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ABSTRACT 

Writing code requires the brain to understand the meaning of language and to properly 

organize the thoughts flow using the language. However, current models to write its own 

working code are primarily limited to searching through a huge code database 

developed by various experienced programmers. Here, we proposed a Memory Guided 

Programming( MGP ) network to incrementally learn the meaning and usage of diverse 

functions / parameters, aiming to make best possible arrangement for a human-like 

machine programming process. MGP contains three subsystems : (1) Code system 

which consists of a mapping to transfer symbol texts into respective numeric and a RNN 

to generate the sequence dependencies from the input texts, and a output encoder to 

convert numeric values into text symbols; (2) Image system that contains an encoder to 

convert the input into abstract representations, and a DNN to classify image scenarios 

from real level representations; (3) a LSTM that combines inputs in the forms of both 

code and image, and predict text symbols and next images accordingly. In this work, the 

proposed MGP network illustrates the ability to incrementally learn different 

programming scripts and form a machine programming loop that enables interactions 

between Code and Image system. The paper presents an architecture that allows the 

machine to learn, understand and use programming language in a human-like way, 

which might enable a machine to construct programming scenarios and possibly 

possess human-like intelligence. 

INTRODUCTION 

Researchers have developed an Artificial Intelligence that can write code and the AI  
has the ability to learn. This AI can write working code after searching through a huge 



code database. It tries to make the best possible arrangement for the harvested code 
fragments and improves its efficiency over time. According to Researchers,  such 
system could be of great utility to non-coders. They only have to describe their program 
idea and wait for the system to create it. 

 Teaching an AI to write Python code with Python code was published by a French 
Engineer. He used Long Short Term Memory (LSTM) - one of the most popular 
architectures of recurrent neural networks. He fed it with lots of Python code (using 
libraries such as Pandas, Numpy, Scipy, Django, Scikit-Learn, PyBrain, Lasagne, 
Rasterio). The combined file weighed 27MB. The AI then generated its own code and 
the code is far from perfect. But the engineer thinks that it’s not bad for a network that 
had to learn everything from reading example code. 

There is no doubt that computers will be much better at programming in the near future 
than they are now and  It’s just a matter of time until neural networks will produce useful 
code. But  AI isn’t going to take away the jobs of developers. Instead, a system based 
on program synthesis can be used to automate the tedious parts of code development 
while the developers focus on complex tasks. There are already startups using 
automation to build ‘smart software’  that use artificial intelligence to develop custom 
software, eliminating strenuous processes and drastically reducing manual overhead.  
The programmers need to be worried about being replaced by AI in the near future,  the 
fact is that nearly a third of software developers fear that artificial intelligence will 
eventually take their jobs.  The thought of obsolescence due to A.I. was also more 
imminent or by seeing their skills and tools become irrelevant. 

METHODOLOGY 

 In an attempt to reproduce human-like programming patterns in machines,  We  
created an artificial neural network inspired by the human  memory processes that take 
place as people are performing a given task  including the maintenance and 
manipulation of information. 

We proposed a memory guided programming   network to incrementally learn the 
meaning and usage of numerous words and syntaxes, aiming to form a human-like 
machine programming  process. 

The Memory Guided Programming network  has three key components: a coding 
system, an image system and an artificial neural network implemented by LSTM. The 
coding system  which consists of a mapping to transfer symbol texts into respective 
numeric and a RNN to extract the sequence dependencies from the input texts, and an 
output encoder to convert numeric values into text symbols.  

The second sub-system, an image system  that contains an encoder to convert the 
input into abstract representations, and a DNN to classify image scenarios from real 
level representations. The final component of the Memory Guided Programming  
network mimics the human brain by a LSTM, combining inputs of both image and code 
representations to  predict text symbols and next images accordingly.  

https://techxplore.com/tags/artificial+neural+network/
https://techxplore.com/tags/network/


We  evaluated the Memory Guided Progamming network in a series of experiments and 
found that it successfully acquired programming tasks in a cumulative way. The 
technique also formed the 'machine programming loop," showing an interaction 
between  code and image. In the future, the MGP network  could aid the development of 
more advanced AI, which is capable of human-like programming  strategies, such as 
custom Software development and predictive programming.  

