P versus NP

Frank Vega

EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair.

P versus NP

Frank Vega
CopSonic, 1471 Route de Saint-Nauphary 82000 Montauban, France
vega.frank@gmail.com

Abstract

P versus NP is considered as one of the most important open problems in computer science. This consists in knowing the answer of the following question: Is P equal to NP? It was essentially mentioned in 1955 from a letter written by John Nash to the United States National Security Agency. However, a precise statement of the P versus NP problem was introduced independently by Stephen Cook and Leonid Levin. Since that date, all efforts to find a proof for this problem have failed. It is one of the seven Millennium Prize Problems selected by the Clay Mathematics Institute to carry a US $1,000,000$ prize for the first correct solution. Another major complexity classes are FP and Sharp-P. Whether FP $=$ Sharp- P is another fundamental question that it is as important as it is unresolved. We know if $\mathrm{FP}=$ Sharp- P , then $\mathrm{P}=\mathrm{NP}$. We demonstrate there is a problem in Sharp-P-complete that can be solved in polynomial time. In this way, we prove the complexity class P is equal to NP.

2012 ACM Subject Classification Theory of computation \rightarrow Complexity classes; Theory of computation \rightarrow Problems, reductions and completeness

Keywords and phrases complexity classes, completeness, polynomial time, reduction, logarithmic space, one-way

1 Introduction

The P versus $N P$ problem is a major unsolved problem in computer science [7]. This is considered by many to be the most important open problem in the field [7]. The precise statement of the $P=N P$ problem was introduced in 1971 by Stephen Cook in a seminal paper [7]. In 2012, a poll of 151 researchers showed that 126 (83%) believed the answer to be no, $12(9 \%)$ believed the answer is yes, $5(3 \%)$ believed the question may be independent of the currently accepted axioms and therefore impossible to prove or disprove, 8 (5\%) said either do not know or do not care or don't want the answer to be yes nor the problem to be resolved [13].

The $P=N P$ question is also singular in the number of approaches that researchers have brought to bear upon it over the years [10]. From the initial question in logic, the focus moved to complexity theory where early work used diagonalization and relativization techniques [10]. It was showed that these methods were perhaps inadequate to resolve P versus $N P$ by demonstrating relativized worlds in which $P=N P$ and others in which $P \neq N P[4]$. This shifted the focus to methods using circuit complexity and for a while this approach was deemed the one most likely to resolve the question [10]. Once again, a negative result showed that a class of techniques known as "Natural Proofs" that subsumed the above could not separate the classes $N P$ and P, provided one-way functions exist [23]. There has been speculation that resolving the $P=N P$ question might be outside the domain of mathematical techniques [10]. More precisely, the question might be independent of standard axioms of set theory [10]. Some results have showed that some relativized versions of the $P=N P$ question are independent of reasonable formalizations of set theory [14].

In 1936, Turing developed his theoretical computational model [24]. The deterministic and nondeterministic Turing machines have become in two of the most important definitions related to this theoretical model for computation [24]. A deterministic Turing machine has only one next action for each step defined in its program or transition function [24]. A
nondeterministic Turing machine could contain more than one action defined for each step of its program, where this one is no longer a function, but a relation [24]. Another relevant advance in the last century has been the definition of a complexity class. A language over an alphabet is any set of strings made up of symbols from that alphabet [8]. A complexity class is a set of problems, which are represented as a language, grouped by measures such as the running time, memory, etc [8]. NP is the complexity class which contains those languages that can be decided in polynomial time by nondeterministic Turing machines.

A major complexity class is Sharp-P (denoted as \#P) [25]. This can be defined by the class of function problems of the form "compute $f(x)$ ", where f is the number of accepting paths of a nondeterministic Turing machines, where this machine always accepts in polynomial time [25]. In previous years there has been great interest in the verification or checking of computations [18]. Interactive proofs introduced by Goldwasser, Micali and Rackoff and Babi can be viewed as a model of the verification process [18]. Dwork and Stockmeyer and Condon have studied interactive proofs where the verifier is a space bounded computation instead of the original model where the verifier is a time bounded computation [18]. In addition, Blum and Kannan have studied another model where the goal is to check a computation based solely on the final answer [18]. More about probabilistic logarithmic space verifiers and the complexity class $N P$ has been investigated on a technique of Lipton [18]. We show some results about the logarithmic space verifiers applied to the class $\# P$. In this way, we provide a proof to solve the outstanding P versus $N P$ problem.

2 Materials \& Methods

2.1 Polynomial time verifiers

Let Σ be a finite alphabet with at least two elements, and let Σ^{*} be the set of finite strings over Σ [3]. A Turing machine M has an associated input alphabet Σ [3]. For each string w in Σ^{*} there is a computation associated with M on input $w[3]$. We say that M accepts w if this computation terminates in the accepting state, that is $M(w)=$ "yes" [3]. Note that M fails to accept w either if this computation ends in the rejecting state, that is $M(w)=$ "no", or if the computation fails to terminate, or the computation ends in the halting state with some output, that is $M(w)=y$ (when M outputs the string y on the input w) [3].

