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Abstract—To isolate service queues in switch ports, recent
solutions leverage the power of Explicit Congestion Notification
(ECN). However, this causes a fundamental dependency on
ECN-based transport protocols, making it hard to use generic
transport protocols. To this end, we design DynaQ, a protocol-
independent multi-queue management solution that enables
service queue isolation with generic transport protocols. DynaQ
dynamically adjusts the packet dropping threshold of service
queues. Our solution is inexpensive to implement on hardware.
Through extensive testbed experiments and large-scale simula-
tions, we show that compared to alternative schemes, DynaQ is
the only solution that achieves work-conserving weighted fair
sharing and low latency without protocol dependency.
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I. INTRODUCTION

Data centers are shared by many services having diverse

network performance requirements. To provide differentiated

performance, the operator groups services into different

traffic classes, and maps the classes into service queues in

a switch port [1, 2]. The switch enforces network policy

across the queues through packet schedulers like strict

priority queueing (SPQ) and weighted round-robin (WRR).

Meanwhile, the port buffer is shared among service queues

in a best-effort manner. In this regime, it is difficult to

isolate service queues because a queue with many flows can

monopolize the buffer regardless of the allocated size. If a

queue cannot occupy enough buffer space, it cannot achieve

its fair share rate as well.

Recent solutions [1]–[3] leverage Explicit Congestion

Notification (ECN), which maintains the maximum buffer

occupancy around the ECN marking threshold K. Unfortu-

nately, the existing solutions have a fundamental dependency

on ECN-based transport protocols since ECN requires the

cooperation between end-hosts and switches. This protocol

dependency is undesirable because the end-hosts cannot use

generic transport protocols. The recent advance in transport

protocols shows that non-ECN protocols can outperform

ECN-based protocols using different congestion signals (e.g.

In-band network telemetry [4], credit [5], and network

delay [6, 7]). These works are motivated by the drawbacks

of ECN like coarse-grained congestion signaling and slow

convergence time. Furthermore, in many multi-tenant envi-

ronments, it is hard to enforce a specific transport protocol

to virtual machines (VMs) and bare-metal (BM) servers

because tenants own the network stack.

In this context, we ask the following question: how to

isolate service queues in switch ports without dependency on

transport protocols? We answer the question by presenting

DynaQ, a protocol-independent multi-queue management

scheme. DynaQ enables service queue isolation with generic

transport protocols. The best-effort scheme and PQL pro-

vide us the following design guideline. First, to be work-

conserving, a service queue should be able to occupy the

buffer larger than or equal to the BDP. Second, to achieve

weighted fair sharing, the switch should guarantee the buffer

as much as the weighted BDP to a service queue. Third,

to achieve the requirements simultaneously, the port buffer

should be shared dynamically. Based on the guideline,

DynaQ adjusts the packet dropping threshold of service

queues dynamically so that a queue can occupy the buffer

up to the port buffer size but does not take the buffer of

unsatisfied active queues.

DynaQ is simple and can be implemented on hardware

inexpensively with up to 7 clock cycles. The overhead

is relatively small because switch ASICs require at least

hundreds of clock cycles to process a packet. For example,

Broadcom Trident 3 ASIC consumes at least 800 clock

cycles to process a packet. We also discuss how DynaQ

can be implemented on a programmable switching chip [8].

We implement a software prototype of DynaQ as a Linux

qdisc module to compare DynaQ with various solutions.

We build a small-scale testbed with 5 servers connected

to a server-emulated switch supporting 8× 1GbE ports with

two Intel I350-T4 NICs. We conduct extensive experiments

to validate the efficiency of DynaQ. Our results show

that DynaQ provides work-conserving weighted fair sharing

regardless of the number of active queues, the number of

competing flows, and different per-queue weights. Using

multiple end-hosts with different transport protocols, we

show that DynaQ works well with generic protocols as

well. In addition, DynaQ outperforms compared schemes

in the FCT for small and large flows. To complement the

testbed experiments, we also perform large-scale simulations

using ns-2.With link capacities of 10Gbps and 100Gbps,

we demonstrate that DynaQ can preserve work-conserving

weighted fair sharing in high-speed data center networks.
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Figure 1. Violated fair sharing by unfair buffer occupancy.

II. BACKGROUND AND MOTIVATION

A. Impact of Buffers on Bandwidth Sharing

Modern services have diverse network performance re-

quirements. For example, web search requires low latency

and data backup demands high throughput. To provide

differentiated network performance based on network policy,

the operator often leverages multiple service queues in

a switch port. In multi-queue environment, the operator

classifies services into different traffic classes. These classes

are mapped into different service queues, and the queues

are scheduled by weighted fair packet schedulers like WRR

and deficit round robin (DRR) [1, 3, 9]. The operator also

uses SPQ to prioritize latency-sensitive flows [2]. Shared

SPQ queues have the higher priority and the other dedicated

queues with fair schedulers have the lowest priority.

Unfortunately, network policy can be violated in spite

of packet scheduling. To saturate the weighted bottleneck

capacity, queue i requires the weighted Bandwidth Delay

Product (BDP) that WBDP i = C × RTT × wi∑
w

where

RTT is the base RTT, C and wi denote the link capacity

and the weight of queue i, respectively. However, because

the port buffer is shared among service queues in a best-

effort manner, a service queue may not obtain enough buffer

as much as the weighted BDP due to aggressive service

queues. To show this, we conduct an experiment on a small-

scale testbed consisting of 5 servers connected to a 1GbE

server-emulated switch having a 85KB of buffer per port. In

the switch, we configure DRR with equal weights. We have

one receiver and 4 senders. Three senders are mapped into

service queue 2 while the other sender belongs to service

queue 1. We start 8 flows from each of the senders at

the same time and measure per-queue throughput for 60

seconds every 0.5 second. We also record every queue length

evolution and obtain 1K sequential samples at random time.

