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Abstract—This paper presents a comparative evaluation of
cloud and cloud-fog environments for workflow scheduling using
the classical Particle Swarm Optimization (PSO) algorithm. This
paper also presents a weighted sum objective function based on
three objectives: makespan, cost and energy. The recently pro-
posed FogWorkflowSim is used as the simulation environment for
the cloud and cloud-fog architectures. The results obtained for
two well-known scientific workflows (Montage and CyberShake)
show that the incorporation of the fog layer for the execution of
workflows has the potential to improve processing efficiency and
reduce energy consumption, motivating the cloud-fog computing
paradigm. Future work will focus on the evaluation of other types
of workflows such as Epigenomics, LIGO and SIPHT as well as
increasing the number of tasks in a workflow.

Index Terms—Workflow scheduling, Fog Computing, Cloud
Computing, Particle Swarm Optimization

I. INTRODUCTION

As cloud computing [1] becomes more and more estab-
lished in the ICT industry, the possibility of conducting
large-scale scientific computations, that could not be done on
traditional computing systems is becoming a reality. Scientific
workflows [2]–[4] are some of the data-intensive scientific ap-
plications that are really benefiting from the cloud computing
revolution. In a nutshell, scientific workflow is characterized
by interdependent tasks and computations that are aimed at
achieving some scientific objectives. The cloud infrastructure
offers a suitable platform for executing scientific workflows
because these applications involve complex data and are also
characterized by long sessions of computation. Furthermore,
the cloud infrastructure offers other crucial attributes to work-
flow computations such as cost efficiency, high speed, accessi-
bility, manageability, elasticity, and virtualization capabilities.

Scientific workflows are typically described as a directed
acyclic graph (DAG), where the nodes are tasks and the
edges denote the task dependencies [4]. The scheduling of
these tasks for execution on cloud virtual machines presents
huge challenges because of high computation and communi-
cation costs [5]. Population-based techniques such as Genetic
Algorithm (GA), Particle Swarm Optimization (PSO) have
been used for scheduling the tasks on the cloud infrastructure
[5]–[10]. Currently, the PSO approaches seem to be the
most favourite amongst these population-based techniques
as evidenced by a recent extensive survey on PSO-based

approaches [9]. The interest in PSO is sparked by its fast
convergence and short run time.

While most of the aforementioned works have focused on
workflow scheduling in the traditional two-tier cloud infras-
tructure, very few [10]–[12] have focused on the emerging
three-tier infrastructure, which incorporates the fog devices
between the cloud and the end devices. Fog computing ex-
tends the cloud computing model and acts as an intermediate
layer. Any device with computing, storage and networking ca-
pabilities can be considered a fog device. Among other things,
fog devices are characterised by the following advantages,
compared to their cloud counterparts: lower latency, improved
user experience, higher security, and energy efficiency.

A simulation toolkit, known as Fogworkflowsim [13], for
workflow scheduling in fog computing was recently proposed.
This work was inspired by the WorkflowSim [14], which
has been used for simulating workflow scheduling in cloud
environments for close to a decade. In [12], a comparative
evaluation of population-based optimization algorithms for
Workflow Scheduling in cloud-fog Environments has been
conducted. The work developed a weighted sum objective
function that incorporates makespan, cost, and energy con-
sumption and proceeded to implement the Genetic Algorithm
(GA), PSO, Differential Evolution (DE), and the PSO-GA
algorithms in the Fogworkflowsim [13] toolkit.

The paper builds on the work in [12] by exclusively focus-
ing on the PSO algorithm’s workflow scheduling performance
in two architectures: the traditional cloud environment and
the emerging three-tier cloud-fog environment. To the best of
our knowledge, no work has so far compared PSO workflow
scheduling performance under the two environments. The
work is preliminary in nature as it uses only two types of
scientific workflows within the Pegasus framework, namely:
Montage and CyberShake. Makespan, energy consumption,
and cost are used as performance metrics.

The rest of the paper is organised as follows. Section
II briefly describes the standard PSO algorithm. Section III
presents the workflow Scheduling basics as well as the objec-
tive function, that was used in this work. Section IV presents
the PSO optimization process for workflow scheduling, while
Section V presents the performance evaluation. Section VI
concludes the paper and presents future work.



