDB-resolution

orrespond to steps hidden in SLD-derivations. One an use WAM-based ompilation

[Ait Kai 90℄ or partial evaluation [PE 91℄ for more eÆient exeution models. It is interesting

to build a WAM-based implementation of logi programming with bounded quanti�ers.

Theorem 7 below states that SLDB-resolution is independent of the omputation rule. Proof

will be similar to that of [Lloyd 84℄. Before proving this theorem we shall prove a tehnial

lemma.

Lemma 4.1 (Swithing lemma) Let G = �; '; be a goal provable by SLDB-resolution. Let

R

1

;R

2

be two omputation rules suh that R

1

(�; ';) = ' and R

2

(�; ';) = . Let G

1

=

(�;�;)�

1

be a suessor of G under R

1

, whih is provable by SLDB-resolution. Then there

exist omputation rules R

0

1

and R

0

2

suh that for every suessor G

12

of G

1

under R

0

1

there is

a suessor G

2

= (�; ';�)�

2

of G under R

2

suh that G

12

is also a suessor of G

2

under R

0

2

.

(See the piture below).

G G

? ?

R

1

; �

1

R

2

; �

2

G

1

G

2

�

�

�

�

�

�

�

�

�R

�

�	

R

0

1

R

0

2

G

12

Proof. Straightforward, but tedious, by ase analysis on the struture of the formulas

'; . In all the ases we let R

0

1

be any omputation rule with R

1

(G

1

) = �

1

and R

0

2

be any omputation rule with R

2

(G

2

) = '�

2

.

�; ' ;

�; ';

? ?

R

1

; �

1

R

2

; �

2

(��

1

;��

1

; �

1

) (��

2

; '�

2

;��

2

)

�

�

�

�

�

�

�

�

�R

�

�	

R

0

1

R

0

2

(��;��;��)

26

We onsider only some ases out of the 81 possible ombinations.

1. Both '; are equalities s

1

=s

2

and t

1

=t

2

. In this ase �

1

is a most general uni�er

of s

1

; s

2

. Terms t

1

�

1

and t

2

�

1

are uni�able, sine G

1

is provable. Thus, t

1

and

t

2

are uni�able (with a most general uni�er �

2

). Let � be a most general uni�er

of pairs hs

1

; t

1

i and hs

2

; t

2

i. By taking G

12

= �� we onlude the proof.

2. ' takes the form t

1

=t

2

, takes the form (8x2t)�(x). Let �

1

be a most general

uni�er of t

1

and t

2

. Consider all possible ases.

(a) t�

1

= [℄. Let �

2

be a most general uni�er of x and [℄. Take G

2

=

(�; '; �(x))�

2

.

(b) t�

1

= [r|s℄. Let �

2

be a most general uni�er of x and [y|z℄ with new y; z.

Take G

2

= (�; '; �(x); (8x2z)�(x))�

2

.

() t�

1

is a variable v of the sort list. In this ase there are two possible

suessors of G

1

under R

1

.

i. � = �([℄). In this ase take �

2

;G

2

as in ase 2a.

ii. � = �([y|z℄); (8x2z)�(x). In this ase take �

2

;G

2

as in ase 2b.

3. ' takes the form '

1

_ : : :_'

n

and � is '

i

. In this ase for every possible

suessor G

12

= (�;�;�)� of G

1

under R

0

1

take G

2

= (�; ';�)�.

The other ases are onsidered more or less similarly.

Theorem 7 (Independene of the omputation rule) If a goal G is provable with a sub-

stitution � under a omputation rule R

1

, than G is provable with � under any other omputation

rule R

2

.

Proof. We shall prove an even stronger statement: if there is a proof of G under R

1

with � of length n, then there is a proof of G under R

2

with � of length n. The proof

is by indution on n.

1. n = 0; 1. In this ase G onsists of at most one formula, and all omputation

rules behave equally on G.

2. n > 1. We assume that for all m < n the statement is true. Let G takes

the form �; '; , and let R

1

(�; ';) = ' and R

2

(�; ';) = . Then there is a

suessor G

1

= (�;�;)�

1

of G under R

1

, whih is provable by SLDB-resolution

in n�1 steps under any omputation rule. Apply Lemma 4.1 and take as G

2

the

suessor of G

1

under R

0

1

whih ours in the SLDB-derivation of G

1

of length

n � 1. Then we have that G

2

has an SLDB-derivation of length n � 1 under

some omputation rule, and hene under R

2

. Thus, G has an SLDB-derivation

of length n under R

2

.

We shall introdue a tehnial de�nition and prove several lemmas whih are needed to prove

soundness and ompleteness of SLDB-derivations.

De�nition 4.6 Let G

1

;G

2

be two goals. Then we write G

1

� G

2

i� there is a substitution �

suh that G

2

� oinides with G

1

.

27

Lemma 4.2 Let G

1

;G

2

be two goals and G

1

� G

2

. Then for every suessor G

0

1

of G

1

under

some omputation rule there is a suessor G

0

2

of G

2

under a (possibly di�erent) omputation

rule, suh that G

0

1

� G

0

2

.

Proof. Straightforward by ase analysis on the de�nition of a suessor.

Lemma 4.3 Let the goal G

0

be a suessor of G with the substitution �

1

. Then for every sub-

stitution �

2

, the goal G

0

�

2

is a suessor of G�

1

�

2

with the empty substitution.

Proof. Consider, for example, the ase when the G takes the form �; t

1

=t

2

. In this

ase �

1

is a most general uni�er of t

1

and t

2

. We have that t

1

�

1

�

2

= t

2

�

1

�

2

. The

other ases are similar.

Lemma 4.4 Let a goal G be provable by SLDB-resolution with a substitution �. Then any goal

G

0

with G

0

� G� is provable with the empty substitution.

Proof. Straightforward by repeated appliations of Lemma 4.3.

Let, for any formula ', 8' denote the formula 8�x', where �x is the sequene of all free variables

of '. The following theorem states soundness and ompleteness of SLDB-derivations:

Theorem 8 (Soundness and ompleteness of SLDB-resolution) The following state-

ments are true:

Soundness If a �-formula ' is provable with the answer substitution �, then the formula 8('�)

is true in Mod(P).

Completeness If ' is a �-formula and is its ground instane true in Mod(P), then there

are substitutions �; �

1

, suh that ' is provable with the answer substitution � and '��

1

is

idential to .

Proof.

Soundness By Theorem 6 it is suÆient to prove that every ground instane of '

is provable in Nat(P). It is easy to see that for the ground formulas all steps

of SLDB-resolution, exept for the ase of unrestrited quanti�ers, orrespond

to the rules of the natural alulus. Assume now that a goal G takes the form

�;9x (x), and (x) is the seleted formula. In this ase the suessor of the

goal is �; (y). Let it be provable with the answer substitution �

1

. Let �

2

be

any substitution suh that y�

1

�

2

is a ground term, say, t. Then, by Lemma 4.4,

�; (t) is provable. In this ase we an apply the rule for the unrestrited

quanti�ers of Nat(P).

28

Completeness Applying Theorem 6 we obtain that ' is provable in Nat(P). The

rest of the proof is straightforward by indution on lengths of derivations in

Nat(P) using Theorem 7 and Lemma 4.2.

Corrollary 4.1 If ' is a ground �-formula, then the following onditions are equivalent.

1. ' is provable (with the empty substitution ");

2. ' is true in Mod(P).

Proof. Straightforward from Theorem 8 and the fat that a ground formula an be

provable only with the empty substitution.

29

5 Expressive power

In this setion we prove some results about the expressive power of generalized logi programs.