Fig. 1 shows the results. Since the queues have the same

weight, bandwidth should be shared equally. However, queue

1 cannot achieve its fair share rate because queue 1 cannot

occupy the buffer larger than WBDP 1 due to a large arrival

rate of queue 2.

B. Why Protocol Dependency Matters?

Existing solutions [1]–[3] leverage ECN to isolate ser-

vice queues. The solutions have an underlying assumption:

all end-hosts use ECN-based transport protocols. This is

because ECN requires both ECN-enabled end-hosts and

switches. The assumption implies that the existing solutions

have a dependency on ECN-based transport protocols.

This is undesirable because the end-host network stack

cannot adapt to the advance in transport protocols. We

have witnessed the emergence of many non-ECN transport

protocols, which have better performance than ECN-based

transport protocols. For example, HPCC [4] leverages in-

band network telemetry available in emerging switch ASICs

because ECN does not know exactly how to adjust sending

rates and causes a trade-off between latency and throughput

with ECN marking threshold [10]. ExpressPass [5] shows

that credit packets are better congestion signals than ECN

in terms of fairness and convergence time. There also exist

delay-based protocols like DX [7] and TIMELY [6], which

are motivated by that ECN cannot inform the extent of

congestion quickly. We believe that transport protocols will

continue to evolve and their congestion signals will not be

limited to ECN. The assumption also does not hold in many

multi-tenant environments. VMs and BM servers are the

major components in multi-tenant data centers, and their

network stack is owned by tenants, not the network operator.

Therefore, it is hard to enforce a specific transport protocol

to all end-hosts.

C. Related Work

One may wonder whether modifying the schemes to drop

packets instead of ECN marking can solve the problem.

However, we find that simple changes are not enough for

the following reasons.

MQ-ECN [1] determines a ECN marking threshold of

queue i as following that Ki = min( quantumi

Tround

, C)×RTT×
λ where quantumi is the weight/quantum of queue i and

λ is a coefficient for transport protocols. Tround indicates

the estimated total time to serve all queues once. The key

drawback of MQ-ECN is that the solution relies on the con-

cept of "round" with Tround. This means that MQ-ECN does

not support packet schedulers like SPQ. Supporting SPQ is

crucial to latency-sensitive services since it can accelerate

small flows. Therefore, even we change the scheme to drop

packets, the solution does not achieve our design goals since

it fails to provide low latency.

TCN [2] uses the packet sojourn time as the threshold

metric instead of queue length. Since the packet sojourn

time can be calculated after passing through the queue,

the solution performs dequeue marking. The standard ECN

marking threshold is given by T = RTT × λ. If we

change TCN to drop the packet when the packet sojourn

time exceeds T , we should drop the just dequeued packet.

However, packet dropping at dequeue causes idle time on

the link. This seriously degrades the effective throughput.

In addition, dropping the buffered packet increases the FCT



as much as the packet sojourn time in addition to the

retransmission timeout (RTO).

PMSB [3] provides both generic packet schedulers and

early congestion notification, which MQ-ECN and TCN

do not support, respectively. PMSB only marks packets

when per-port ECN marking and per-queue ECN marking

conditions are met at the same time where the port ECN

marking threshold is given by K = C × RTT × λ. The

per-queue ECN marking threshold for queue i is given by

Ki = wi∑
w
C × RTT × λ. Since Ki ≤ K, the dropping

version of PMSB is similar to PQL, which is supported in

some production switches.

PQL assigns a static buffer size to a service queue.

Therefore, each queue can enjoy its fair share regardless of

other queues. However, PQL is not work-conserving because

the amount of buffer that a single queue can occupy is

limited to the assigned quota. Therefore, when few queues

are active, the link capacity can be underutilized since the

aggregate buffer occupancy can be less than the BDP. One

might argue that assigning a buffer of the BDP to all

service queues can solve the problem. Unfortunately, the

on-chip SRAM buffer is a scarce resource in switches [11].

Therefore, we do not have enough buffers to reserve a buffer

size as much as the BDP for all service queues.

We also discuss shared buffer management solutions like

the dynamic threshold algorithm. Many switches allow a

single port to occupy many buffers. However, even we allo-

cate a large buffer size to a port, bandwidth cannot be shared

fairly since aggressive queues eventually fill up the buffer. It

also harms per-port fairness by taking excessive buffers that

can be assigned to the other ports. Meanwhile, there exist

deep buffered switches with an external large DRAM buffer.

Unfortunately, the deep buffer switches have low switching

throughput and insufficient per-packet processing delay to

satisfy the requirements of modern user-facing applications.

BarberQ [12] addresses a similar problem by packet

eviction. Packet eviction is an effective technique to absorb

latency-sensitive microbursts. However, for service-queue

isolation, it is enough to use packet dropping. pFabric [9]

and QJump [13] also use multiple queues, but these works

aim at minimizing the FCT of small flows, not isolating

service queues.