II. PARTICLE SWARM OPTIMIZATION ALGORITHM

Particle swarm optimization (PSO) is a population-based
stochastic optimization algorithm introduced by Kennedy and
Eberhart [15]. The technique is used to solve optimization
problems by emulating the social behavior of bird flocking,
fish schooling and other animal societies that cooperate and
share information to improve their position without relying on
a leader. In this technique, a population of individuals, that
are candidate solutions represented as particles, move in a
given solution space according to its current position Xk

i , and
current velocity V k

i for the kth iteration. The quality of each
particle is measured using a defined fitness function depending
on the optimization problem. Each particle’s movement is
based on its best known personal position pBesti, and also
moves towards the best known global position gBest for
the entire swarm. This process leads the swarm to the best
position over a number of iterations in the search process.
The particle’s velocity and position are described below:

V k+1
i = ωV k

i + c1r1(pBesti −Xk
i )

+ c2r2(gBesti −Xk
i )

(1)

Xk+1
i = Xk

i + V k
i (2)

where ω is the inertia weight, r1 and r2 are random
numbers between (0,1), and c1 and c2 are the learning factors.

III. WORKFLOW SCHEDULING BASICS AND OBJECTIVE
FUNCTION

This section begins by defining the workflow scheduling
problem. Then, the weighted sum based objective function is
presented for workflow scheduling.

A. The Concept of Workflows and Problem Formulation

The workflow application is represented as a Direct Acyclic
Graph (DAG), defined by G = (T,E), where T denotes the
set of n tasks {t1, t2, . . . , tn} and E is the set of edges,
representing the dependencies between pairs of tasks [6], [7],
[10], [12]. An edge can be illustrated by dij =< ti, tj >∈ E,
where dij is a positive value representing the output data from
task ti to tj . Therefore, the execution of tj cannot start until
ti has completed. A task ti with no parent is known as a start
task and a task tj with no child is known as an end task.

Workflow application scheduling in the cloud and cloud-
fog environments are defined here as the problem of assigning
computing resources with different characteristics to tasks
of the workflow application, in order to minimize the total
completion time, cost and energy of the workflow execution.

B. The Weighted Sum Objective Function

There are m computational resources which are of two
types, namely cloud and fog servers. In the cloud setup, only
cloud servers are considered, whereas the cloud-fog approach
includes both cloud and fog servers. The source end devices
are not considered as computational resources since the aim

of this work is to evaluate the incorporation of the fog layer to
the existing cloud paradigm. Next, the mathematical formulas
are defined for makespan, cost and energy consumption, and
finally the presentation of the weighted sum based objective
function.

1) Makespan: The makespan MS is calculated as follows:

MS = max{FTti , ti ∈ T} −min{STti , ti ∈ T} (3)

where STti and FTti are the starting time and finishing
times respectively for task ti in a workflow.

2) Cost: The computation cost and communication cost
are considered in this work. The computational cost [10] when
using computing resource r is

CEr
i = pr ∗ (FTti − STti), (4)

where pr is the unit processing cost. The communication
cost for a particular task refers to the cost of sending a task
output of size dij from the resource processing task i to the
resource allocated to process task j.

CCij = trcij ∗ dij , (5)

Therefore, the total cost TC is

TC =

n∑
i=1

n∑
j=1

CCij +

m∑
r=1

n∑
i=1

CEr
i . (6)

3) Energy Consumption: The energy consumption model
[16] is constructed using active Eactive, that is energy con-
sumed when a task is being executed, and idle Eidle, the
energy used when a resource is idling. The active energy is
calculated by using

Eactive =

n∑
i=1

αfiv
2
i (FTti − STti), (7)

where α is a constant; fi and vi are the frequency and
voltage for the resource on which task i is being executed.
The energy consumed during the idle period [16], [12] is
determined by using

Eidle =

m∑
j=1

∑
idlejk∈IDLEjk

αfmin iv
2
min iLjk, (8)

where IDLEjk is a set of idling slots on resource j, fmin i

and vmin i refer to the frequency and lowest supply voltage
on resource j respectively; Ljk is the duration of idling time
for idlejk. The total energy TE consumed for the execution
of the entire workflow is