In Setion 5.1 we show a natural translation of generalized logi programs into Horn lause

programs. During the translation some new prediates may be de�ned in the programs. However

the Horn lause programs obtained may be reursive, while the initial generalized programs are

not reursive. In Setion 5.2 we onstrut a non-reursive metainterpreter for Horn lauses

in the language of generalized logi programs. It shows the expressive power of generalized

logi programs | every omputable prediate an be expressed by a non-reursive generalized

program, whih means that it an be expressed by a generalized program onsisting of only

one nonreursive de�nition. We also prove that this annot be ahieved using only bounded

quanti�ers or only unrestrited existential quanti�ers.

5.1 Translation to Horn lauses

In this setion we will show that generalized logi programs an naturally be translated into Horn

lause programs by adding new prediate symbols. A similar translation an be done for the

flogg language of [Dovier 91℄, but in this language the only allowed bounded quanti�er is that

over elements of a set, whih orresponds to our (8x2t). We prove orretness and ompleteness

of the translation. The existene of the translation is not surprising, beause Horn lauses

form a universal programming language (a language in whih all omputable prediates an

be expressed). The interesting features of our translation are that it is quite natural and that

non-reursive programs with the bounded quanti�ers may be translated into reursive Horn

lause programs. In Setion 5.2 we show that it annot be avoided in general. The original

program and the translated program are equivalent in a strong sense: w.r.t. omputed answer

substitutions.

This equivalene is similar to the equivalene in S-semantis, introdued in [Falashi 89℄. The

equivalene in S-semantis entails a weaker equivalene in the sense of truth in the least Herbrand

models.

Sine our programs are sorted, then we shall assume that the orresponding Horn lause pro-

grams are sorted in the same way, and that their semantis is a restrition of our semantis

when we omit bounded quanti�ers.

The details of the translation are well known in ases of disjuntion, onjuntion and the unre-

strited existential quanti�er. Bounded quanti�ers will be translated using iterative de�nitions.

Suppose that we have a generalized logi program P. We shall de�ne its translation | a Horn

lause program

b

P in the following way. If there is a non-Horn de�nition in P , we hange it to

one or more de�nitions aording to the rules given in Figure 5.1 on page 31 until we get a Horn

lause program.

Theorem 9 For any generalized logi program P, P is equivalent to

b

P in the following sense.

For any �-formula ' in the language of the �rst program, ' is provable by SLDB-resolution from

P with the substitution � i� it is provable by SLDB-resolution from

b

P with the same substitution.

Proof. Let (�x) be an arbitrary formula ourring in the body of a lause in P. We

note that there is a unique prediate symbol, orresponding to it in the translated

program. (For example, in the ase of onjuntion ^, D,E orrespond to B,C). We

denote these prediate symbols by P

. By indution on the lengths of derivations

30

Figure 5.1: Translation of bounded quanti�ers into Horn lause logi programs

Sentene: Its translation:

A(�x) :- B(�x)^C(�x) A(�x) :- D(�x),E(�x).

D(�x) :- B(�x).

E(�x) :- C(�x).

A(�x) :- B(�x)_C(�x) A(�x) :- B(�x).

A(�x) :- C(�x).

A(�x) :- 9vB(�x,v) A(�x) :- B(�x,v).

A(�x) :- (9y2t)B(�x,y) A(�x) :- D(�x,t).

D(�x,[y|z℄) :- B(�x,y).

D(�x,[y|z℄) :- D(�x,z).

A(�x) :- (8y2t)B(�x,y) A(�x) :- D(�x,t).

D(�x,[℄).

D(�x,[y|z℄) :- B(�x,y),D(�x,z).

A(�x) :- (9yvt)B(�x,y) A(�x) :- D(�x,t).

D(�x,z) :- B(�x,z).

D(�x,[y|z℄) :- D(�x,z).

A(�x) :- (8yvt)B(�x,y) A(�x) :- D(�x,t).

D(�x,[℄) :- B(�x,[℄).

D(�x,[y|z℄) :- B(�x,[y|z℄),D(�x,z).

Here D,E are new prediate symbols, �x are all free variables of lauses in the left olumn. In

the right olumn, y is a new variable of the sort univ and z is a new variable of the sort list.

31

and using independene of the omputation rule it is easy to prove the following

statement about bisimulation of derivations:

Let

1

(�x); : : : ;

n

(�x) be formulas ourring in bodies of lauses of P . Then

the goal

1

(

�

t

1

); : : : ;

n

(

�

t

n

) is provable by SLDB-resolution with a substitution

� in P i� the goal P

1

(�x)

(

�

t

1

); : : : ; P

n

(�x)

(

�

t

n

) is provable by SLDB-resolution

with � in

b

P.

The theorem easily follows from this statement.

Let us note that this equivalene implies semanti equivalene | the least models of the two

programs are idential. To extend this result to SLD-resolution one has to add the fat x=x

expressing the equality relation.

5.2 A metainterpreter for Horn lause programs

In the examples from Setion 2.3 we have already shown that many iterative programs, whih are

usually expressed in Prolog via reursion, have simple non-reursive de�nitions using bounded

quanti�ers. Here we give a more interesting example: a non-reursive metainterpreter for Horn

lause programs. We assume that the lauses of the objet level Horn lause program of the

form A:-B

1

,: : : ,B

n

are represented as fats of the form rule(A,[B

1

,: : : ,B

n

℄), and fats of the

form A are represented as fats of the form rule(A,[℄). The de�nition of the metainterpreter

is shown on Figure 5.2 on page 33.

Theorem 10 Let P be a Horn lause logi program. Let R is obtained from P by replaing

eah rule A:-B

1

,: : : ,B

n

(eah fat A resp.) with fats rule(A,[B

1

,: : : ,B

n

℄) (fats rule(A,[℄)

resp.) and by adding the lauses from Figure 5.2. Then for any atomi ', ' is provable by

SLDB-resolution from P with a substitution � i� the goal all(') is provable from R with the

same substitution.

Proof. One an verify the following statements:

1. trae of append(L1,L2,L3,L) is true i�

(a) L is a list every two onseutive elements of whih take the forms

[[X|Xs℄,[Y|Ys℄℄ and [Xs,Ys℄, for some terms X,Xs,Y,Ys.

(b) The �rst and the last elements of L are [L3,L1℄ and [[℄,L2℄.

2. append(L1,L2,L3) is true i� L3 is obtained by onatenating L1 and L2.

3. Let S1 be a tuple of atomi formulas. Then step of exeution([S1,X2|X3℄,

where X2,X3 are variables not ourring in S1, is derivable with the substitu-

tion � i� X2� is a suessor of S1 in the SLDB-derivation with the leftmost

omputation rule and X3� is a variable not ourring in X2�,S1�.

4. Let S be a tuple of atomi formulas. Then trae of exeution([S|X℄), where

X is a variable not ourring in S, is derivable with the substitution � i� there

is an SLD-derivation of the empty goal starting from S with the answer substi-

tution whih oinides with � on the set of variables of S.

5. all(G) is provable with the substitution � i� G is provable by SLD-resolution

with the answer substitution �.

32

Figure 5.2: Non-reursive metainterpreter for Horn lause programs

all(Goal) :-

(9List)(trae of exeution(List,[℄)^starts(List,[Goal℄)).

starts([X|Xs℄,X).

trae of exeution(List,Last element) :-

(8SublistvList)(Sublist=[℄

_Sublist=[Last element℄

_step of exeution(Sublist)).

step of exeution([State1,State2|States℄) :-

transition(State1,State2).

transition([Atom|Atoms℄,NewAtoms) :-

rule(Atom,Tail) ^

append(Tail,Atoms,NewAtoms).

append(L1,L2,L3) :-

(9List)trae of append(L1,L2,L3,List).

trae of append(L1,L2,L3,List) :-

starts(List,[L3,L1℄) ^

(8LvList))(L=[℄_L=[[[℄,L2℄℄_step of append(L)).

step of append([[X|Xs℄,[X|Ys℄℄,[Xs,Ys|States℄).