III. DYNAQ DESIGN

A. Design goals

Our goal is to design a multi-queue management solution

that enables service queue isolation in switch ports over

generic transport protocols. We stipulate that a good solution

should satisfy the following requirements simultaneously:

• Protocol independence: A solution should not be tied

to a specific transport protocol.

• Work conservation: A solution should be able to

utilize the whole link capacity regardless any time.

• Weighted fair sharing: A solution should strictly

preserves weighted fair sharing among service queues

any time regardless of traffic dynamics.

• Low latency: A solution should support arbitrary

packet schedulers, especially SPQ, to minimize the FCT

of small flows.

• Practicality: A solution should be inexpensive to im-

plement on hardware.

B. Mechanisms

1) Basic Idea: DynaQ is the first protocol-independent

multi-queue management scheme that satisfies the above

requirements simultaneously. We observe that the best-effort

scheme and PQL provide the following design guideline

that: 1) to utilize the bottleneck link capacity fully, a service

queue must be able to occupy the buffer larger than or equal

to the BDP if there is free space in the port buffer; 2) to share

bandwidth fairly while respecting different weights of ser-

vice queues, a service queue must be able to occupy buffer

space larger than or equal to the weighted BDP regardless of

other service queues; 3) to guarantee the weighted fair share

rate and sustain high link utilization at the same time, the

switch should manage the port buffer dynamically among

service queues. Without dynamic multi-queue management,

we can meet only one of the two requirements at a time.

Following the above design guideline, DynaQ allows a

single service queue to occupy free buffer space in the port,

but prevents the service queue from taking the buffer of

unsatisfied active queues1. Table I summarizes mathematical

notations used to describe our work. To realize the idea,

DynaQ assigns a packet dropping threshold Ti for each

service queue i, which means the total size of packets that

can be buffered. The switch dynamically adjusts Ti every

packet arrivals. Since a service queue should be able to

occupy the buffer up to the port buffer size, the switch does

not simply drop the arriving packet P when the dropping

threshold is exceeded. Instead, if the buffer occupancy of

the service queue of packet P exceeds T with packet P , the

switch increases the dropping threshold of the queue and

decreases that of the victim queue, which is defined as the

queue has the largest extra buffer size. However, to guarantee

the weighted fair share rate, the switch drops packet P
without threshold adjustment when the victim queue is an

unsatisfied active queue.

2) Detailed Design: DynaQ operates before enqueueing

decisions. As shown in Algorithm 1, the switch first com-

pares dropping threshold Tp with the sum of queue length

of queue p and the size of packet P . If enqueueing packet P
does not make the queue length exceed Tp, nothing will be

done. Otherwise, the switch begins to adjust packet dropping

thresholds or to drop the packet.

1We express that queue i is unsatisfied if the packet dropping threshold
Ti of queue i is less than satisfaction threshold Si defined in Eq. (3).
Otherwise, queue i is satisfied.



Table I
USED NOTATIONS.

Notation Description

M Number of queues

P Arriving packet

p Queue index of packet P

B Port buffer size

wi Weight of queue i

Ti Packet dropping threshold of queue i

qi Queue length of queue i

WBDP i Weighted BDP of queue i

Si Satisfaction threshold of queue i

T ex
i Extra buffer size of queue i

Algorithm 1 Pseudocode of DynaQ

1: if qp + size(P ) > Tp then ⊲ Exceeds threshold?
2: v ← argmaxi<M,i 6=P T ex

i ⊲ Find victim queue

3: if Tv < size(P ) || (qv > 0 & Tv − size(P ) < Sv) then

4: Return Drop(P ) ⊲ Protect unsatisfied queues
5: else ⊲ It is okay to adjust dropping thresholds
6: Tv ← Tv − size(P ) ⊲ Decrease T of victim v

7: Tp ← Tp + size(P ) ⊲ Increase T of queue p

8: end if
9: end if

Packet Dropping Threshold: DynaQ isolates service

queues using dynamic packet dropping thresholds. Each

queue i has its own dropping threshold Ti. The aggregate

dropping thresholds of all service queues is equal to the

port buffer size. If the aggregate threshold exceeds the port

buffer size, the buffer will be shared like the best-effort

scheme. In contrast, if the aggregate threshold is less than

the port buffer size, the buffer sharing policy becomes close

to PQL. Therefore, when the switch is on, DynaQ initializes

the packet dropping threshold of queue i that

T init
i = B ×

wi∑
w

(1)

In addition, to ensure
∑M

i=1 T = B, DynaQ always de-

creases the dropping threshold of victim queue before in-

creasing the dropping threshold of the queue of packet P .

Victim Queue Selection: Before adjusting dropping

thresholds, the switch should find the victim queue v. One

intuition is that the victim should be the queue who is

expected to experience the minimal impact after decreasing

its dropping threshold. Therefore, a natural way to select

the victim is finding the queue with the largest threshold.

However, this may not work when service queues are with

different queue weights. For example, consider 3 service

queues with weights of 1:2:3. The switch can choose queue

3 as the victim queue although queue 3 has only a minimum

buffer size of required to enjoy the weighted fair share rate.

To respect different queue weights, DynaQ selects a

service queue with the largest extra buffer size as the victim

queue. The extra buffer size of queue i is defined as

T ex
i = Ti − Si (2)

The satisfaction threshold Si specifies the minimum buffer

size of queue i to achieve its weighted fair share rate re-

gardless of other queues. Theoretically, WBDP i is enough

to saturate the weighted bottleneck link capacity C wi∑
w

.