TE = Eactive + Eidle. (9)



Therefore, using the three aforementioned objectives, the
weighted sum objective function is defined by:

F (M) = w1 ∗ MSnorm + w2 ∗ TCnorm

+ w3 ∗ TEnorm,
(10)

where M is the assignment of the n tasks of a workflow
to the m available computing resources. MSnorm, TCnorm

and TEnorm are the normalized makespan, total cost and
total energy respectively; w1, w2 and w3 are the coefficient
weights. Equal weighted coefficients are used here to obtain
a balanced contribution of the three objectives since all are
equally important in a good solution. Normalization is used
here to eliminate any biases in the objective function and is
described in our previous paper [12].

IV. THE PSO OPTIMIZATION PROCESS FOR WORKFLOW
SCHEDULING

This section firstly describes the encoding of the particle for
PSO and how this mapping is used to generate a task-resource
schedule. The second part describes the PSO optimization
process.

A. Description of the Particle for PSO

The workflows used in this work can be scheduled for
execution at the fog server or at the cloud server. Each
computational resource has its own computational capacity,
power and bandwidth.

Since the scheduling of workflow tasks in a computing
environment is a discrete problem, we use natural numbers to
encode the individuals for the PSO algorithm. The individuals
of the PSO are represented by the particles that are mappings
of task-resource schedules. The dimension or length of each
particle is n which is the total number of tasks in the
workflow. Each position in the particle is a positive integer
representing the task number. The value assigned to this
position is the server ID that is allocated to execute the task.
The ID numbers are selected from the servers available on the
respective architecture tier. Suppose a workflow has 10 tasks
which are scheduled for execution on 5 available servers. In
this instance, the particle’s length is 10 and each element is
an integer between 1 and 5. An example task assignment
of this particle can be expressed as {3,3,2,4,5,3,2,1,5,1}.
This particle’s possible schedule for the cloud and cloud-fog
environments are illustrated in Table I and Table II.

Algorithm 1 illustrates the PSO optimization process. Pa-
rameters N and G denote the number of particles and the
number of generations respectively. while the other parameters
have already been defined in Section II. The algorithm starts
with the initialization of N , c1, c2, ω, and G. It then proceeds
by creating N particles, each of which is evaluated by running
the respective workflow scheduling on the Fogworkflowsim
[13] toolkit. The fitness function value is evaluated and the
personal best and the global best values are determined.
After that the algorithms goes into iterative process for G

generations. It updates the global best and the personal best
values whenever it gets better values.

TABLE I
EXAMPLE OF THE TASK-RESOURCE ALLOCATION USING ONLY THE

CLOUD LAYER

Layer Cloud Cloud Cloud Cloud Cloud
Server ID 1 2 3 4 5
Assigned Task 8,10 3,7 1,2,6 4 5,9

TABLE II
EXAMPLE OF THE TASK-RESOURCE ALLOCATION ON THE CLOUD AND

FOG LAYERS

Layer Fog Fog Cloud Cloud Cloud
Server ID 1 2 3 4 5
Assigned Task 8,10 3,7 1,2,6 4 5,9

Algorithm 1: Particle Swarm Optimization (PSO)
Algorithm

1 Input: N , c1, c2, ω, and G;
2 Output: gBest and F (gBest);
3 Randomly generate N particles;
4 F (gBest)← 0;
5 for i← 1, N do
6 Invoke the Fogworkflowsim workflow scheduler.;
7 Compute the fitness function value, F (xi), for

particle i, by using the Weighted Sum Objective
Function from Section III (B) ;

8 pBesti ← xi ;
9 F (pBesti)← F (xi) ;

10 if F (xi) > F (gBest) then
11 gBest← xi;
12 F (gBest)← F (xi);

13 t← 0;
14 while t ≤ G do
15 for k ← 1, N do
16 (1) Update vk and xk by using Eq. 1 and Eq.

2;
17 (2) Invoke the Fogworkflowsim workflow

scheduler. ;
18 (3) Compute the fitness function value, F (xk),

by using the Weighted Sum Objective
Function from Section III (B);

19 if F (xk) > F (pBestk) then
20 pBestk ← xk;
21 F (pBestk)← F (xk);

22 if F (xk) > F (gb) then
23 gBest← xk;
24 F (gBest)← F (xk);

25 t← t+ 1;

V. PERFORMANCE EVALUATION

In this section, the workflow models are presented along
with the simulation setup on the FogWorkflowSim tool [13],
and finally, a discussion on the simulation results.