The language accepted by a Turing machine M, denoted $L(M)$, has an associated alphabet Σ and is defined by:

$$
L(M)=\left\{w \in \Sigma^{*}: M(w)=\text { "yes" }\right\} .
$$

Moreover, $L(M)$ is decided by M, when $w \notin L(M)$ if and only if $M(w)=$ "no" [8]. We denote by $t_{M}(w)$ the number of steps in the computation of M on input $w[3]$. For $n \in \mathbb{N}$ we denote by $T_{M}(n)$ the worst case run time of M; that is:

$$
T_{M}(n)=\max \left\{t_{M}(w): w \in \Sigma^{n}\right\}
$$

where Σ^{n} is the set of all strings over Σ of length $n[3]$. We say that M runs in polynomial time if there is a constant k such that for all $n, T_{M}(n) \leq n^{k}+k[3]$. In other words, this means the language $L(M)$ can be decided by the Turing machine M in polynomial time. Therefore, P is the complexity class of languages that can be decided by deterministic Turing machines in polynomial time [8]. A verifier for a language L_{1} is a deterministic Turing machine M, where:

$$
L_{1}=\{w: M(w, c)=\text { "yes" for some string } c\}
$$

We measure the time of a verifier only in terms of the length of w, so a polynomial time verifier runs in polynomial time in the length of w [3]. A verifier uses additional information, represented by the symbol c, to verify that a string w is a member of L_{1}. This information is called certificate. $N P$ is also the complexity class of languages defined by polynomial time verifiers [22]. A decision problem in $N P$ can be restated in this way: There is a string c with $M(w, c)=$ "yes" if and only if $w \in L_{1}$, where L_{1} is defined by the polynomial time verifier M [22]. The function problem associated with L_{1}, denoted $F L_{1}$, is the following computational problem: Given w, find a string c such that $M(w, c)=$ "yes" if such string exists; if no such string exists, then reject, that is, return "no" [22]. The complexity class of all function problems associated with languages in $N P$ is called $F N P$ [22]. $F P$ is the complexity class that contains those problems in $F N P$ which can be solved in polynomial time [22].

A function $f: \Sigma^{*} \rightarrow \Sigma^{*}$ is a polynomial time computable function if some deterministic Turing machine M, on every input w, halts in polynomial time with just $f(w)$ on its tape [24]. Let $\{0,1\}^{*}$ be the infinite set of binary strings, we say that a language $L_{1} \subseteq\{0,1\}^{*}$ is polynomial time reducible to a language $L_{2} \subseteq\{0,1\}^{*}$, written $L_{1} \leq_{p} L_{2}$, if there is a polynomial time computable function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ such that for all $x \in\{0,1\}^{*}$:

$$
x \in L_{1} \text { if and only if } f(x) \in L_{2} .
$$

The $N P$-completeness is principally defined under polynomial time reductions [12]. To attack the P versus $N P$ question the concept of $N P$-completeness has been very useful [12]. A principal $N P$-complete problem is $S A T$ [12]. An instance of $S A T$ is a Boolean formula ϕ which is composed of:

1. Boolean variables: $x_{1}, x_{2}, \ldots, x_{n}$;
2. Boolean connectives: Any Boolean function with one or two inputs and one output, such as $\wedge(\mathrm{AND}), \vee(\mathrm{OR}), \rightharpoondown(\mathrm{NOT}), \Rightarrow$ (implication), \Leftrightarrow (if and only if);
3. and parentheses.

A truth assignment for a Boolean formula ϕ is a set of values for the variables in ϕ. On the one hand, a satisfying truth assignment is a truth assignment that causes ϕ to be evaluated as true. On the other hand, a truth assignment that causes ϕ to be evaluated as false is a unsatisfying truth assignment. A Boolean formula with a satisfying truth assignment is satisfiable. The problem $S A T$ asks whether a given Boolean formula is satisfiable [12].

An important complexity is Sharp- P (denoted as \#P) [25]. We can also define the class $\# P$ using polynomial time verifiers. Let $\{0,1\}^{*}$ be the infinite set of binary strings, a function $f:\{0,1\}^{*} \rightarrow \mathbb{N}$ is in $\# P$ if there exists a polynomial time verifier M such that for every $x \in\{0,1\}^{*}$,

$$
f(x)=|\{y: M(x, y)=" y e s "\}|
$$

where $|\cdots|$ denotes the cardinality set function [3]. \#P-complete is another complexity class. A problem is $\# P$-complete if and only if it is in $\# P$, and every problem in $\# P$ can be reduced to it by a polynomial time counting reduction [22].

2.2 Logarithmic space verifiers

A logarithmic space Turing machine has a read-only input tape, a write-only output tape, and read/write work tapes [24]. The work tapes may contain at most $O(\log n)$ symbols [24]. In computational complexity theory, L is the complexity class containing those decision
problems that can be decided by a deterministic logarithmic space Turing machine [22]. $N L$ is the complexity class containing the decision problems that can be decided by a nondeterministic logarithmic space Turing machine [22].

A logarithmic space transducer is a Turing machine with a read-only input tape, a write-only output tape, and read/write work tapes [24]. The work tapes must contain at most $O(\log n)$ symbols [24]. A logarithmic space transducer M computes a function $f: \Sigma^{*} \rightarrow \Sigma^{*}$, where $f(w)$ is the string remaining on the output tape after M halts when it is started with w on its input tape [24]. We call f a logarithmic space computable function [24]. We say that a language $L_{1} \subseteq\{0,1\}^{*}$ is logarithmic space reducible to a language $L_{2} \subseteq\{0,1\}^{*}$, written $L_{1} \leq_{l} L_{2}$, if there exists a logarithmic space computable function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ such that for all $x \in\{0,1\}^{*}$:

$$
x \in L_{1} \text { if and only if } f(x) \in L_{2} .
$$

The logarithmic space reduction is used in the definition of the complete languages for the classes L and $N L$ [22]. We define a $C N F$ Boolean formula using the following terms: A literal in a Boolean formula is an occurrence of a variable or its negation [8]. A Boolean formula is in conjunctive normal form, or $C N F$, if it is expressed as an AND of clauses, each of which is the OR of one or more literals [8]. A Boolean formula is in 2-conjunctive normal form or $2 C N F$, if each clause has exactly two distinct literals [8]. There is a problem called $2 S A T$, where we asked whether a given Boolean formula ϕ in $2 C N F$ is satisfiable. $2 S A T$ is complete for $N L$ [22].