However, we find that the switch does not preserve weighted

fair sharing when Si = WBDP i. This is because Ti

fluctuates over time, preventing queue i from enjoying its

fair share rate stably. Therefore, we need to satisfy the

inequality Si > WBDP i to make headroom to reduce the

impact of the change of Ti. Thus, we simply use that

Si = B ×
wi∑
w

(3)

Modern line-rate switches have enough buffer size to allo-

cate a buffer size per port larger than BDP. Since B > BDP ,

it is obvious that Si > WBDPi.

Victim Queue Search without Loops: Finding the vic-

tim queue can be done through linear search using loops.

However, modern switching ASICs prevent loop operations

to guarantee a deterministic packet processing delay.

To deal with this constraint, DynaQ uses binary search

to find the victim queue. We make MaxIdx function that

returns the index of the larger queue after comparing the

extra buffer size between the two service queues. For

example, when the switch supports 4 service queues, we

can find the index of victim queue by referring to the

return value of MaxIdx (MaxIdx (1, 2) ,MaxIdx (3, 4)).
This requires O(log n) complexity bounded to the number

of service queues that the switch supports. Modern switches

typically support 4 or 8 service queues per port. Therefore,

the complexity is fixed to O(2) or O(3) depending on the

target switch architecture.

Packet Dropping and Threshold Adjustment: After

finding the victim queue, the switch decides whether to drop

the packet or adjust dropping thresholds. The switch drops

packet P if the dropping threshold of queue v is less than

the size of packet P or queue v is an unsatisfied active

queue. The former condition is to ensure Ti ≥ 0, ∀i. The

latter condition is to protect an unsatisfied active queue. If

we allow a queue to take the buffer of unsatisfied active

queues, aggressive queues with many flows can occupy the

port buffer excessively. Meanwhile, the switch does not

protect inactive queues from the aggressive queues to utilize

free buffer space for high link utilization. When the above

conditions are not met, DynaQ exchanges the dropping

thresholds of queue v and queue p as much as the size of

packet P . This finishes the operation of DynaQ. After this,

the switch performs packet enqueueing decisions based on

the port buffer occupancy.

3) Discussion: We now discuss several design issues.

ECN Support: DynaQ should support ECN-based trans-

port protocols since they are also generic transport pro-

tocols. Since there exist ECN-based solutions, we employ

PMSB [3] rather than designing our own ECN-based mech-



anism. Specifically, when ECN is enabled in the switch,

DynaQ does not adjust dropping thresholds but marks the

packet when the port buffer occupancy exceeds the port

ECN marking threshold K = C ×RTT × λ and the queue

length of arriving packet queue exceeds the per-queue ECN

marking threshold Ki =
wi∑
w
C ×RTT ×λ simultaneously.

Port Buffer Size: We have assumed that the port buffer

size is constant so that the sum of dropping thresholds∑
T can be equal to the port buffer size B. However,

the operator can change the port buffer size, breaking the

equality between
∑

T and B. This can be resolved by

performing the initialization of the dropping thresholds via

Equation (2) after adjusting the port buffer size.

IV. IMPLEMENTATION

A. Hardware Implementation

DynaQ can be implemented on hardware inexpensively.

Since we cannot program most switching chips, we first

analyze the overhead in ASIC implementation. Next, we

discuss the implementation on programmable switches.

Processing Overhead in ASIC Implementation. The

processing overhead of DynaQ in ASIC implementation

is relatively small since the switching ASIC consumes

hundreds of clock cycles to process a packet. Consider a

typical hardware running at a clock frequency of 1 Ghz

where 1 clock cycle is 1 ns. We also presume that the switch

supports 8 service queues per port. Note that commodity

switch ASICs support 4-8 service queues. With Algorithm 1,

we can know that DynaQ requires up to 7 clock cycles.

Broadcom Trident 3 ASIC offers a minimum per-packet

processing delay of 800 ns. For this case, the overhead of

DynaQ is only 0.88%.

Let us show the detailed analysis. In the worst case,

Lines 1-3 and Lines 6-7 in Alg. 1 are performed. Line 1

consumes 1 clock cycle. Line 2 requires log 8 = 3 clock

cycles. Line 3 consumes 2 clock cycles because (qv > 0 &

Tv − size(P ) < Sv) must be performed before || operation

with Tv < size(P ). Note that comparison operations like

qv > 0 can be pipelined. Lines 6-7 require 1 clock cycle

with pipelining because they have no read/write dependency.

Implementation on Programmable Switches. We ana-

lyze how DynaQ can be implemented on an programmable

switch built with Barefoot Tofino [8]. With Tofino ASIC,

we can program processing pipelines. Our implementation

is based on Tofino Native Architecture (TNA).

TNA consists of 9 blocks whose 6 blocks are pro-

grammable and the other blocks only provide a fixed set

of operations. DynaQ should be implemented in the Packet

buffer and Replication Engine (PRE) where packet enqueue-

ing and dequeueing decisions occur. However, the PRE

is a fixed-function block in TNA. Therefore, we cannot

implement any packet buffering mechanism directly due to

the limited programmability. We should implement DynaQ

in either ingress or egress pipeline indirectly. Since DynaQ

operates before buffering, we implement our solution in the

ingress pipeline.