33

From this theorem we an easily infer that any omputable prediate an be expressed by a

non-reursive generalized logi program (and hene by a non-reursive generalized logi program

onsisting of only one de�nition):

Corrollary 5.1 For every omputable set S � HU there exists a non-reursive generalized logi

program P, de�ning a prediate P, suh that for every t2HU we have P(t)2Mod(P), t2S.

Proof. For Horn lause logi programs in was proved in [T�arnlund 77℄ for a Herbrand

universe representing natural numbers and in [Andr�eka 78, Voronkov 92b℄ for arbi-

trary Herbrand universes. Using this fat, we apply Theorem 10 to �nd a generalized

logi program with the required properties.

We an prove an even stronger property, onneting omputability and answer substitutions

omputed by generalized logi programs.

Corrollary 5.2 Let S be a set of tuples of terms of a �nite signature �. Then the following

onditions are equivalent:

1. S is omputable and losed under renaming of variables.

2. There exists a non-reursive generalized logi program P, de�ning a prediate P, suh that

�

t2S i� [�x

�

t℄ is an answer substitution to P(�x).

Proof. For Horn lause logi programs it was proved in [Voronkov 92b℄. Then apply

Theorem 10.

This orollary means that generalize logi programs an ompute all omputable prediates on

the set of terms with variables, or w.r.t. S-semantis of [Falashi 89℄.

The metainterpreter from Figure 5.2 is in no way natural. One an more natural metainterpreter,

using reursion:

all(G) :-

rule(G,Gs) ^

(8X2Gs)all(X).

all(X=Y) :-

X = Y.

It is easy to see that the expressive power of Horn lause logi programs without reursion is

very weak:

Lemma 5.1 Let P be a Horn lause logi program without reursion. Then there is a Horn

lause program P

1

, onsisting only of fats, whih omputes the same answer substitutions.

34

Proof. Straightforward from the �xedpoint haraterization of Horn lause logi

programs [Apt 82, Lloyd 84℄.

Theorem 11 Let P be a non-reursive Horn lause program. Then the minimal model omputed

by P is deidable (i.e. there is an algorithm verifying if a given ground atomi formula belongs

to the model).

Proof. Straightforward from Lemma 5.1.

Corrollary 5.3 The lass of prediates that are omputable by non-reursive generalized logi

programs is stritly larger then the lass of prediates omputable by non-reursive Horn lause

programs.

Proof. Straightforward from Corollary 5.1 and Theorem 11.

It is interesting to �nd out the soure of the expressive power of non-reursive generalized logi

programs. The following theorem shows that the use of bounded quanti�ers is essential:

Theorem 12 The lass of prediates omputable by non-reursive Horn lause programs oin-

ides with the lass of programs omputable by non-reursive generalized logi programs without

bounded quanti�ers.

Proof. Note that a non-reursive generalized logi program without bounded quan-

ti�ers will be translated into a non-reursive Horn lause logi program (Figure 5.1).

Then apply Theorem 9.

However, bounded quanti�ers only are not suÆient to express all omputable prediates. To

prove it, we onsider now the expressive power of programs, all quanti�ers of whih are bounded.

They are de�ned similar to �

0

-programs [Gonharov 85℄:

De�nition 5.1 (Totally restrited programs) A totally restrited program is a program

ontaining no ourrenes of the unrestrited existential quanti�er.

Totally restrited programs are also interesting beause they admit lassial negation as ex-

plained below in Setion 6. The next theorem shows that in presene of reursion we an still

express all omputable prediates without the use of unrestrited quanti�ers:

Theorem 13

1

For every omputable set S of ground terms there is a totally restrited program

P de�ning a prediate P suh that for every ground term t, P (t) belongs to Mod(P) i� t2S.

1

This theorem had been proved by Starhenko and myself

35

Proof. By Corollary 5.1 and theorem on reursive ompleteness of Horn lause

logi programs [T�arnlund 77, Voronkov 92b℄ all omputable prediates on HU an

be expressed by a non-reursive generalized logi program P . It is suÆient to show

how to onstrut a generalized logi program P

1

without unrestrited quanti�ers,

whih omputes the same relation P . To this end we will show how to transform

eah de�nition, whih uses unrestrited quanti�ation, into a de�nition without suh

quanti�ation. To obtain P

1

, one should apply this transformation until we get rid

of all unrestrited quanti�ers. Using the transformation similar to that of Figure 5.1

we an restrit ourselves to lauses, in whih all unrestrited quanti�ers are not in

the range of any other quanti�ers or onnetives.

Let

A(�x) :- 9y(B(�x; y)).

be suh a lause. Let a

1

; : : : ; a

n

be all onstants and f

1

; : : : ; f

m

all funtion symbols

ourring in P (inluding [℄,[| ℄). Let C be a new prediate symbol. Consider

the program, obtained from P by replaing the above lause by lauses with

A(�x) :- C(�x; [℄).

C(�x; l) :- (9y2l)B(�x; y) _

C([a

1

|l℄ _

� � �

C([a

n

|l℄) _

(9y

1

2l) : : : (9y

k

2l)C([f

1

(y

1

; : : : ; y

k

)|l℄) _

� � �

(9y

1

2l) : : : (9y

p

2l)C([f

m

(y

1

; : : : ; y

p

)|l℄).

Let, for a list of terms l, ord(l) means the number of ourrenes of funtion symbols

and onstants in l. By de�nition of C, one an prove the following statement:

If C(

�

t; l) is true for a list l with ord(l) = j > 0, then C(

�

t; l

1

) is true for a list

l

1

with ord(l

1

) < j.

From this it follows that if C(

�

t; l) is true for a list of terms l, then C(

�

t; [℄) is also

true. Let A(

�

t) be true in the original program. Then there is a term s suh that

B(

�

t; s). From the de�nition of C we have that C(

�

t; [s℄) is also true. Hene, C(

�

t; [℄)

is true, and from the de�nition of A in the new program, A(

�

t) is true in the new

program.

It is straightforward to see also that, if C(

�

t; l) is true in the seond program, then

B(

�

t; s) is true for some s.

Now we onsider the non-reursive ase:

Theorem 14 Let P be a totally restrited program without reursion. Then the set Mod(P) is

deidable.

Proof. It follows from the fat that in the absene of reursion and unrestrited

quanti�ers the lengths of SLD-derivations for any ground formula are limited.

However, totally restrited programs without reursion an be more expressive then Horn lause

programs without reursion:

36

Theorem 15 There exists a non-reursive totally restrited program P suh that for any non-

reursive Horn lause program P' we have

fP (t) j P (t)2Mod(P)g 6= fP (t) j P (t)2Mod(P')g

Proof. Consider the program P onsisting of only one de�nition

P(x):-(8y2x)y=a

Assume that a non-reursive Horn lause program P ' gives the same minimal model.

Aording to Lemma 5.1 we an assume that P ' onsists only of fats. There is an

in�nite number of fats in Mod(P) of the form

P([℄)

P([a℄)

P([a,a℄)

P([a,a,a℄)

: : :

Thus there is a fat in P', for whih an in�nite number of these fats are instanes.

This fat must be of the form

P([t

1

,: : : ,t

n

|x℄),

where x is a variable. Substituting [[℄℄ for x, we obtain a fat, whih is in the least

model for P', but not P .

Horn lause programs without reursion an, in turn, be more expressive than totally restrited

programs without reursion.