We can give a certificate-based definition for $N L$ [3]. The certificate-based definition of $N L$ assumes that a logarithmic space Turing machine has another separated read-only tape [3]. On each step of the machine, the machine's head on that tape can either stay in place or move to the right [3]. In particular, it cannot reread any bit to the left of where the head currently is [3]. For that reason this kind of special tape is called "read-once" [3].

- Definition 1. A language L_{1} is in $N L$ if there exists a deterministic logarithmic space Turing machine M with an additional special read-once input tape polynomial $p: \mathbb{N} \rightarrow \mathbb{N}$ such that for every $x \in\{0,1\}^{*}$:

$$
x \in L_{1} \Leftrightarrow \exists u \in\{0,1\}^{p([x])} \text { such that } M(x, u)=\text { "yes" }
$$

where by $M(x, u)$ we denote the computation of M where x is placed on its input tape, and the certificate u is placed on its special read-once tape, and M uses at most $O(\log [x])$ space on its read/write tapes for every input x, where [...] is the bit-length function [3]. M is called a logarithmic space verifier [3].

An interesting complexity class is $\operatorname{Sharp}-L$ (denoted as $\# L)$. $\# L$ has the same relation to L as \#P does to $P[2]$. We can define the class \#L using logarithmic space verifiers as well.

- Definition 2. Let $\{0,1\}^{*}$ be the infinite set of binary strings, a function $f:\{0,1\}^{*} \rightarrow \mathbb{N}$ is in $\# L$ if there exists a logarithmic space verifier M such that for every $x \in\{0,1\}^{*}$,

$$
f(x)=\mid\{u: M(x, u)=" \text { yes" }\} \mid
$$

where $|\cdots|$ denotes the cardinality set function [2].
The two-way Turing machines may move their head on the input tape into two-way (left and right directions) while the one-way Turing machines are not allowed to move the head on the input tape to the left [21]. Hartmanis and Mahaney have investigated the classes $1 L$ and $1 N L$ of languages recognizable by deterministic one-way logarithmic space Turing machine and nondeterministic one-way logarithmic space Turing machine, respectively [15].

Lemma 3. $N L$ is closed under nondeterministic logarithmic space reductions to every language in $1 N L$.

Proof. Suppose, we have two languages L_{1} and $L_{2} \in 1 N L$, such that there is a nondeterministic logarithmic space Turing machine M which makes a reduction from $x \in L_{1}$ into $M(x) \in L_{2}$. Besides, we assume there is a nondeterministic one-way logarithmic space Turing machine M^{\prime} which decides L_{2}. Hence, we only need to prove that $M^{\prime}(M(x))$ is a nondeterministic logarithmic space Turing machine. The solution to this problem is simple: We do not explicitly store the output result of M in the work tapes of M^{\prime}. Instead, whenever M^{\prime} needs to move the head on the input tape (this tape will be the output tape of M), then we continue the computation of M on input x long enough for it to produce the new output symbol; this is the symbol that will be the next scanned symbol on the input tape of M^{\prime}. If M^{\prime} only needs to read currently from the work tapes, then we just pause the computation of M on the input x and continue the computation of M^{\prime} until this needs to move to the right on the input tape. We can always continue the simulation, because M^{\prime} never moves the head on the input tape to the left. We only accept when the machine M enters in the halting state and M^{\prime} enters in the accepting state otherwise we reject. It is clear that this simulation indeed computes $M^{\prime}(M(x))$ in a nondeterministic logarithmic space. In this way, we obtain $x \in L_{1}$ if and only if $M^{\prime}(M(x))=$ "yes" which is a clear evidence that L_{1} is in $N L$.

We can give an equivalent definition for $N L$, but this time the output is a string which belongs to a language in $1 N L$.

- Definition 4. A language L_{1} is in $N L$ if there exists another nonempty language $L_{2} \in 1 N L$ and a deterministic logarithmic space Turing machine M with an additional special read-once input tape polynomial $p: \mathbb{N} \rightarrow \mathbb{N}$ such that for every $x \in\{0,1\}^{*}$:

$$
x \in L_{1} \Leftrightarrow \exists u \in\{0,1\}^{p([x])} \text { such that } M(x, u)=y \text {, where } y \in L_{2}
$$

and by $M(x, u)=y$ we denote the computation of M where x is placed on its input tape, and y is the remaining string in the output tape on M after the halting state, and the certificate u is placed on its special read-once tape, and M uses at most $O(\log [x])$ space on its read/write tapes for every input x, where [...] is the bit-length function [3]. We call M a one-way logarithmic space verifier. This definition is still valid, because of Lemma 3.