ARCHITECTURE 
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Figure 1: The MGP( Memory Guided Programming ) architecture. It contains three subsystems 
that are trained separately.. In the image subsystem, the encoder can transfer an input (or 
predicted) image into a population representation vector I at the DNN layer (mimicking the Deep 
Neural Network  for high-level image representation), and the decoder can reconstruct a vector 
output from LSTM to a predicted image, which can be fed into the encoder to form the guided 
loop. In the code subsystem, The coding system  which consists of a mapping to transfer 
symbol texts into respective numeric and a RNN to extract the sequence dependencies from the 
input texts, and an output encoder to convert numeric values into text symbols. There is a 
memory layer implemented by a RNN to extract sequence  information  from the  vector C. The 
LSTM layer serves as working memory, that takes the concatenated input [C, I] from both code 
and image subsystems, and output the predicted next element representation that could be fed 
back into both subsystems to form a guided loop. 
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As is shown in Figure 1, the MGP network contains three main subsystems including 

the code, image and LSTM subsystems. The image encoder network was trained 

separately. After training, the encoder is separated into two parts: the encoder (or 

recognition) part ranges from the image entry point to the final encoding layer,  to 

provide the high-level abstract representation of the input image; the decoder part 

ranges  up to image prediction point. The activity vector of the  encoding layer  are 

concatenated with code activity vector  as input signals to the LSTM. Finally, the 

predicted  image is fed back to the encoder network for the next  iteration. The code 

processing component first converts the input text symbol into a sequence of binary 

vectors [C(t = 0), . . . ,C(T)], where T is the text length. To improve the code recognition, 

we added one RNN layer to generate the sequence dependencies  of the text.   The 

LSTM  training based on the next component prediction (NCP). The LSTM  is trained by 

the NCP principle, where the goal of the LSTM is to output the representation vectors 

(including both code and image) of the next component which required the 

understanding of the previous text code and observed images. The LSTM subsystem 

contains a LSTM and a full connected layer. It receives inputs from both code and 

image subsystems in a concatenated form of c(t) = [C(t),I(t)] at time t, and gives a 

prediction output a a'(t) = [C'(t), I'(t)], which is expected to be identical to a(t + 1) = [C(t + 

1), I(t + 1)] at time t+1. This has been achieved with a next component prediction (NCP). 

So given an input image, the LSTM can predict the corresponding code description. The 

strategy of learning by predicting its own next component is essentially an unsupervised 

learning.  Our LSTM subsystem was trained separately after code and image 

components had completed their functionalities. Finally, we demonstrate how the 

network forms a thinking loop with text code and predicted images. 

DATASET 

User Interface Elements 
When designing the user interface, the following Interface elements are considered but 

are not limited to: 

 Input Controls: pointer, checkboxes, radio buttons, dropdown lists, list boxes, 

buttons, toggles, text fields, date field, frames, combo boxes, timer, hscrollbar, 

vscrollbar, drivelistboxes, dirlistboxes, filelistboxes, shape, line, pictureboxes, data, 

ole, labels, charts 

 Navigational Components: breadcrumb, slider, search field, pagination, slider, 

tags, icons 

 Informational Components: tooltips, icons, progress bar, notifications, message 

boxes, modal windows, links 



 Containers: accordion 
 

A total of 40 user interface components / elements along with C programming language 

scripts / code associated with each visual component has been selected as dataset. 

CODE SUBSYSTEM 

The First problem is to represent our data. 

A neural network treats only numbers. Everything else is unknown to the network. Thus, 
each character of our dataset should be represented in this form (a number / characters). 

First we need to Load the text file and create character to integer mappings. The entire 
text file is read, we would be mapping each character to a respective number and all 
characters are converted to numbers. This is done to make the computation part of the 
RNN easier. 

 For example, if the character “=” is assigned to the number 7,  we will then represent 
each number in one hot encoding in order to better converge during the 
backpropagation. 

The three important variables to remember here 
are                  vocab_to_int, int_to_vocab and encoded. The first two allow us to 
easily switch between a character and an int and vice versa. The last is the 
representation of all our dataset in an encoder format. (Only int  instead of characters ) 

We  therefore create a neural network taking into account the temporal space of the 
characters type. To do this, we need to use a reccurent neural network. 

Recurrent neural network  

 



 

In order to illustrate, a classic classifier (on the left of the diagram) takes the preceding 
letter; it’s passed by the hidden layer represented in blue in order to deduce an output. A 
recurring neural network is architecturally different. Each cell (represented in red) is not 
only connected to the inputs, but also to the cell of the instant t-1. In order to represent 
our code subsystem, we will use RNN (Recurrent Neural Network) cells. 

 Building the model  

We will describe this with 5 main parts. Placeholder serving as an entry to our model. 
The initialization of our  cells used to create the RNN. The output layer connected to 
each cell. The operation used to measure the model error. Finally, we  will define the 
training operation. 