Theorem 16 There exists a non-reursive Horn lause program P suh that for any non-

reursive totally restrited program R we have

fP (t) j P (t)2Mod(P)g 6= fP (t) j P (t)2Mod(R)g

Proof. Consider the Horn lause logi program onsisting of the fat

P(f(x))

Its minimal model onsists of all terms of the form P(f(t)) for a suitable ground

term t. Thus, there is an in�nite number of terms on whih P is true, and an in�nite

number of terms on whih P is false. Assume that P ' gives the same minimal model.

Sine it is non-reursive, we an assume that it onsists of only one de�nition

P(x) :- '(x)

Sine the variable x must be of the sort univ, the only bounded quanti�ers in '

have to be over �nite lists [t

1

,: : : ,t

n

℄, whih may be hanged to �nite disjuntions

and onjuntions. Thus, we an assume that ' onsists only of disjuntions and

onjuntions of equalities with the only free variable x. It is easy to prove that suh

' is either true on only �nite number of ground terms or is false on a �nite number

of ground terms.

The results of this setion are summarized in Figure 5.3 on page 38.

37

Figure 5.3: Expressibility of subsets of Horn lause logi programs and generalized logi

programs

Horn lause

programs

Generalized

programs

Generalized programs

without

reursion

Generalized programs

without

unrestrited quanti�ers

Generalized programs

without

bounded quanti�ers

�

�

�

�

�

�

�

�

��

H

H

H

H

H

H

H

H

Hj

Totally restrited

programs without

reursion

�

�

�

�

�

�

Generalized programs

without reursion and

bounded quanti�ers

Horn lause

programs

without reursion

Here

L

1

L

2

denotes \L

1

is equivalent to L

2

";

L

1

-

L

2

denotes \L

1

is more expressive than L

2

";

L

1

�

�

�

�

�

�

L

2

denotes \L

1

and L

2

are not ompatible".

38

6 Negation

Throughout this setion negation means lassial negation, unless the inverse is expliitly stated.

By lassial negation we mean the following: the negation of a formula is true on some elements,

i� the formula is not true on these elements.

Approahes to handling lassial negation in logi programming are not (and annot be) satis-

fatory. (An exellent survey of negation and omputability an be found in [Sheperdson 87℄).

The main reason is very easy | there annot be a sound and omplete implementation of las-

sial negation in logi programs. In the literature onerning negation usually some onditions

are given whih show when the negation of a prediate de�ned by Horn lauses satis�es some

desirable properties. There are two aspets of using negation: the �rst onerns omputability

and the seond onerns semanti issues. Let us briey onsider the two aspets.

1. Negation is hostile to omputability. The main reason is the universality of the Horn lause

language. Any omputable prediate an be represented as a Horn lause program, whih

means that the negation of a prediate de�ned by Horn lauses may be not omputable.

The usual solution of the omputability problem is negation as failure, whih is inomplete

for lassial negation.

2. As for the semanti aspets, one of the usual solutions is to restrit the lass of admissible

programs to so alled strati�ed programs or some other lasses. These programs have a

(strati�ed) least model, but this model is not omputable in general.

Let us informally all prediates with the omputable negation negatable prediates. The de-

sirable solution of the two aspets an be summarized as follows: to �nd a lass of programs

whih is suÆiently rih, but whih de�nes only negatable prediates. From the viewpoint of re-

ursion theory negatable prediates are exatly deidable prediates [Rogers 67℄. However there

is no syntati riterion to reognize programs whih de�ne deidable prediates in the lass of

all programs. We shall introdue below a sublass of generalized logi programs whih always

de�nes only omputable prediates. This lass of programs is suÆiently rih, for instane, all

examples of Setion 2.3 are in this lass.

Bounded quanti�ers an easily be negated using the following equivalenes:

:(8x2t)' � (9x2t):'

:(9x2t)' � (8x2t):'

:(8xvt)' � (9xvt):'

:(9xvt)' � (8xvt):'

Let us note, that this property is already suÆient to use negation for a wide lass of prediates.

For instane, all examples of Setion 2.3 an easily be transformed into non-reursive programs

without unrestrited quanti�ers. Some of the lauses of the examples ontain unrestrited quan-

ti�ers, e.g.

ordered2([X,Y|Z℄) :-

X�Y.

whih is a notation for

ordered2(L) :-

9X9Y9Z(L=[X,Y|Z℄^X�Y).

39

However, this lause is equivalent to the lause

ordered2(L) :-

(9X2L)(9Y2L)(9ZvL)(L=[X,Y|Z℄^X�Y).

whih ontains only bounded quanti�ers.

It is interesting, that we an validate suh a use of patterns in heads of lauses without turning

them into expressions with bounded quanti�ers, using Theorem 17 proved below.

Let us �rst give preise de�nitions.

De�nition 6.1 (Negatable prediates) A prediate P de�ned by a generalized logi program

P is alled negatable i� there is a generalized logi program R omputing the negation R of P ,

i.e. the prediate R suh that for any tuple

�

t of ground terms from the Herbrand universe of P,

P (

�

t) is true in the minimal model for P i� R(

�

t) is false in the minimal model for R.

We assume that =/ is the negation of =.

Corrollary 6.1 Let P be a totally restrited program without reursion and the equality = is

negatable. Then any prediate, de�ned in P, is negatable.

Proof. Using the equivalenes of negations of bounded quanti�ers from page 39

one an redue all de�nitions of P to non-reursive de�nitions, where equality and

inequality our as the only unde�ned symbols.

We also note that the negation =/ of equality = is negatable in every �xed Herbrand universe, so

we shall freely use it in the rest of this setion.

Theorem 17 Let N be the lass of the generalized logi programs with the following properties:

1. No reursion is used in the programs from N;

2. All ourrenes of the unrestrited existential quanti�er in the programs from N take the

form

9y('(�x,y)^ (�x,y)),

where �x; y are all free variables of '; and for any tuple of ground terms �s there is exatly

one term t suh that '(�s; t).

Then every de�ned in N prediate is negatable.

Proof. We have to show how to negate expressions ontaining existential quanti-

�ers, i.e. how to express :9y('(�x; y)^ (�x; y)) in the language of generalized logi

programs. This negation is equivalent to 8y('(�x; y)�: (�x; y)). Let

�

t be a tuple

of ground terms. Then 8y('(

�

t; y)�: (

�

t; y)) means that : (

�

t; y)) is true for the y

for whih '(

�

t; y) is true. Thus, the formula 8y('(

�

t; y)�: (

�

t; y)) is equivalent to

9y('(

�

t; y)^: (

�

t; y)). Sine it holds for every tuple of ground terms

�

t, we onlude

that :9y('(�x; y)^ (�x; y)) is equivalent to 9y('(�x; y)^: (�x; y)).

40

Theorem 17 is essentially related to funtional omputations. A similar treatment of negation

an be found in [Naish 86℄.

Now we apply Theorem 17 to extensions of totally restrited programs.

De�nition 6.2 (Class TR

1

) Class TR

1

of generalized logi programs is the lass of programs

whose lauses take the form

A(

�

t) :- '.

where ' is a �

0

-formula,

�

t a tuple of terms (not neessarily variables).

The lass TR

1

inludes all totally restrited programs. However, there are programs in TR

1

,

whih are not totally restrited (when

�

t inludes non-variable terms). Theorem 16 from the

previous setion shows that TR

1

is more expressible than the lass of all totally restrited

programs.

Theorem 18 Let P be a non-reursive generalized logi program from TR

1

. Then every predi-

ate P de�ned in P is negatable.

Proof. De�nitions of the form

A(

�

t) :- .

denote

A(�y) :- 9�x(�y=

�

t^).

We note that the prediate

nunif

s

(t) , t is not uni�able with s

an be expressed by a generalized Prolog program. For example, if all the symbols

from the language are a,f,h, then nunif

f(X,X)

an be de�ned by

nunif

f(X,X)

(a).

nunif

f(X,X)

(h(Y)).

nunif

f(X,X)

(f(Y,Z)) :- Y =/ Z.