According to the previous definition, we can redefine $\# L$ as follows:

- Definition 5. Let $\{0,1\}^{*}$ be the infinite set of binary strings, a function $f:\{0,1\}^{*} \rightarrow \mathbb{N}$ is in $\# L$ if there exists another nonempty language $L_{2} \in 1 N L$, and a nondeterministic one-way logarithmic space Turing machine M^{\prime} which decides L_{2}, and a one-way logarithmic space verifier M such that for every $x \in\{0,1\}^{*}$,

$$
f(x)=\mid\left\{(u, p): M(x, u)=y \text {, where } y \in L_{2} \text { and } p \text { is an accepting path of } M^{\prime}(y)\right\} \mid
$$

and $|\cdots|$ denotes the cardinality set function. This definition is still valid under the result of Lemma 3.

3 Results

We define a new problem:

- Definition 6. NOT-A-SET

INSTANCE: Two unary strings $0^{p}, 0^{q}$ and a collection of p or more than p binary strings, such that each element in the collection represents a power number in base 2 with a bit-length lesser than or equal to q. The collection of numbers is represented by an array N of length greater than or equal to p.

QUESTION: Is there an element repeated thrice in the array N ?

- Theorem 7. $N O T-A-S E T \in 1 N L$.

Proof. Given an instance $\left(0^{p}, 0^{q}, N\right)$ of $N O T-A-S E T$, then we can read its elements from left to right on the input tape, verify that every element in the collection is a binary string, check whether every element in N has a bit-length lesser than or equal to q, and finally count the number of elements in the array N and compare it with p. In addition, we can nondeterministically pick a binary integer d between 1 and q and accept in case of there exists the number 2^{d-1} thrice in N otherwise we reject. We can make all this computation in a nondeterministic one-way using logarithmic space. Certainly, the verification of the membership of 2^{d-1} in N could be done in logarithmic space, since it is trivial to check whether a binary string represents the power 2^{d-1}. Besides, we can store a logarithmic amount of symbols, because of d has an exponential more succinct representation in relation to the unary string 0^{q} [22]. Moreover, the variables that we could use for the iteration of the elements in N have a logarithmic space in relation to the length of the instance $\left(0^{p}, 0^{q}, N\right)$. We never need to move to the left on the input tape for the acceptance or rejection of the elements in $N O T-A-S E T$ in a nondeterministic logarithmic space. We describe this nondeterministic one-way logarithmic space computation in the Algorithm 1. In this algorithm, we assume a value does not exist in the array N into the cell of some position i when $N[i]=$ undefined. To sum up, we actually prove that $N O T-A-S E T$ is in $1 N L$.

Let's consider an interesting problem:

- Definition 8. \#K-CLAUSES-3UNSAT

INSTANCE: Three natural numbers K, n, m, and a Boolean formula ϕ of n variables and m clauses, such that the clauses can contain repeated literals and contain exactly one constant false value. The clauses are represented by an array C, such that C represents a set of m collections of size 3 , where $C[i]$ is exactly the literals and constant false value into the clause c_{i} in ϕ for $1 \leq i \leq m$. Besides, each variable is represented by a unique integer between 1 and n. In addition, a positive or negative literal is represented by a positive or negative integer, respectively. Furthermore, the number 0 represents the constant false value.

ANSWER: Count the number of unsatisfied clauses between all the unsatisfying truth assignments in ϕ, such that the sum of all the false literals that contains every clause in each of these unsatisfying truth assignments is greater than or equal to K. For example, consider the unsatisfiable formula

$$
\begin{aligned}
& (x \vee y \vee z) \wedge(\rightharpoondown x \vee y \vee z) \wedge(x \vee \rightharpoondown y \vee z) \wedge(x \vee y \vee \rightharpoondown z) \\
& \wedge(\rightharpoondown x \vee \rightharpoondown y \vee z) \wedge(\rightharpoondown x \vee y \vee \rightharpoondown z) \wedge(x \vee \rightharpoondown y \vee \rightharpoondown z) \wedge(\rightharpoondown x \vee \rightharpoondown y \vee \rightharpoondown z)
\end{aligned}
$$

where the sum of all the false literals that contains every clause in any unsatisfying truth assignment is equal to 12 .

- Theorem 9. \#K-CLAUSES-3UNSAT $\in F P$.

```
ALGORITHM 1: \(O N E-W A Y-A L G O\)
Data: \(\left(0^{p}, 0^{q}, N\right)\) where \(\left(0^{p}, 0^{q}, N\right)\) is an instance of NOT-A-SET
Result: A nondeterministic acceptance or rejection in one-way logarithmic space
// Get the length of the unary string \(0^{p}\) as a binary string
\(p \longleftarrow \operatorname{length}\left(0^{p}\right) ;\)
// Get the length of the unary string \(0^{q}\) as a binary string
\(q \longleftarrow \operatorname{length}\left(0^{q}\right) ;\)
// Generate nondeterministically an arbitrary integer between 1 and \(q\)
\(d \longleftarrow \operatorname{random}(1, q)\);
// If \(t=3\), then the number \(2^{d-1}\) appears exactly thrice in \(N\)
\(t \longleftarrow 0\);
// Initial position in \(N\)
\(i \longleftarrow 1\);
while \(N[i] \neq\) undefined do
    \(s \longleftarrow 0 ;\)
    // \(N[i][j]\) represents the \(j^{\text {th }}\) digit of the binary string in \(N[i]\)
    for \(j \leftarrow 1\) to \(q+1\) do
            if \(j=q+1\) then
                if \(N[i][j] \neq\) undefined then
                    // There exists an element with bit-length greater than \(q\)
                    return "no";
                end
            end
            else if \((j=1 \wedge(N[i][j]=\) undefined \(\vee N[i][j]=0)) \vee(j>1 \wedge N[i][j]=1) \vee N[i][j] \notin\)
                    \(\{0,1\), undefined \(\}\) then
                // The element \(N[i]\) is not a binary string
                return "no";
            end
            else if \(N[i][j]=\) undefined then
                // Break the current for loop statement
                break;
            end
            else
                // Store the current position of digit \(N[i][j]\) in \(N[i]\)
                \(s \longleftarrow s+1 ;\)
            end
    end
    if \(s=d \wedge t<4\) then
            // The element \(N[i]\) is equal to \(2^{d-1}\)
            \(t \longleftarrow t+1 ;\)
    end
    \(i \longleftarrow i+1 ;\)
end
if \(i=1 \vee(i-1)<p\) then
    // The array \(N\) has not a length greater than or equal to \(p\) or \(N\) is empty
    return "no";
end
else if \(t=3\) then
    // The element \(2^{d-1}\) is repeated exactly thrice in the array \(N\)
    return "yes";
end
else
    // The element \(2^{d-1}\) is not repeated exactly thrice in the array \(N\)
    return " \(n o\) ";
end
```