Most variables like packet dropping thresholds, queue

weights, and satisfaction thresholds can be defined as user-

defined metadata. In addition, we can manipulate them at

runtime. MaxIdx function to find the victim queue also

can be defined in the ingress pipeline. One challenge to

implement DynaQ in TNA is to obtain the queue length

information. Since the PRE is not programmable, it is hard

to obtain the queue length of the arriving packet queue

in the ingress pipeline. Note that this is not an issue in

ASIC implementation. In TNA, the queue length metadata

is included in egress intrinsic metadata, but it is prohibited

to share metadata between the pipelines. Although TNA

supports metadata bridging, we can only deliver ingress

pipeline metadata to the egress pipeline.

To deal with the issue, we may utilize an extern register to

inform the queue length to the ingress pipeline. We deliver

the value of deq_qdepth metadata, the queue length

at the packet dequeue time, to the ingress pipeline. The

value is stored in user-defined queue length metadata, and

DynaQ reads it when the operation is triggered. This may

result in DynaQ operations based on inaccurate queue length

information. However, with round-robin based schedulers,

we believe that some inaccuracy is tolerable to isolate ser-

vice queues. The correct implementation on programmable

switches is our future work.

B. Software Implementation

To compare DynaQ with various existing works in a

flexible environment, we implement a software prototype

of DynaQ as a Linux qdisc module on a server-emulated

switch. Our module consists of two stages as follows.

Enqueueing Stage: When the packet from TCP/IP stack

arrives to the qdisc layer, the module returns the index of

the corresponding service queue by referring to the DSCP

field in the IP header. Next, the switch checks whether the

buffer is available to enqueue the arriving packet. Basically,

the switch performs packet enqueueing decisions based on

the port buffer occupancy or per-queue buffer occupancy

relying on switch configuration. When the switch uses

DynaQ, the switch performs additional operations to adjust

packet dropping thresholds before enqueueing. If the packet

can be buffered, the switch enqueues the packet into the

corresponding queue. When ECN is enabled, the switch

performs ECN marking at the end of enqueueing stage.

Dequeueing Stage: The switch dequeues packets through

work-conserving packet schedulers, which includes SPQ,

DRR, and WRR. The packet schedulers follow the data

structure and mechanism of the current Linux qdisc imple-

mentation. The dequeued packets go to NIC drivers and NIC

hardware before it is transmitted to the wire. Our module

uses a token-bucket rate limiter to shape outgoing traffic

at 99.5% of the NIC capacity. This is to avoid excessive
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Figure 2. Used workloads in dynamic flow experiments.

buffering in NIC drivers and NIC hardware, which can lead

to inaccurate buffer occupancy in the qdisc.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of DynaQ.We

answer the following key questions:

• How does DynaQ perform in practice?

• Does DynaQ perform well in large-scale data centers?

• How robust is DynaQ to network settings?

Traffic Workloads: We use four realistic workloads

derived from production data centers, which are a web

search workload [14], a data mining workload [15], a cache

workload [16], and a hadoop workload [16]. As shown

in Figure 2, these workloads generate flows whose size

distributions are heavy-tailed. For example, in the data

mining workload, roughly 50% of flows are 1KB while

90% of bytes are from flows larger than 100MB. Like MQ-

ECN [1] and TCN [2], we also use the web search workload

for all service queues in testbed experiments while using all

the four workloads in simulations. This is because the web

search workload is the most challenging workload due to

its less skewed flow size distribution that generates multiple

concurrent flows on the bottleneck. In addition, it is hard to

make all workloads active during experiments because every

workloads result in different finish times.

Compared Schemes: We mainly compare DynaQ with

the following schemes: BestEffort and PQL. BestEffort de-

notes the best-effort scheme that manages the buffer among

service queues in a FIFO manner. PQL isolates service

queues by reserving a static per-queue buffer size. When

we consider low latency, we also compare DynaQ against

the ECN-based solutions, TCN [2], and PMSB [3].

Performance Metric: Our primary performance metrics

are throughput and FCTs. We also use throughput share

ratio and Jain’s fairness index for better understanding of

throughput results. For the average FCT, we breakdown

the FCT across different flow sizes to analyze the impact

on small (≤ 100KB) and large flows (> 10MB). We also

consider the 99th percentile FCT of small flows to evaluate

tail latency. Due to space limitation, we omit the result of

medium flows whose results are similar to overall flows.

For clear comparison, the FCT results are normalized by

the values of DynaQ.

A. Testbed Experiments

Testbed Setup: We have built a small-scale testbed,

which consists of 5 servers connected to a server-emulated

switch. The switch is equipped with two Intel I350-T4

v2 NICs where each NIC supports 4×1GbE ports. Each

server is also equipped with a Intel gigabit NIC. All servers

use Linux kernel 3.18.11. We use TCP for the non-ECN

schemes and DCTCP [14] for the ECN-based schemes. We

set TCP RTOmin to 10ms as suggested in many existing

works [1, 2, 14, 17, 18]. The initial congestion window

size is set to 10 packets as suggested in RFC6928. In end-

hosts and the switch, we disable large send offload (LSO)

and large receive offload (LRO) to reduce traffic burstiness

and emulate switch hardware behaviors more correctly. To

emulate a switch with Broadcom 56538 ASIC, the switch

has a 85KB of port buffer, which is completely shared by all

service queues. PQL is the only exceptional scheme since

it limits per-queue buffer size. The base RTT is roughly

500 µs and the corresponding BDP is 62.5KB. We set

ECN marking thresholds for DCTCP and TCN to 30KB and

240µs, respectively. These are the best values experimentally

found. Note that there is a theory-practice gap in determining

ECN marking thresholds [2].