The lause de�ning A is equivalent to

A(�y) :- :nunif

t

(�y)^9�x(�y=

�

t^).

Take = for ' in Theorem 17.

Theorem 13 shows that there an be no orret and omplete implementations of negation for

totally restrited programs in general. However the (reursive) totally restrited programs have

interesting properties related to negation as failure. In traditional logi programming there

are approahes to solve the problem of negation by onstruting programs whih ompute the

�nite failure set of a given Horn lause program (see e.g. [Sato 84℄). However the programs

generated in suh a way may be very ompliated even when the original programs are very

simple. Programs with bounded quanti�ers admit an elegant solution for onstruting suh a

dual program.

First we de�ne the �nite failure set for a program P:

41

De�nition 6.3 (Finite failure set FF(P)) The �nite failure set FF(P) of a program P is de-

�ned as follows. A goal G belongs to FF(P) i� there is a omputation rule R suh that any

SLDB-derivation under this omputation rule, starting from the goal G with the empty substitu-

tion, fails in a �nite number of steps.

For a prediate P de�ned in a program P, the �nite failure set FF

P

(P) of P in P is the set

f

�

t j P (

�

t)2FF(P)g.

The notion of an SLDB-tree for a goal � and a omputation rule R is de�ned similar to that of

SLD-tree [Lloyd 84℄:

De�nition 6.4 (SLDB-tree) Let P be a program, G a goal and R a omputation rule. Then

the SLDB-tree for P ; G under R is de�ned as follows:

1. Eah node of the tree is a goal.

2. The root node is G.

3. For every node in the tree, its immediate suessors are all suessors of this node under

R (up to variable renaming).

As in the ase of SLD-trees, one an haraterize the �nite failure set in terms of SLDB-trees:

Lemma 6.1 For an atom A, A2FF(P) i� A is not provable by SLDB-resolution and there is

a omputation rule R suh that the SLDB-tree for G;P under R is �nite.

Proof.

1. Assume that there is an in�nite SLDB-tree for a �nitely failed goal G. Sine

the number of branes is �nite for every node, we have that the SLDB-tree is

�nite, by K�onig's lemma.

2. In the reverse diretion trivial, sine an SLDB-tree represents all possible om-

putations under a omputation rule.

Now we de�ne the notion of an AND-tree for a given totally restrited program P and a given

ground formula '. AND-trees are orthogonal to SLDB-trees, whih are essentially OR-trees.

De�nition 6.5 (AND-tree) An AND-tree for a given totally restrited program P and a given

ground formula ' is de�ned as follows:

1. If ' has no suessors, or ' takes the form t=/t then the AND-tree for ' onsists of one

leaf labeled by '. In this ase we say that this leaf fails.

2. If ' has the empty suessor or takes the form t

1

=/t

2

for unequal terms t

1

,t

2

, then the

AND-tree for ' onsist of one leaf labeled by '. In this ase we say that this leaf sueeds.

3. Assume that there is a suessor of the goal ', onsisting of formulas '

1

; : : : ; '

n

. An

AND-tree for ' onsists of the root labeled by ' and having AND-trees for all '

i

as its

immediate subtrees.

42

Using this de�nition we an give another haraterization of the suess set and the �nite failure

set:

Lemma 6.2 Let ' be a ground formula and P a totally restrited program. Then

1. ' is provable i� there is an AND-tree for ', whose all leaves sueed.

2. ' �nitely fails i� there is a natural number n, suh that every AND-tree for ' has a failed

leaf on depth � n.

Proof.

1. The �rst statement an be proved by a simple modi�ation of Theorem 6 on

ompleteness of Nat(P): it is easy to see that an AND-tree for a goal G rep-

resents a proof of G in Nat(P) (exept for the ase of =/, whih an be easily

handled, too).

2. To prove the seond statement, we shall introdue a de�nition and prove a few

intermediate statements.

An n-thread in an AND-tree is a set of nodes in this tree, de�ned

indutively as follows.

(a) If G is the root of the tree, then fGg is a 0-thread.

(b) Let G;' be an n-thread and G

1

be the immediate suessors of ' in

the tree. Then G;G

1

is an n+ 1-thread.

() Let G;' be an n-thread, ' either takes the form t=t or takes the

form r=/s for not-idential r,s. Then G is an n+ 1-thread.

Using de�nitions of trees and threads, one an easily prove the following:

A set of formulas '

1

; : : : ; '

n

is an n-thread i� it is a goal, whih an be

obtained from the top goal ' by SLDB-resolution under some omputation

rule R in n steps.

The next statement to prove is

For any omputation rule R, for any AND-tree T for the goal ' and

for any natural number n either

(a) there exist a goal G in the SLDB-tree for ' under R on depth n, whih

is also an n-thread in T

or

(b) there is a leaf G in the SLDB-tree for ' on depth m � n, whih is

also an m-thread in T .

This statement is proved by indution on n. For n = 0 it is trivial. For n > 0,

onsider the n�1-thread, satisfying the ondition. Let it be the goal '

1

; : : : ; '

n

.

Let R('

1

; : : : ; '

n

) = '

i

. If '

i

is a failed leaf in T , then the seond statement is

trivially satis�ed. If not, then let

1

; : : : ;

k

be all the immediate suessors of

'

i

in T . Then '

1

; : : : ; '

i�1

;

1

; : : : ;

k

; '

i+1

; : : : ; '

n

an be taken as the G.

Now we an prove one part of the statement. Let ' �nitely fail. By Lemma 6.1

there is a �nite SLDB-tree S for ' under a omputation rule R, whose all leaves

fail. Take as n the depth of S. Consider any AND-tree T . Let G be the goal

whih is both a leaf in S and an m-thread in T . Let be the formula hosen

by R in G. Then is a failed leaf in T on depth � n.

The onverse will be proved by indution on n. Let any AND-tree for ' has a

failed leaf on depth � n. We have to �nd a omputation rule R whih gives a

43

�nite SLDB-tree for G. Let G

1

; : : : ; G

n

be all the possible suessors of ' under

SLDB-resolution. Consider any G

i

. Let it be '

1

; : : : ; '

n

. If eah of the '

j

has

an AND-tree of depth � n with no failing leaves, then there is an AND-tree for

' of depth � n + 1 with no failing leaves, whih ontradits the assumption.

Thus there is a '

j

i

, for whih all AND-trees has a failing leaf on depth < n.

Let R

i

be omputation rules whih lead to �nite SLDB-trees for '

j

i

. Consider

the omputation rule R, whih hooses '

j

i

from G

i

and behaves as R

i

on all

the suessors of G

i

. It is easy to see that R gives a �nite SLDB-tree for '.

We shall use AND-trees as the main tehnial tool in the rest of this setion.

De�nition 6.6 (Dual formula, lause and program) Let P be a totally restrited program

whih de�nes prediates P

1

; : : : ; P

n

. Let

b

P

1

; : : : ;

b

P

n

be some new prediate symbols. For eah

formula ' the dual formula

b

' is onstruted as follows: all atomi formulas R(

�

t) are replaed

by

b

R(

�

t), t

1

=t

2

by t

1

=/t

2

, ^ by _, _ by ^, all ourrenes of 9 by 8, and all ourrenes of 8 by 9.

For a lause C of the form R(�x):-'(�x) the dual lause

b

C is

d

R(�x):-

d

'(�x). The dual program

b

P

to P onsist of the lauses dual to the lauses of P.

For example, the dual lause to

ordered(L) :-

(8XvL)(X=[℄_singleton(X)_ordered2(X)).

is

not ordered(L) :-

(9XvL)(X6=[℄^not singleton(X)^not ordered2(X)).

where we denoted the dual prediate symbols with the pre�x not . The dual program

b

P to P

onsists of all suh dual lauses together with a de�nition of =/.