Graph inputs 

We define a placeholder for the input, and the shape expected for our input is therefore 
of size [number, size]. Each entry of the input batch being associated with a single 
output, we can define the same shape for our target. Finally we define a placeholder for 
the value of the probability used for the future dropout. 



 RNN 

 create_cell() is used to create an RNN cell composed of neurons. This function also 

adds a dropout to the cell output. 

 tf.contrib.rnn.MultiRNNCell is used to easily instantiate our rnn. We give as a 
parameter an array of create_cell() because we want an RNN consisting of several 

layers.  

 initial_state: Knowing that each cell of an RNN depends on the previous state, we 

must instantiate an initial state filled with zero that will serve as input to the first 
entries. 

 cell_outputs gives us the output of each cell of our RNN.  

 final_state returns the state of our last cell which can be used during training as a 

new initial state for a next batch. 

 Graph outputs 

The values at the output of our cells are stored in a three-dimensional table [number of 
sequences, sequence size, number of neurons] or [2, 10, 4]. We no longer need to 
separate the outputs by sequences. We then resize the output to get an array of 
dimension [20, 4] stored in the seq_out_reshape variable. 

Finally, we apply a simple linear operation: tf.matmul (..) + b. This followed by a softmax 
in order to represent our outputs in the form of probability. 

 Loss 

In order to apply our error operation, the targets of our batch must be represented in the 
same way and in the same dimension as the output values of the model. We 
use tf.one_hot to represent our outputs under the same encoding as our inputs. Then 
we resize the array (tf.reshape ()) to the same dimensions of the linear 
output: tf.matmul (..) + b. We can now use this function to calculate the error of the 
model. 

 Training 

We simply apply an AdamOptimizer to minimize our errors. 



Results  

 It‘s finally the results of the training. We have for this one used the following parameters: 

• Size of a sequence: 50 
• Size of a batch: 40 
• Number of neurons  : 256 
• Depth of RNN: 2 
• Learning rate: 0.0005 
• Dropout: 0.5 

The results presented below were obtained after  training the model on  CPU and the 
model is fit over 100 epochs. 

Finally, let’s look at what type of code our model is capable of generating . It’s interesting 
to see that this model has clearly understood the general structure of a program related 
to visual components; A function, parameters,  variables, conditions, etc. 

 

IMAGE SUBSYSTEM 

This is an implementation of  building  a deep  neural network  with TensorFlow.for 
Image Classification in user interface component dataset. 

We used 40 images of different visual components / elements from User Interface 

elements  dataset. 

We  start with a pretty simple analysis with the help of the ndim and size attributes of 

the images array: Note that the images and labels variables are lists, so we might need 

to use np.array() to convert the variables to an array. 

. As  guessed  the 40 labels that are included in this dataset, the components  are 

different from each other. Also  These  images are not of the same size. 

Let’s start first with extracting some features - we’ll rescale the images, and we’ll 

convert the images that are held in the images array to grayscale. We’ll do this color 

conversion mainly because the color matters less in classification. 

To tackle the differing image sizes, we’re going to rescale the images; We can  do this 
with the help of the skimage or Scikit-Image library, which is a collection of algorithms 
for image processing. 



In this case, the transform module will come in handy, as it offers  a resize() function; 
We’ll see that we make use of list comprehension  to resize each image to 28 by 28 
pixels. Once again,  for every image that we find in the images array, we’ll perform the 
transformation operation that is borrowed from the skimage library. Finally, we store the 
result in the images28 variable: 

. Next  we’ll also go through the trouble of converting the images to grayscale. Just like 
with the rescaling, we again count on the Scikit-Image library to help  out; In this case, 
it’s the color module with its rgb2gray() function that we need to use to get where we 
need to be. 

However, we need  to convert the images28 variable back to an array, as the rgb2gray() 
function does expect an array as an argument. 

We  checked  the result of grayscale conversion by plotting some of the images;  

Now that we have explored and manipulated the data, it’s time to construct  neural 
network architecture, layer by layer with the help of the TensorFlow package. 

 Next, we build up the network. We first start by flattening the input with the help 
of the flatten() function, which will give  an array of shape [None, 784] instead of 
the [None, 28, 28], which is the shape of our grayscale images. 

 Activation function :The activation function of a node defines the output given a 
set of inputs.  A common activation function is a Relu, Rectified linear unit. 