Proof. We are going to show there is a deterministic Turing machine M, where:

$$
\# K-C L A U S E S-3 U N S A T=\{w: M(w, u)=y, \exists u \text { such that } y \in N O T-A-S E T\}
$$

when M runs in logarithmic space in the length of w, u is placed on the special readonce tape of M, and u is polynomially bounded by w. Given an instance (K, n, m, C) of \#K-CLAUSES-3UNSAT, we firstly check whether this instance has an appropriate representation according to the constraints introduced in the Definition 8. The constraints for the Definition 8 are the following ones:

1. The array C must contain exactly m collections and,
2. each variable must be represented by a unique integer between 1 and n,
3. there are no two equals collections inside of C and finally,
4. every collection must contain exactly three elements and only one can be equal to 0 .

All these requirements are verified in the Algorithm 2, where this subroutine decides whether the instance has an appropriate representation according to the Definition 8. We use the function $a b s(\ldots)$ that denotes the absolute value, that is, for an integer x :

$$
\operatorname{abs}(x)=\text { if } x<0 \text { then }-x \text { else } x .
$$

After that verification, we use a certificate as an array A, such that this consists in an array A which contains n different integer numbers in ascending absolute value order. But firstly, we write to the output all the numbers 2^{j} when $C[j]$ contains a constant false value represented by the number 0 . We read at once the elements of the array A and we reject whether this is not an appropriate certificate: That is, when the absolute value of the numbers are not sorted in ascending order, or the array A does not contain exactly n elements, or the array A contains a number that its absolute value is not between 1 and n, since every variable is represented by an integer between 1 and n in C. While we read each element x of the array A, then we copy the binary numbers 2^{j} that represent the collections $C[j]$ which contain the literal x just creating another instance $\left(0^{p}, 0^{q}, N\right)$ of NOT-A-SET, where $p=K$ and $q=m$. Since the array A does not contain repeated elements, then we could correspond each certificate A to a truth assignment for ϕ with all the variables in ϕ, such that the literals in A are false. We know a collection $C[j]$ that represents a clause is false if and only if the three elements in $C[i]$ are false. Therefore, the evaluation as false into the literals in the array A corresponds to a unsatisfying truth assignment in ϕ if and only if we write some number 2^{j} thrice to the output tape, where 2^{j} represents a collection $C[j]$ for some $1 \leq j \leq m$. Moreover, the sum of all the false literals that contains every clause will be equal to the length of the array N in the generated instance $\left(0^{p}, 0^{q}, N\right)$ under the truth assignment that represents the certificate A. Furthermore, we can make this verification in logarithmic space such that the array A is placed on the special read-once tape, because we read at once the elements in the array A. Indeed, the variables that we could use for the iteration of the elements in A and C have a logarithmic space in relation to the length of the instance (K, n, m, C).

Hence, we only need to iterate from the elements of the array A to verify whether the array is an appropriate certificate and write to the output tape the representation as a power of two of the collections in C that contain the literals in A and the constant false value. This logarithmic space verification will be the Algorithm 3. We assume whether a value does not exist in the arrays A or C into the cell of some position i when $A[i]=$ undefined or $C[i]=$ undefined. The Algorithm 3 is a one-way logarithmic space verifier, since this never
moves the head on the special read-once tape to the left, where it is placed the certificate A. Moreover, for every unsatisfying truth assignment represented by the array A, the output of this logarithmic space verifier will always belong to the language $N O T-A-S E T$, where we know that $N O T-A-S E T \in 1 N L$ as result of Theorem 7 . Consequently, we demonstrate that \#K-CLAUSES-3UNSAT belongs to the complexity class \#L under the Definition 5. Certainly, every unsatisfying truth assignment in ϕ corresponds to a single certificate in our one-way logarithmic space verifier, when the sum of all the false literals that contains every clause in this unsatisfying truth assignment is greater than or equal to K. In addition, the number of accepting paths in the Algorithm 1 for the generated instance $\left(0^{p}, 0^{q}, N\right)$ of $N O T-A-S E T$ is exactly the number of clauses that are unsatisfied for a single unsatisfying truth assignment. The number of accepting paths in the Algorithm 1 for a single instance is equal to the number of different powers of two which are repeated at least thrice in the array N. Actually, this corresponds to the clauses which are unsatisfied for the truth assignment that represents the certificate A. We know that $\# L$ is contained in the class $F P$ [2], [6], [3]. As result, $\# L$ remains in the class $F P$ under the Definition 5 as a consequence of Lemma 3. In conclusion, we show that \#K-CLAUSES-3UNSAT is indeed in FP.