Theorem 19 For any prediate P de�ned in the program P the prediate

b

P from the program

b

P omputes the �nite failure set FF

P

(P) for P in P.

Proof. Let us introdue a few tehnial de�nitions whih we use in the proof. A

path in a tree is de�ned as usual. A branh is a path whih annot be extended to a

longer path. We all a path B

1

in an AND-tree T

1

dual to a path B

2

in an AND-tree

T

2

i� B

1

onsists of formulas dual to the formulas from B

2

. We prove the following

statement by indution on the length of branhes in SLDB-trees:

Let T

1

; T

2

be AND-trees for the formulas ';

b

'. Then there exist branhes

B

1

in T

1

and B

2

in T

2

suh that B

1

is dual to B

2

.

For example, the dual branhes for two trees for formulas (8x2[a,b℄)(9y2[b,a℄)x=y

and (9x2[a,b℄)(8y2[b,a℄)x=/y are shown on the following piture:

44

(8x2[a,b℄)(9y2[b,a℄)x=y

�

�

	

Q

Q

Q

Q

Q

Qs

(8x2[b℄)(9y2[b,a℄)x=y

�

�

	

�

�

�

�

�

�+

(9y2[b,a℄)a=y

?

(9y2[a℄)a=y)

?

a=a

�

�

�

�	

(9y2[b,a℄)b=y

�

�

	

?

b=b

�

�

	

�

�

�

�R

(8x2[℄)(9y2[b,a℄)x=y

(9x2[a,b℄)(8y2[b,a℄)x=/y

�

�

	

?

(9x2[b℄)(8y2[b,a℄)x=/y

�

�

	

?

(8y2[b,a℄)b=/y

�

�

	

�

�

�

�	

b=/b

�

�

	

�

�

�

�R

(8y2[a℄)b=/y

�

�

�

�	

b=/a

�

�

�

�R

(8y2[℄)b=/y

To prove this statement we onsider several ases. We assume that ' is the

bottom formula of the path B

1

, the path B

2

is dual to B

1

and prove that either ' is

a leaf or B

1

; B

2

an be ontinued to longer dual paths.

1. ' is an atomi formula P (

�

t), where P is neither = nor =/. Then P ontains a

lause P (�x):- (�x) and the branh B

1

an be ontinued by (

�

t). In this ase the

dual program

b

P ontains the dual lause

b

P (�x):-

d

 (�x), and B

2

an be ontinued

by

d

 (�x).

2. ' takes the form '

1

^ : : :^'

n

. In this ase the dual formula to ' is

'

1

_ : : :

'

n

.

Thus any path ontinuing B

2

has one of the formulas

'

i

as the immediate

suessor of

b

'. Thus we an ontinue B

1

by '

i

.

3. ' takes the form (9x2[s|t℄) (x). In this ase B

2

�nishes at (8x2[s|t℄)

b

 (x).

In this ase B

1

is ontinued either by (s) or by (9x2[t℄) (x). In the former

ase ontinue B

2

by

b

 (s), in the latter by (8x2[t℄)

b

 (x).

The other ases are similar. Now we an prove one part of the theorem:

Let the formula ' be provable in P. Then

b

' �nitely fails in

b

P .

To prove this we use the haraterization of provability and �nite failure in terms

of AND-trees from Lemma 6.2. Sine ' is provable, than there is an AND-tree T

1

,

whose all branhes �nish at leaves, whih sueeds. Let n be the depth of this tree

(i.e. the length of a longest branh in T

1

). Take any AND-tree T

2

for

b

'. Then there

are branhes B

1

; B

2

in T

1

; T

2

, whih are dual. Sine B

1

�nishes at a sueeding leaf,

then B

2

�nishes at a failing leaf. Sine the length of B

2

is the same as the length of

B

1

, whih is � n, then

b

' �nitely fails.

To prove the onverse, it is enough to prove the following statement:

if every AND-tree for a formula

b

' has a failed leaf on depth � n, then '

has an AND-tree of depth � n, whose all leaves sueed.

The proof is by indution on n and ase analysis.

1. Assume that ' takes the form '

1

^ : : :^'

n

. Then

b

' takes the form

'

1

_ : : :_

'

n

.

Then all AND-trees for

b

' have one of the formulas

'

i

as the immediate suessor

of

b

'. All these trees �nitely fail on depth � n� 1. Thus for every formula '

i

one an onstrut a suessful AND-tree of depth � n � 1. Combining these

trees, we obtain the required AND-tree for '.

45

2. Assume that ' takes the form (9x2[s|t℄) (x). Then

b

' takes the form

(8x2[s|t℄)

b

 (x). Then all AND-trees for

b

' have the formulas

b

 (s) and

(8x2t)

b

 (x) as the immediate suessors of

b

'. All this trees �nitely fail on

depth � n � 1. From this one an prove that either all AND-trees for

b

 (s)

�nitely fail on depth � n� 1 or all SLDB-trees for (8x2t)

b

 (x) �nitely fail on

depth � n� 1. Consider, for instane, the former ase. Then (s) has a su-

essful AND-tree of the depth � n� 1, and thus ' has the required AND-tree.

The other ases are similar. As one an see from the proof, the required AND-tree

for ' an be onstruted from the failing branhes of the trees for dual formulas,

as illustrated below for the formulas from the previous example. In this ase all

AND-trees take one of the following forms:

(9x2[a,b℄)(8y2[b,a℄)x=/y

?

(9x2[b℄)(8y2[b,a℄)x=/y

?

(9x2[℄)(8y2[b,a℄)x=/y

(9x2[a,b℄)(8y2[b,a℄)x=/y

?

(9x2[b℄)(8y2[b,a℄)x=/y

?

(8y2[b,a℄)b=/y

�

�

�

�	

b=/b

�

�

�

�R

� � �

(9x2[a,b℄)(8y2[b,a℄)x=/y

?

(8y2[b,a℄)a=/y

�

�

�

�	

� � �

�

�

�

�R

(8y2[a℄)a=/y

�

�

�

�	

a=/a

�

�

�

�R

� � �

The branhes dual to the failed branhes are the following:

(8x2[a,b℄)(9y2[b,a℄)x=y

?

(8x2[b℄)(9y2[b,a℄)x=y

?

(8x2[℄)(9y2[b,a℄)x=y

(8x2[a,b℄)(9y2[b,a℄)x=y

?

(8x2[b℄)(9y2[b,a℄)x=y

?

(9y2[b,a℄)b=y

?

b=b

(8x2[a,b℄)(9y2[b,a℄)x=y

?

(9y2[b,a℄)a=y

?

(9y2[a℄)a=y

?

a=a

One an ombine these branhes into the suessful AND-tree step by step as

follows:

46

(8x2[a,b℄)(9y2[b,a℄)x=y

?

(9y2[b,a℄)a=y

?

(9y2[a℄)a=y)

?

a=a

(8x2[a,b℄)(9y2[b,a℄)x=y

?

(8x2[b℄)(9y2[b,a℄)x=y

�

�

�

�	

(9y2[b,a℄)b=y

?

b=b

�

�

�

�R

(8x2[℄)(9y2[b,a℄)x=y

and

(8x2[a,b℄)(9y2[b,a℄)x=y

Q

Q

Q

Q

Q

Qs

(8x2[b℄)(9y2[b,a℄)x=y

�

�

�

�

�

�+

(9y2[b,a℄)a=y

?

(9y2[a℄)a=y)

?

a=a

�

�

�

�	

(9y2[b,a℄)b=y

?

b=b

�

�

�

�R

(8x2[℄)(9y2[b,a℄)x=y

This theorem is appliable to the lass of all totally restrited programs whih is equivalent to

the lass of all generalized logi programs, as has been shown in Theorem 13.