  After we have flattened the input, we construct a fully connected layer that 
generates logits of size [None, 40]. Logits is the function operates on the 
unscaled output of previous layers, and that uses the relative scale to 
understand the units is linear. 

 With the multi-layer perceptron built out we can define the loss function. Loss 
function - after we have defined the hidden layers and the activation function, we 
need to specify the loss function and the optimizer. The loss function is a 
measure of the model's performance. We make use of 

sparse_softmax_cross_entropy_with_logits() 

 This computes sparse softmax cross entropy between logits and labels. In other 
words, it measures the probability error in discrete classification tasks in which 
the classes are mutually exclusive. This means that each entry is in exactly one 
class. Here, a user element can only have one single label.  

  The optimizer will help improve the weights of the network in order to decrease 
the loss. In this case, we pick the ADAM optimizer, for which we define the 
learning rate at 0.001. 

The above has been implemented with Python and TensorFlow as a backend. 



Now that we have built up our model layer by layer, it’s time to actually run it! To do this, 
we first need to initialize a session with the help of Session().  Next, we can use this 
initialized session to start epochs or training loops. In this case, we pick 201 because 
we want to be able to register the last loss_value; In the loop, we run the session with 
the training optimizer and the loss (or accuracy) metric that we defined. We also pass a 
feed_dict argument, with which we feed data to the model. After every 10 epochs, we’ll 
get a log that gives us more insights into the loss or cost of the model. 

We have now successfully trained our model with all the visual components. 

 We still need to evaluate our neural network. In this case, we  try to get a glimpse of 
how well our model performs by picking 10 random images and by comparing the 
predicted labels with the real labels. 

We can first print them out, by using matplotlib to plot the components themselves and 
to make a visual comparison. 

However, by looking at random images  give us many insights into how well our model 
actually performs. Then we loaded  in the test component  data and  run predictions , 
and found that images were classified with good  accuracy. 

 

LSTM SUBSYSTEM 

The LSTM subsystem contains a LSTM and a fully connected layer. It receives inputs 

from both code and image subsystems in a concatenated form of c(t) = [C(t),I(t)] at time 

t, and gives a prediction output a'(t) = [C'(t),I'(t)]  , which is expected to be identical to a(t 

+ 1) = [C(t + 1),I(t + 1)] at time t+1. This has been achieved with a next component 

prediction (NCP) . So given an input image, the LSTM  can predict the corresponding 

code description.  The strategy of learning by predicting its own next element is 

essentially an unsupervised learning. 

The Training is based on the next component prediction (NCP). The LSTM-FC is trained 

by the NCP principle, where the goal of the LSTM-FC is to output the representation 

vectors (including both code and image) of the next component / element.  At time T, 

the LSTM of MGP  generated  the guided digit instance, which required the 

understanding of the previous code language and observed images. 

The  LSTM subsystem was trained separately after vision and code components had 
completed their functionalities. We have trained the network to accumulatively learn 
different components, and the related code results. Finally, it is demonstrated how the 
network forms a thinking loop with code  language and observed images.  



The LSTM  layer serves as working memory, that takes the concatenated input [C,I] 
from both code and image subsystems, and output the predicted next component 
representation that could be fed back into both subsystems to form a guided loop.  

 

 RESULTS 

After  200 steps training, MGP could not only reconstruct the input image  but also 

predict the element / component  with associated program script / code, correct 

parameters and variables just after the image classification. MGP has the capacity to 

correctly predict the next component and the code (with correct syntax, parameters, 

variables) at the proper time point. After training of 200 steps, MGP could classify  

various visual components with correct code (accuracy = 16%). Note that, the 

classification process is not performed  by large dataset, but by small number of training 

steps or iterations which is  resulting in less accuracy. 

CONCLUSION 

In this paper, we introduced a LSTM layer to involve representations from both Code 

and Image Subsystems to form a human-like programming system( the MGP system ). 

The MGP contains three subsystems; the Code, Image and LSTM subsystem , which 

are trained separately. In the Code subsystem, we use a RNN layer to extract the 

sequence dependencies from language text and proposed a output encoder to produce 

text symbols output. We propose to train the MGP with the NCP. MGP shows its ability 

to learn different structures or tasks in a  cumulative learning way, and form a machine 

programming loop with the interaction between images and language text. 

REFERENCES 

 1. V Murali, L Qi, S Chaudhuri, C Jermaine . Neural sketch learning for 

conditional program generation - arXiv preprint arXiv:1703.05698, 2017 

- arxiv.org 

 
 

 

 

 

 