A. Workflow Models

This work uses two well-known scientific workflows that
have been studied extensively in research, namely Montage
and CyberShake [17]. The graphical representation of the
workflows are shown in Fig. 1. The Montage workflow,
created by NASA/IPAC, represents an astronomy application
that combines multiple input images to create custom mosaics
of the sky. It has a more sequential structure with a pipeline
of tasks, while CyberShake requires more parallel processing
of tasks for characterizing earthquake hazards threatening a
region. Together, these workflows are composed of a variety
of structures that provide a good basis for performance
evaluations.

(a) Montage (b) CyberShake

Fig. 1. Scientific workflows [17]

B. Simulation Environment

The simulations are done using the FogWorkflowSim simu-
lator. The simulator is executed using the Eclipse Java IDE on
a computer with 64-bit Windows 10 operating system, Intel(R)
Core(TM) i5- 5200U CPU @ 2.20GHz and 16 GB RAM. The
population size of PSO is set to 50. The PSO learning factors
C1 = C2 = 2. The inertia weight is 1. The number of iterations
is 100. The weighted coefficients w1, w2 and w3 are equal.
The two scientific workflows with 500 tasks each are used as
input where the workflow is a DAG XML file representation
of the workflow generated by Pegasus [18]. The simulations
are performed 10 times for each workflow and environment
setup. The number of cloud servers and fog servers are 10
and 6, respectively. The characteristics of each server on the
two tiers along with the parameter settings for the simulation
environment are shown in Table III.

TABLE III
PARAMETER SETTINGS OF SIMULATION ENVIRONMENT

Parameters Fog Server Cloud Server
Processing rate (MIPS) 1000 2000
Task execution cost ($) 0.48 0.96
Communication cost ($) 0.01 0.02
Working power (mW) 700 1700
Idle power (mW) 200 1200
Uplink bandwidth (Mbps) 500 300
Downlink bandwidth (Mbps) 800 500

C. Simulation Results

In Figs. 2-4, the results for makespan, cost and energy
consumption for the Montage workflow for 500 tasks are illus-

trated. The makespan is lower for the cloud-fog environment,
as expected, due to the 6 additional fog servers used in the
simulation. The cost metric is significantly better in the cloud-
fog layers. This is likely due to the reduced processing and
data transfer costs associated with the fog layer. The energy
consumption is also reduced in cloud-fog as the larger size of
the cloud requires more energy to remain online, and utilizing
the fog with the cloud enables more efficient and distributed
processing of the workflow tasks.

Fig. 2. Makespan for Montage

Fig. 3. Cost for Montage

Fig. 4. Energy consumption for Montage

In Figs. 5-7, the results for makespan, cost and energy
consumption for the CyberShake workflow for 500 tasks are
illustrated. The performance metric comparative results for
the cloud and cloud-fog are similar to what was observed



for the Montage workflow, however, the metric values are
significantly higher. This is because the CyberShake workflow
task sizes and task runtimes are much higher compared to
Montage.

Fig. 5. Makespan for CyberShake

Fig. 6. Cost for CyberShake

Fig. 7. Energy consumption for CyberShake

VI. CONCLUSION AND FUTURE WORK

This paper has presented a comparative evaluation of
workflow scheduling in cloud and cloud-fog environments
using the classical PSO algorithm on the FogWorkflowSim
simulator. A weighted sum objective function made up of
makespan, cost and energy is described for workflow schedul-
ing. Results show that the cloud-fog environment performed
better than the cloud especially in terms of overall cost and

energy consumption. Therefore, the incorporation of the fog
layer for the execution of workflows has the potential to
improve processing efficiency justifying the benefits of the
emerging cloud-fog computing paradigm.

In future, the number of tasks in each of the workflows
will be increased. Other types of workflows such as Epige-
nomics, LIGO and SIPHT will be evaluated. The number of
fog servers, optimization objectives will be increased, and
deadline and budget constraints will be incorporated.
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