We show a previous known $\# P$-complete problem:

- Definition 10. \#MONOTONE-2SAT

INSTANCE: Two natural numbers n, m, and a Boolean formula ϕ in $2 C N F$ of n variables and m clauses, such that there is no clause in ϕ which contains a negated variable [26]. We represent the Boolean formula ϕ as a set S of clauses. Besides, each variable is represented by a unique integer between 1 and n in the clauses of S.

ANSWER: Count the number of satisfying truth assignments in ϕ.
REMARKS:\#MONOTONE-2SAT $\in \# P$-complete [26].

- Theorem 11. \#MONOTONE-2SAT $\in F P$.

Proof. Given an instance (n, m, S) of $\# M O N O T O N E-2 S A T$ that represents a Boolean formula from the Definition 10, then we can use and call a polynomial time algorithm $A L G O$ for an appropriate instance of $\# K-C L A U S E S-3 U N S A T$ and solve it: This is possible according to the Theorem 9. In this way, given a clause $c_{i}=(x \vee y)$ in S for $1 \leq i \leq m$, then we can count the number of unsatisfying truth assignments in the Boolean formula

$$
\psi_{i}=(0 \vee \rightharpoondown x \vee \rightharpoondown y) \wedge(\rightharpoondown x \vee \rightharpoondown x \vee y) \wedge(\rightharpoondown x \vee x \vee \rightharpoondown y) \wedge(\rightharpoondown x \vee y \vee \rightharpoondown y) \wedge(x \vee \rightharpoondown y \vee \rightharpoondown y)
$$

Certainly, c_{i} is satisfied for some truth assignment if and only if ψ_{i} has exactly one unsatisfied clause for the same truth assignment, where the sum of all the false literals that contains every clause is equal to 8 or 11 . However, if c_{i} is unsatisfied for some truth assignment if and only if ψ_{i} is satisfiable for the same truth assignment and the sum of all the false literals that contains every clause is equal to 5 . In this way, the Boolean formula

$$
\psi=\psi_{1} \wedge \psi_{2} \wedge \ldots \wedge \psi_{m-1} \wedge \psi_{m}
$$