1) Static Flow Experiments: In static flow experiments,

we focus on weighted fair sharing and work conservation.

Convergence and Queue Evolution: In this experiment,

we show the basic results with two active queues between

4 DRR queues having the equal quantum of 1.5KB. We

use three servers where two servers are the senders for

each service queue and the other one is the receiver. Using

iperf, each sender starts flows to the receiver for 10

seconds. The sender of queue 2 generates 16 flows while the

sender of queue 1 has only 2 flows. Ideally, the active queues

should share bandwidth equally regardless of the number of

competing flows and the inactive queues.

Figure 3 shows throughput of the active queues over time.

It is easy to find that DynaQ is the only solution that shares

bandwidth fairly. Throughput of the active queues in Best-

Effort does not converge, resulting in significant unfairness.

With PQL, the active queues share the bandwidth fairer than

BestEffort, but still results in considerable unfairness.

Figure 4 reports the queue length evolution for the ac-

tive queues. We measure per-queue buffer occupancy every

enqueueing and dequeueing operations and obtain 1K se-

quential samples. The dotted lines indicate per-queue buffer

size. The queue evolution samples explain the throughput

in Figure 3. In BestEffort, since queue 2 has more flows,

queue 2 dominates the port buffer while queue 1 with smaller

flows occupies a small buffer. In PQL, queue 2 can occupy

buffer space more than that in BestEffort, but it is limited

to a reserved size. Unlike the other schemes, DynaQ shares

the buffer dynamically that dropping thresholds change over

time. Thanks to this, each queue can occupy enough buffer
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Figure 3. Throughput convergence of two active DRR queues with equal weights.
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Figure 4. Queue length evolution of two active DRR queues with equal weights.

regardless of the number of flows and active queues.

Weighted Fair Sharing and Work Conservation: In

this experiment, we consider 4 DRR queues with the equal

quantum as same as the previous experiment. However, we

now vary the number of active queues over time. Each

queue has a different number of flows that the sender of

queue i starts 2i flows to the receiver simultaneously. From

10 seconds, we change the number of active queues by

stopping flows. At 10 seconds, the sender of queue 4 stops

traffic. After 5 seconds, queue 3 becomes inactive. At 20

seconds, the sender of queue 2 no longer sends flows. The

sender of queue 1 finishes at 25 seconds. We measure per-

queue throughput every 0.5 seconds and obtain the aggregate

throughput as well. Ideally, service queues should share

bandwidth fairly regardless of the number of flows and the

aggregate throughput always should be high regardless of

the number of active queues.

Figure 5 shows the results. We observe that BestEffort

fails to achieve fair sharing. When all the four queues are

active, queue 4 with 16 flows occupies the largest bandwidth

share because the port buffer is dominated by the packets

of queue 4. Due to this, queue 1 only obtains 0.14Gbps of

average throughput for the first 10 seconds. Even when only

queue 1 and 2 are active at 15 seconds, the two queues do

not share bandwidth fairly in spite of the scheduler because

queue 2 has twice as many flows as queue 1.

PQL shows the better results than BestEffort. When all

queues are active, PQL preserves fair sharing. However,

when the number of active queues decreases, fair shar-

ing is violated. We can see the unfair bandwidth sharing

between the two service queues at 15 ∼ 20 seconds.

More importantly, we can see that the aggregate throughput

decreases as the queues becomes inactive. It is notable

that the average aggregate throughput during 20 ∼ 25
seconds is only 0.78Gbps. This is because each service

queue cannot utilize the remaining free buffer space. Unlike

the compared schemes, DynaQ makes the service queues

share bandwidth almost perfectly regardless of the number

of flows. In addition, since DynaQ allows a queue to utilize

free buffer space, the aggregate throughput does not decrease

even when few queues are active.

Impact of Queue Weights: In this experiment, we use

the same scenario in the previous experiment. The dif-

ference is that we configure different quantums for the

DRR queues. Our default quantum is 1.5KB of MTU. We

set the weights of the queues to {4, 3, 2, 1}, which result

in {6, 4.5, 3, 1.5}KB of quantums. We measure the per-

queue throughput every 0.5 seconds for 10 seconds. Ideally,

the queues should share the bandwidth by respecting their

assigned weights.

Figure 6 shows the throughput share of each service

queue. The throughput share is defined as Ri(t)/
∑

R(t)
where Ri(t) denotes the throughput of queue i at time t.
The result with BestEffort shows that BestEffort does not

preserve weighted fair sharing. In spite of different quan-

tums, BestEffort allows a queue with many flows to occupy

more throughput share. For example, the average throughput

share of queue 4 for 10 seconds is 0.35 although its desirable

share is 0.1. PQL achieves weighted fair sharing in this

experiment. This is not surprising because PQL assigns a

static buffer size to each service queue. However, as we have

shown in the previous experiment, PQL loses throughput as

the number of active queues decreases although it is omitted

in this experiment. The result demonstrates that DynaQ
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Figure 5. Bandwidth sharing between 4 DRR queues with equal weights.
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Figure 6. Bandwidth sharing between 4 DRR queues with different queue weights of 4:3:2:1.
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Figure 7. Throughput with 2 TCP and 2 CUBIC senders.

achieves weighted fair sharing by respecting the assigned

weights regardless of the number of competing flows.