47

7 Conluding remarks

There are other aspets of programming with bounded quanti�ers, whih are not onsidered in

this paper. In this setion we briey mention some possible researh issues on logi programming

with bounded quanti�ers.

7.1 Other kinds of bounded quanti�ers

Intuitively, from the viewpoint of programming bounded quanti�ers represent the idea of an

iterative searh over �nite domains. There are domains that have not been onsidered in this

paper. For example, the quanti�ation over subsets of a �nite set may be needed. If we represent

sets by lists, then all our results an be easily generalized for bounded quanti�ers over subsets.

For example, the step of the translation of the following expression, ontaining 8�-quanti�er,

where � is the subset relation

A(�x) :- (8y�t)'(�x,y).

to Horn lauses gives

A(�x) :- D(�x,[℄,t).

D(�x,l,[℄) :- '(�x,l).

D(�x,l,[y|z℄) :- D(�x,l,z), D(�x,[y|l℄,z).

Bounded quanti�ation over an integer interval [k..n℄ onsisting of numbers from k to n:

A(�x) :- (8m2[k..n℄)'(�x,m).

an be translated to

A(�x) :- D(�x,k,n).

D(�x,k,n) :- k>n.

D(�x,k,n) :- k�n,

'(�x,k),

k1 is k+1,

D(�x,k1,n).

The other results of this paper an be formulated for the integer intervals as well, with the

di�erene that integers are onsidered as a prede�ned sort in the style of [Voronkov 92a℄.

7.2 Constraint logi programming

The above onsiderations suggest that di�erent kinds of bounded quanti�ers may be used to

speify onstraint problems. Somewhat similar onstrutions have been used in the language

(FD) for onstraint logi programming over �nite domains [Hentenryk 91℄. Constraints using

bounded quanti�ers an be used to keep the set of onstraints in a smaller size. To this end

it is interesting to develop resolution-like alulus for the formulas with bounded quanti�ers to

resolve upon onstraints similar to the theorem proving tehnique developed in [B�urkert 90℄.

We are going to illustrate this in a future paper.

The following example spei�es a generalized logi program for the N-queens problem:

48

Example 7.1 (N-queens problem) The following example de�nes N-queens problem.

queens(L,N) :-

length(L,N) ^

admissible(L,N) ^

(8lvL)(l=[℄_safelist(l)).

length([℄, 0).

length([|As℄, N) :-

length(As, N1),

N is N + 1.

safelist([P|Ps℄) :-

(8p2Ps)safe(P,p).

safe((A,B),(C,D)) :-

A n= C ^

B n= D ^

A+B n= C+D ^

A-B n= C-D.

admissible(L,N):-

(8x2[1..N℄)(9y2[1..N℄)(9z2L)(z=(x,y)).

An interesting feature of this example is that one an modify SLDB-resolution rules for handling

the bounded quanti�ers to implement di�erent strategies of solving the problem. Moreover, one

an build an intelligent problem solver for the spei�ations with bounded quanti�ers, whih

will enompass some known strategies of problem solving for �nite domains, for example the

�rst fail priniple, whih will be shown in a forthoming paper.

7.3 Other appliations

There are many other appliations of bounded quanti�ers. An obvious appliation of bounded

quanti�ers is parallel and onurrent logi programming, as was also noted in [Barklund 92℄. The

bounded universal quanti�er aptures AND-parallelism, while the bounded existential quanti�er

| OR-parallelism. The kind of AND-parallelism inherent to bounded universal quanti�ers

is similar to FORALL-parallelism from [Kowalski 83℄. As for bounded existential quanti�ers,

their proedural interpretation is ompletely di�erent from the interpretation of unrestrited

existential quanti�ers, whih usually serves only for uni�ation purposes. It shows that the

bounded quanti�ers an also be used for expressing in a delarative way the ontrol of program

exeution.

In our opinion bounded quanti�ers an also be applied in dedutive and relational databases. If

we onsider databases as �nite objets, then bounded quanti�ers seems to apture the intuitive

semantis of databases better then unrestrited quanti�ers. Variants of SLDB-resolution an

be also used to formalize di�erent kinds of �nite searh in databases. If we allow bounded

quanti�ation and disjuntions also in the heads of lauses, then formulas ontaining bounded

quanti�ers an be used e.g. to express null values in disjuntive databases [Liu 90, Lobo 92℄.

For example, the query

?-(9y2x)p(y)

49

where x is a variable, orresponds to the query \�nd an inde�nite (or null) value for y for

whih p(y) is true", whih is not expressible via range-restrited lauses in dedutive databases.

In a forthoming paper we intend to show how bounded quanti�ers an be used to speify

an inde�nite information in dedutive databases, whih annot be expressed in the ordinary

disjuntive databases. An example of suh a spei�ation is

(9x2G)group leader(x,G) :- group(G).

whih express the information that eah group has a group leader. Suh spei�ations are usually

proessed as integrity onstraints. A speial proof proedure will allow to onsider them also as

lauses.

It has been shown elsewhere that varying the struture of bounded quanti�ers, one an represent

prediates or funtions from di�erent omplexity lasses [Buss 86, Sazonov 91℄.

8 Aknowledgments

Franois Bry and Mark Wallae made many helpful omments on a preliminary version of this

paper. I also thank Mihael Ratli�e and Mike Reeve for their help in proofreading.

50

Bibliography

[Ait Kai 90℄ H. Ait Kai. The WAM, a (real) tutorial. Tehnial Report 5, Digital Paris

Researh Laboratory, January 1990.

[Andr�eka 78℄ Andr�eka and N�emeti. A generalized ompleteness of Horn lause logi seen as

a programming language. Ata Cybernetia, 4:3{10, 1978.

[Apt 82℄ K. Apt and M. van Emden. Contributions to the theory of logi programming.

Jornal of the Assoiation for Computing Mahinery, 29(3), 1982.

[Barklund 92℄ J. Barklund and H. Millroth. Providing iteration and onurreny in logi

programs through bounded quanti�ations. In Pro. of the International Con-

ferene on Fifth Generation Computer Systems, pages 817{824, Tokyo, 1992.

ICOT.

[Barwise 75℄ J. Barwise. Admissible Sets and Strutures. Springer Verlag, 1975.

[Beeri 87℄ C. Beeri, Sh. Naqvi, R. Ramakrishnan, O. Shmueli, and Sh. Tsur. Sets and

negation in a logi database language (LDL1). In Pro. 6th ACM SIGACT-

SIGMOD-SIGART Symposium on Priniples of Database Systems, pages 21{

36. ACM Press, 1987.

[B�urkert 90℄ H.-J. B�urkert. A resolution priniple for lauses with onstraints. In M.E. Sti-

kel, editor, Pro. 10th CADE, volume 449 of Leture Notes in Arti�ial In-

telligene, pages 178{192, 1990.

[Buss 86℄ S.R. Buss. Bounded Arithmeti, volume 3 of Studies in Proof Theory. Bib-

liopolis, Napoly, 1986.

[Chang 77℄ C.C. Chang and H.J. Keisler. Model theory. North Holland, 1977.

[Clark 78℄ K.L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logi

and Data Base, pages 293{322. Plenum Press, New York, 1978.

[Dovier 91℄ A. Dovier, E.G. Omodeo, E. Pontelli, and G. Rossi. flogg: A logi program-

ming language with �nite sets. In Pro. ICLP'91, pages 109{124. MIT Press,

1991.

[Eder 85℄ E. Eder. Properties of substitutions and uni�ations. Journal of Symboli

Computations, 1(1):31{48, 1985.