complies that exactly every unsatisfying truth assignment ψ coincides with a satisfying truth assignment in ϕ, when the sum of all the false literals that contains every clause in ψ is greater than or equal to $8 \times m$. Furthermore, in this case there will be exactly m unsatisfied clauses and thus, we can use the problem \#K-CLAUSES-3UNSAT to calculate the number of satisfying truth assignments in ϕ multiplied by m. Finally, we only need to divide by m to obtain the number of satisfying truth assignments in ϕ. We show this polynomial time reduction in the Algorithm 4.

```
ALGORITHM 2: \(C H E C K-A L G O\)
Data: \((K, n, m, C)\) where \((K, n, m, C)\) is an instance of \(\# K-C L A U S E S-3 U N S A T\)
Result: A logarithmic space subroutine
for \(i \leftarrow 1\) to \(m+1\) do
    if \((i<m+1 \wedge C[i]=\) undefined \() \vee(i=m+1 \wedge C[i] \neq\) undefined \()\) then
        // \(C\) does not contain exactly \(m\) collections
        return " \(n o\) ";
    end
end
for \(i \leftarrow 1\) to \(n\) do
    // If \(t=1\), then the variable \(i\) exists in some collection of \(C\)
    \(t \longleftarrow 0\);
    foreach \(j \leftarrow 1\) to \(m ; C[j]=\{x, y, z\}\) do
        if \(x=y=0 \vee x=z=0 \vee y=z=0\) then
            // \(C[j]\) contains more than one number equal to 0
            return " \(n o\) ";
        end
        if \(a b s(x)>n \vee a b s(y)>n \vee a b s(z)>n\) then
            // \(C\) does not contain exactly \(n\) variables from 1 to \(n\)
            return "no";
        end
        if \(t<1 \wedge(i=a b s(x) \vee i=a b s(y) \vee i=a b s(z))\) then
            // Store the existence of the variable \(i\) in the collections of \(C\)
            \(t \longleftarrow 1 ;\)
        end
    end
    if \(t=0\) then
        // \(C\) does not contain the variable \(i\)
        return "no";
    end
end
for \(i \leftarrow 1\) to \(m-1\) do
    // size(..) denotes the size of a collection, that is the number of elements
    if \(\operatorname{size}(C[i]) \neq 3\) then
        // The array \(C\) has at least one collection with size different of 3
        return "no";
    end
    for \(j \leftarrow i+1\) to \(m\) do
        // We ignore the order of the elements in the collections \(C[i]\) and \(C[j]\)
        if \(C[i]=C[j]\) then
                // The array \(C\) is not exactly a "set" of collections
                return " \(n o\) ";
            end
    end
end
if \(K \leq 0 \vee n \leq 0 \vee m \leq 0\) then
    // \(K, m, n\) must be natural numbers
    return "no";
end
// The instance \((K, n, m, C)\) is appropriate for \#K-CLAUSES-3UNSAT
return "yes";
```

```
ALGORITHM 3: VERIFIER-ALGO
Data: \((K, n, m, C, A)\) where \((K, n, m, C)\) is an instance of \(\# K-C L A U S E S-3 U N S A T\) and \(A\) is a
    certificate
Result: A one-way logarithmic space verifier
if CHECK-ALGO( \(K, n, m, C)=\) " \(n o\) " then
    // ( \(K, n, m, C\) ) is not an appropriate instance of \#K-CLAUSES-3UNSAT
    return "no";
end
else
    output \(0^{K}\);
    output, \(0^{m}\);
    for \(j \leftarrow 1\) to \(m\) do
        if \(0 \in C[j]\) then
            /* Output the number \(2^{j}\) when the collection \(C[j]\) contains the constant
                false value represented by the number 0
            output, 1 ;
            if \(j-1>0\) then
                output \(0^{j-1}\);
            end
        end
    end
end
// Minimum current variable during the iteration of the array \(A\)
\(x \longleftarrow 0 ;\)
for \(i \leftarrow 1\) to \(n+1\) do
    if \(i=n+1\) then
        if \(A[i] \neq\) undefined then
                // There exists a \(n+1\) element in the array \(A\)
                return " \(n o\) ";
        end
    end
    else if \(A[i]=\) undefined \(\vee a b s(A[i])<1 \vee \operatorname{abs}(A[i])>n \vee a b s(A[i]) \leq x\) then
        // The certificate \(A\) is not appropriate
        return " \(n o\) ";
    end
    else
        \(x \longleftarrow a b s(A[i]) ;\)
        \(y \longleftarrow A[i] ;\)
        for \(j \leftarrow 1\) to \(m\) do
            if \(y \in C[j]\) then
                /* Output the number \(2^{j}\) when the collection \(C[j]\) contains the
                literal \(y\)
                            */
            output , 1
                if \(j-1>0\) then
                    output \(0^{j-1}\);
                end
            end
        end
    end
end
```

```
ALGORITHM 4: COMPUTE-ALGO
Data: \((n, m, S)\) where \((n, m, S)\) is an instance of \#MONOTONE-2SAT that represents a
    Boolean formula \(\phi\)
Result: A polynomial time algorithm
// | \(\cdots \mid\) denotes the cardinality set function
if \(m \neq|S|\) then
    // \((n, m, S)\) is not an appropriate instance of \#MONOTONE-2SAT
    return " \(n o\) ";
end
// Create array of collections \(C\) with length \(5 \times m\)
\(C \longleftarrow \operatorname{Array}(5 \times m)\);
// Create an empty set of variables
\(V \longleftarrow \emptyset ;\)
foreach \(i \leftarrow 1\) to \(m ; c_{i}=(x \vee y)\) such that \(c_{i} \in S\) do
        if \(x \leq 0 \vee y \leq 0 \vee x>n \vee y>n\) then
            // \((n, m, S)\) is not an appropriate instance of \#MONOTONE-2SAT
            return " \(n o\) ";
        end
        else
            // \(\cup\) denotes the union set function
            \(V \longleftarrow V \cup\{x, y\} ;\)
            \(C[5 \times(i-1)+1] \longleftarrow\{0,-x,-y\} ;\)
            \(C[5 \times(i-1)+2] \longleftarrow\{-x,-x, y\} ;\)
            \(C[5 \times(i-1)+3] \longleftarrow\{-x, x,-y\} ;\)
            \(C[5 \times(i-1)+4] \longleftarrow\{-y,-x, y\} ;\)
            \(C[5 \times(i-1)+5] \longleftarrow\{-y, x,-y\} ;\)
    end
end
// \(|\cdots|\) denotes the cardinality set function
if \(n \neq|V|\) then
    // ( \(n, m, S\) ) is not an appropriate instance of \#MONOTONE-2SAT
    return " \(n o\) ";
end
else
    // Call the count algorithm for the problem \#K-CLAUSES-3UNSAT
    count \(\longleftarrow A L G O(8 \times m, n, m, C)\);
    // The number of satisfying truth assignments in \(\phi\)
    return \(\frac{\text { count }}{m}\);
end
```

- Theorem 12. $P=N P$.

Proof. It is known that if some $\# P$-complete is in $F P$, then $F P=\# P$ However, if this happens, then $P=N P$, since all known $N P$-complete sets have a defining relation which is $\# P$-complete [19]. Therefore, this is a direct consequence of Theorem 11.

4 Conclusions

No one has been able to find a polynomial time algorithm for any of more than 300 important known $N P$-complete problems [12]. A proof of $P=N P$ will have stunning practical consequences, because it leads to efficient methods for solving some of the important problems in $N P$ [7]. The consequences, both positive and negative, arise since various $N P$-complete problems are fundamental in many fields [7].

Cryptography, for example, relies on certain problems being difficult. A constructive and efficient solution to an $N P$-complete problem such as $S A T$ will break most existing cryptosystems including: Public-key cryptography [16], symmetric ciphers [20] and one-way functions used in cryptographic hashing [9]. These would need to be modified or replaced by information-theoretically secure solutions not inherently based on $P-N P$ equivalence.

There are positive consequences that will follow from rendering tractable many currently mathematically intractable problems. For instance, many problems in operations research are $N P$-complete, such as some types of integer programming and the traveling salesman problem [12]. Efficient solutions to these problems have enormous implications for logistics [7]. Many other important problems, such as some problems in protein structure prediction, are also $N P$-complete, so this will spur considerable advances in biology [5].

Since all the $N P$-complete optimization problems become easy, everything will be much more efficient [11]. Transportation of all forms will be scheduled optimally to move people and goods around quicker and cheaper [11]. Manufacturers can improve their production to increase speed and create less waste [11]. Learning becomes easy by using the principle of Occam's razor: We simply find the smallest program consistent with the data [11]. Near perfect vision recognition, language comprehension and translation and all other learning tasks become trivial [11]. We will also have much better predictions of weather and earthquakes and other natural phenomenon [11].