Impact of Transport Protocols: We consider a scenario

where senders use different transport protocols. We have

tried to use emerging protocols, but it is hard to obtain

their codes. Instead, we use TCP and CUBIC. Unlike the

previous experiments where all senders use TCP, we now

make the senders of queue 3 and queue 4 use CUBIC. Except

transport protocols, we use the same scenarios in the equal

sharing experiment. Figure 7 shows the results. We can see

that DynaQ achieves fair sharing regardless of employed

transport protocols. One notable point is that, at 10 seconds

and 15 seconds, we can see that the aggregate throughput

decreases slightly for a moment when queue 4 and queue 3

become inactive. This is because of the time for ramp-up of

the other queues, not due to our buffer sharing policy.

2) Dynamic Flow Experiments: In dynamic flow experi-

ments, we show that DynaQ can achieve low latency.

Methodology: At the switch, we configure SPQ/DRR

where one queue has higher priority than the other four DRR

queues. Packets in the DRR queues can be dequeued only

when the SPQ queue is empty. This is a common switch

configuration to accelerate latency-sensitive small flows [2].

We use 1.5KB of the equal quantum for all DRR queues.

We use a client/server application [1] to generate traffic

with the web search workload. We have 4 servers and

1 client. The client initially opens 5 persistent TCP con-

nections to each server. The client generates requests to

the servers through available connections. When there is

no available connection, the client creates a new connec-

tion. The inter-arrival time of generated requests follows a

Poisson process. When a request arrives, each of servers

responds with requested data size. The server application

sets DSCP values for outgoing packets using setsockopt

and a flow is mapped to one of the service queues randomly.

We also employ a two-level PIAS [19] to classify small flows

with 100KB of a priority demotion threshold. Therefore, the

first 100K bytes are buffered into the SPQ queue and the

remaining bytes are enqueued into the DRR queues in the

low priority. Overall, we generate 10K flows by varying the

traffic load from 30% to 80%.

Comparison with Non-ECN Schemes: Figure 8 re-

ports the FCT results that compare DynaQ with non-ECN

schemes. The average FCTs of overall and large flows are

similar since most of bytes in the benchmark traffic come

from large flows. Compared to PQL, DynaQ achieves the

better average FCT for large flows by up to 1.95×. Similarly,

DynaQ outperforms PQL in the average FCT for overall

flows by up to 1.80×. This is because a service queue in

PQL can occupy a limited buffer space. The results against

BestEffort are mixed whose gaps are within 0.90× ∼ 1.02×
and 0.83× ∼ 0.97× for the average FCT of overall flows

and large flows, respectively. The reason why BestEffort

outperforms DynaQ is that large flows blocks small flows

in the port buffer. Not surprisingly, we can see that DynaQ
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Figure 8. FCT comparison against non-ECN schemes with SPQ (1 queue) / DRR (4 queues).
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Figure 9. FCT comparison against ECN-based schemes with SPQ (1 queue) / DRR (4 queues).

significantly outperforms BestEffort in the FCT of small

flows. Although BestEffort outperforms DynaQ in the FCT

of large flows, BestEffort cannot preserve weighted fair

sharing as we have shown.

For the average FCT of small flows, DynaQ achieves

the best performance between the schemes. DynaQ beats

BestEffort by 1.26× on average across the traffic loads. The

performance gap increases as traffic load grows. Compared

to PQL, DynaQ has the better performance within 1.08× ∼
1.14×. From the 99th percentile FCT result, we find that

BestEffort shows the significantly worse performance than

DynaQ when traffic load increases. For example, the FCT

gap in 60% of load is 8.40×. Unlike BestEffort, PQL

shows relatively stable performance. However, DynaQ still

outperforms PQL by 1.14× on average across the loads.

Comparison with ECN-based Schemes: We now discuss

the FCT results of DynaQ compared to the ECN-based

schemes. Figure 9 shows the results. Like the results in

Figure 8, the results for overall and large flows are similar.

DynaQ shows the mixed performance against the ECN-

based solutions, but generally outperforms the comparisons.

TCN shows the similar average FCTs for overall and large

flows when traffic loads are within 30% ∼ 40%. However,

the maximum gap is only 0.95× for overall flows when

load is 30%. DynaQ outperforms TCN for the rest traffic

loads whose the ranges of performance gaps are within

1.28× ∼ 1.85× and 1.29× ∼ 1.99× for overall and large

flows, respectively. PMSB also has a similar performance

to TCN. Per-Queue ECN shows the worst performance

between the schemes. When we consider the results for small

flows, DynaQ beats the other ECN-based schemes in both

average and 99th percentile FCTs. For example, DynaQ is

better than PMSB by up to 1.29× in the average FCT. The

ECN-based schemes show the worse performance at lower

traffic loads than high traffic loads. DynaQ outperforms

PMSB and Per-Queue ECN by 12.23× and 12.63× at 30%

of traffic load, respectively.

B. Large-Scale Simulations

We conduct simulations to evaluate the performance of

DynaQ in large-scale environments using ns-2.

1) Static Flow Simulations: In this simulations, we eval-

uate DynaQ’s robustness.