[Falashi 89℄ M. Falashi, G. Levi, M. Martelli, and C. Palamidessi. Delarative modeling

of the operational behavior of logi languages. Theoretial Computer Siene,

69(3):298{318, 1989.

[Gonharov 85℄ S.S. Gonharov and D.I. Sviridenko. �-programming (in Russian), volume 120

of Vyhislitelnye Systemy, pages 3{29. Novosibirsk, 1985.

[Gonharov 86a℄ S.S. Gonharov and D.I. Sviridenko. Theoretial aspets of �-programming. In

Mathematial Methods of Spei�ation and Synthesis of Software Systems'85,

volume 215 of Leture Notes in Computer Siene, pages 169{179, 1986.

[Gonharov 86b℄ S.S. Gonharov, Yu.L. Ershov, and D.I. Sviridenko. Semanti programming.

In IFIP'86, pages 1093{1100. Elsevier Siene, 1986.

51

[Hagiya 84℄ M. Hagiya and T. Sakurai. Foundation of logi programming based on indu-

tive de�nition. New Generation Computing, 2(1):59{77, 1984.

[Harrop 60℄ R. Harrop. Conerning formulas of the types A ! B ^ C, A ! (Ex)B(x) in

intuitionisti formal system. J. of Symb. Logi, 17:27{32, 1960.

[Hentenryk 91℄ P. Van Hentenryk, V. Saraswat, and Y. Deville. Constraint proessing in

(FD). Tehnial report, Brown University, Deember 1991.

[Jayaraman 89℄ B. Jayaraman and D.A. Plaisted. Programming with equations, subsets and

relations. In Pro. NACLP'89, Cleveland, 1989. MIT Press.

[Kleene 62℄ S.C. Kleene. Disjuntion and existene under impliation in elementary intu-

itionisti formalism. Journal of Symboli Logi, 27(1), 1962.

[Kowalski 83℄ R. Kowalski. Logi programming. In Pro.IFIP'83, pages 133{145. Elsevier

Siene, 1983.

[Kuper 87℄ G.M. Kuper. Logi programming with sets. In Pro. 6th ACM SIGACT-

SIGMOD-SIGART Symposium on Priniples of Database Systems, pages 11{

20. ACM Press, 1987.

[Kuper 88℄ G.M. Kuper. On the expressive power of logi programming languages with

sets. In Pro. 7th ACM SIGACT-SIGMOD-SIGART Symposium on Priniples

of Database Systems, pages 10{14. ACM Press, 1988.

[Liu 90℄ Yuan Liu. Null values in de�nite programs. In S. Debray and M. Hermenegildo,

editors, Pro. of the 1990 North Amerian Conferene on Logi Programming,

pages 273{288. MIT Press, 1990.

[Lloyd 84℄ J.W. Lloyd. Foundations of Logi Programming. Springer Verlag, 1984.

[Lobo 92℄ J. Lobo, J. Minker, and A. Rajasekar. Foundations of Disjuntive Logi Pro-

gramming. Logi Programming Series. MIT Press, 1992.

[Moor 81℄ D. Moor and B. Russel. Axiomati data type spei�ations: a �rst order theory

of linear lists. Ata Informatia, 15(3):193{208, 1981.

[Naish 86℄ L. Naish. Negation and Control in Prolog, volume 238 of Leture Notes in

Computer Siene. Springer Verlag, 1986.

[Niolas 83℄ J.-M. Niolas and R. Demolombe. On the stability of relational queries. Teh-

nial report, ONERA-SERT, Toulouse, 1983.

[PDC 90℄ M. Alexander, P. Bilse, L. Jensen e.a. PDC Prolog User's Guide. Prolog

Development Center, 1990.

[PE 91℄ Proeedings of the Symposium on Partial Evaluation and Semantis-Based Pro-

gram Manipulation. ACM SIGPLAN Noties, v.26, no.9, September 1991.

[Rogers 67℄ H. Rogers. Theory of reursive funtions and e�etive omputability. MGraw

Hill, 1967.

[Sato 84℄ T. Sato and H. Tamaki. Transformational logi program synthesis. In Pro. of

the Conferene on Fifth Generation Computer Systems, pages 195{201. ICOT,

1984.

52

[Sazonov 91℄ V.Yu. Sazonov. Hereditarily �nite sets with attributes, databases and poly-

nomial time omputability. In Ates Preliminaires du Symposium Frano-

Sovetique INFORMATIKA-91, pages 113{132. INRIA, 1991.

[Shwartz 86℄ J.T. Shwartz, R.B.K. Devar, E. Dubinski, and E. Shonberg. Programming

with sets: an Introdution to SETL. Springer Verlag, 1986.

[Sheperdson 87℄ J.C. Sheperdson. Negation in logi programming. In J. Minker, editor, Foun-

dations of Dedutive Databases and Logi Programming, pages 19{88. Morgan

Kaufmann, 1987.

[T�arnlund 77℄ S.-

�

A. T�arnlund. Horn lause omputability. BIT, 17:215{216, 1977.

[Topor 87℄ R.W. Topor. Domain independent formulas and databases. Theoretial Com-

puter Siene, 52(3):281{306, 1987.

[Tsur 86℄ Sh. Tsur and C. Zaniolo. LDL: A logi-based language. In Pro. 12th In-

ternational Conferene on Very Large Databases, pages 33{40, Kyoto, Japan,

1986.

[Turner 86℄ D.A. Turner. An overview of Miranda. ACM SIGPLAN Noties, 21(12):158{

166, 1986.

[Voronkov 86a℄ A. Voronkov. Program exeution methods in �-programming (in Russian). In

Pro. 4th Soviet Conf. on Appliations of Mathematial Logi, pages 51{53,

Tallinn, 1986.

[Voronkov 86b℄ A. Voronkov. Intuitionisti list theory (in Russian). In Pro. 8th Soviet Conf.

on Mathematial Logi, page 32, Mosow, 1986.

[Voronkov 86℄ A. Voronkov. Logi programs and their synthesis (in Russian). Tehnial

Report 23, Institute of Mathematis, Novosibirsk, 1986.

[Voronkov 86d℄ A. Voronkov. Synthesis of logi programs (in Russian). Tehnial Report 24,

Institute of Mathematis, Novosibirsk, 1986.

[Voronkov 87℄ A. Voronkov. A natural alulus for �-programs (in Russian), volume 120 of

Vyhislitelnye Sistemy, pages 14{23. Novosibirsk, 1987.

[Voronkov 89℄ A. Voronkov. Logi programming and �-programming (in Russian). Kiber-

netika, (1):67{72, 1989.

[Voronkov 91℄ A. Voronkov. N-realizability: one more onstrutive semantis. Tehnial

Report 71, Monash University, Department of Computer Siene, Clayton,

Australia, 1991.

[Voronkov 92a℄ A. Voronkov. Logi programming with bounded quanti�ers. In A. Voronkov,

editor, Logi Programming, volume 592 of Leture Notes in Arti�ial Intelli-

gene, pages 486{514. Springer Verlag, 1992.

[Voronkov 92b℄ A. Voronkov. On omputability by logi programs. Tehnial Report ECRC-

92-8, European Computer Industry Researh Center, 1992.

[Walther 90℄ C. Walter. Many-sorted inferenes in theorem proving. In K.H. Blasius,

U. Hedstuk, and C.R. Rollinger, editors, Sorts and Types in Arti�ial In-

telligene, volume 418 of Leture Notes in Arti�ial Intelligene, pages 18{48,

1990.

53

[Wiggins 91℄ G.A. Wiggins, A. Bundy, H.C. Kraan, and J. Hesketh. Synthesis and transfor-

mation of logi programs through onstrutive, indutive proof. In K.K. Lau

and T. Clement, editors, Proeedings of LoPSTr-91, Workshops in Computing.

Springer Verlag, 1990.

54