There would be disruption, including maybe displacing programmers [17]. The practice of programming itself would be more about gathering training data and less about writing code [17]. Google would have the resources to excel in such a world [17]. But such changes may pale in significance compared to the revolution an efficient method for solving $N P$-complete problems will cause in mathematics itself [7]. Research mathematicians spend their careers trying to prove theorems, and some proofs have taken decades or even centuries to find after problems have been stated [1]. For instance, Fermat's Last Theorem took over three centuries to prove [1]. A method that is guaranteed to find proofs to theorems, should one exist of a "reasonable" size, would essentially end this struggle [7].

References

1 Scott Aaronson. P $\stackrel{?}{=}$ NP. Electronic Colloquium on Computational Complexity, Report No. 4, 2017.

2 Carme Álvarez and Birgit Jenner. A Very Hard Log-Space Counting Class. Theor. Comput. Sci., 107(1):3-30, January 1993. doi:10.1016/0304-3975 (93) 90252-0.
3 Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cambridge University Press, 2009.

4 Theodore Baker, John Gill, and Robert Solovay. Relativizations of the $\mathcal{P}=$? $\mathcal{N P}$ Question. SIAM Journal on computing, 4(4):431-442, 1975. doi:10.1137/0204037.
5 Bonnie Berger and Tom Leighton. Protein Folding in the Hydrophobic-Hydrophilic (HP) Model is NP-complete. Journal of Computational Biology, 5(1):27-40, 1998. doi:10.1145/ 279069.279080.

6 Allan Borodin, Stephen A. Cook, and Nick Pippenger. Parallel Computation for Well-Endowed Rings and Space-Bounded Probabilistic Machines. Inf. Control, 58(1-3):113-136, July 1984. doi:10.1016/S0019-9958(83)80060-6.
7 Stephen A. Cook. The P versus NP Problem, April 2000. In Clay Mathematics Institute at http://www.claymath.org/sites/default/files/pvsnp.pdf. Retrieved June 24, 2020.
8 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms. The MIT Press, 3rd edition, 2009.
9 Debapratim De, Abishek Kumarasubramanian, and Ramarathnam Venkatesan. Inversion Attacks on Secure Hash Functions Using SAT Solvers. In International Conference on Theory and Applications of Satisfiability Testing, pages 377-382. Springer, 2007. doi:10.1007/ 978-3-540-72788-0_36.
10 Vinay Deolalikar. $\mathrm{P} \neq \mathrm{NP}$, 2010. In Woeginger Home Page at https://www.win.tue.nl/ ~gwoegi/P-versus-NP/Deolalikar.pdf. Retrieved June 24, 2020.
11 Lance Fortnow. The Status of the P Versus NP Problem. Commun. ACM, 52(9):78-86, September 2009. doi:10.1145/1562164.1562186.
12 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. San Francisco: W. H. Freeman and Company, 1 edition, 1979.
13 William I. Gasarch. Guest column: The second $\mathrm{P} \stackrel{?}{=}$ NP poll. ACM SIGACT News, 43(2):53-77, 2012. doi:10.1145/2261417. 2261434.

14 Juris Hartmanis and John E. Hopcroft. Independence Results in Computer Science. SIGACT News, 8(4):13-24, October 1976. doi:10.1145/1008335.1008336.
15 Juris Hartmanis and Stephen R. Mahaney. Languages Simultaneously Complete for OneWay and Two-Way Log-Tape automata. SIAM Journal on Computing, 10(2):383-390, 1981. doi:10.1137/0210027.
16 Satoshi Horie and Osamu Watanabe. Hard instance generation for SAT. Algorithms and Computation, pages 22-31, 1997. doi:10.1007/3-540-63890-3_4.
17 Russell Impagliazzo. A personal view of average-case complexity. In Proceedings of Structure in Complexity Theory. Tenth Annual IEEE Conference, pages 134-147. IEEE, 1995. doi: 10.1109/SCT.1995.514853.

18 Richard J. Lipton. Efficient checking of computations. In STACS 90, pages 207-215. Springer Berlin Heidelberg, 1990. doi:10.1007/3-540-52282-4_44.
19 Noam Livne. A note on \#P-completeness of NP-witnessing relations. Information Processing Letters, 109(5):259-261, 2009. doi:10.1016/j.ipl.2008.10.009.
20 Fabio Massacci and Laura Marraro. Logical Cryptanalysis as a SAT Problem. Journal of Automated Reasoning, 24(1):165-203, 2000. doi:10.1023/A:1006326723002.
21 Pascal Michel. A survey of space complexity. Theoretical computer science, 101(1):99-132, 1992. doi:10.1016/0304-3975(92) 90151-5.

22 Christos H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.
23 Alexander A. Razborov and Steven Rudich. Natural Proofs. J. Comput. Syst. Sci., 55(1):24-35, August 1997. doi:10.1006/jcss. 1997.1494.
24 Michael Sipser. Introduction to the Theory of Computation, volume 2. Thomson Course Technology Boston, 2006.
25 Leslie G. Valiant. The complexity of computing the permanent. Theoretical Computer Science, (2):189-201, 1979. doi:10.1016/0304-3975(79)90044-6.

26 Leslie G. Valiant. The complexity of enumeration and reliability problems. SIAM Journal on Computing, (3):410-421, 1979. doi:10.1137/0208032.