Methodology: Like our testbed, we build a star topology

to emulate a compute rack. We consider two high-speed

links: 10Gbps and 100Gbps. The base RTTs are 84µs and

40µs for each of links. In the switch, we configure WRR

with equal weights for packet scheduling. We have enabled

Jumbo frame for 100Gbps links. We consider Broadcom

Trident+ and Trident 3 ASICs for 10Gbps and 100Gbps

links, respectively. Therefore, each port has 192KB and 1MB

of buffers, which are completely shared by service queues,

except in PQL. We use TCP for the transport protocol and

set RTOmin to 5ms, the lowest stable value in jiffy timer.

Impact of Link Capacity: We first perform a simulation

with 10Gbps links. We have 8 services, which are mapped

to each of 8 service queues. There exist 2 × i senders for

queue i. Every senders of service queues start a flow at

the beginning simultaneously. From 200ms, the senders of

queues 2 ∼ 8 stop their transmissions every 50ms in order.

For example, the senders of queue 3 finishes its flows at

250ms and queue 1 is the only active queue after 500ms.

We measure per-queue throughput every 10ms. Using the

measured data, we calculate Jain’s fairness index between
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Figure 10. Bandwidth sharing on 10Gbps links.
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Figure 11. Bandwidth sharing on 100Gbps links.

active queues and the aggregate throughput. The aggregate

throughput is to inspect whether the link is fully utilized at

any time. If a solution preserves weighted fair sharing and

work conservation, the two metrics always should be high.

Figure 10 shows the bandwidth sharing results with

10Gbps links. Not surprisingly, DynaQ and PQL achieve

the near-optimal fairness index while BestEffort causes

fluctuations. For example, the fairness index plunges to 0.67

at 410ms. This is because BestEffort cannot handle service

queues with many flows. Figure 10 (b) shows that DynaQ is

the only solution that maintains high link utilization between

the schemes. When queue 8 finishes at 500ms, PQL causes

a huge throughput collapse. PQL maintains the aggregate

throughput around 8.5Gbps after 500ms. This is because

queue 1, the only active service queue, cannot occupy the

buffer as much as the BDP.

We perform the same simulation with 100Gbps and Fig-

ure 11 reports the results. We find that DynaQ can achieve

work conservation and preserve weighted fair sharing with

a high link capacity. The overall tendency is very similar

to the 10Gbps results. BestEffort cannot provide per-queue

fairness and PQL loses a significant amount of throughput

when service queue 1 is the only active queue. In addition,

DynaQ does not lose throughput much at 500ms. Unlike

DynaQ, BestEffort causes 9.2Gbps of throughput loss.

Impact of Traffic Dynamics: We now inspect the how

DynaQ is robust to traffic dynamics. We conduct a sim-

ulation with the almost same scenario as the previous

simulation with 100Gbps. The only different setting is the

number of senders per service queue. We consider a very

extreme scenario where service queue i has 2(3+i) senders

generating a single flow. For example, queue 8 has 2048

flows. Figure 12 plots the results. We observe that DynaQ is
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Figure 12. Bandwidth sharing on 100Gbps links with many flows.
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Figure 13. FCT comparison with SPQ (1 queue) / DRR (7 queues).

robust to the extreme traffic scenario. BestEffort shows the

worst performance in the fairness index that it achieves only

0.24 of fairness index for the first 200ms. The scheme also

loses throughput at 300ms for a moment. PQL still fails to

achieve work conservation. The aggregate throughput stays

below 94.5Gbps from 500ms.

2) Dynamic Flow Simulations: We now evaluate Dy-

naQ’s performance in large-scale data center networks.

Methodology: We build a non-blocking leaf-spine topol-

ogy, a widely used data center network topology design. Our

topology has 12 leaf (ToR) switches and 12 spine (Core)

switches. Each leaf switch has 12×10Gbps downlinks and

12×10Gbps uplinks. The base RTT across spine switches is

85.2µs. We use ECMP as the load balancing scheme. We use

TCP and RTOmin is 5ms. Each switch port has a 192KB

buffer shared by service queues except in PQL.

We configure SPQ/DRR with 8 service queues where one

queue is the shared high priority queue and the other 7

queues are dedicated DRR queues with equal quantums.

Like the testbed experiments, we also employ a two-level

PIAS [19] whose priority demotion threshold is 100KB to

classify small flows from large flows. We evenly classify

the 144×143 communication pairs into 7 services and each

service has its own service queue. Different services use

different traffic distributions in Figure 2. We generate 10K

flows by varying traffic load from 30% to 80%.

Results: Figure 13 shows the results. Due to space

limitation, we only discuss the average FCT of overall flows

and the 99th percentile FCT of small flows. In the average

FCT for overall flows, we observe that DynaQ has mixed

results compared to BestEffort and outperforms PQL. This

is similar to the results in the testbed experiments. The

gaps with BestEffort are within 0.98× ∼ 1.01×. For the



99th percentile FCT of small flows, we can see that DynaQ

achieves similar performance to the compared schemes. PQL

slightly outperforms DynaQ that the maximum gap is 0.98×.

In the testbed experiments with 1Gbps links, BestEffort

results in a performance degradation when loads are high.

However, with 10Gbps links, DynaQ beats BestEffort only

by up to 1.01× due to the increased link capacity.

VI. CONCLUSION

This paper proposed DynaQ, a multi-queue management

solution for multi-queue data centers. DynaQ is the first

protocol-independent solution that can isolate service queues

with generic transport protocols through dynamic packet

dropping thresholds. We have discussed how DynaQ can be

implemented on hardware. To compare DynaQ with existing

solutions, we have implemented a software prototype of

DynaQ as a Linux qdisc module. We conducted a series

of testbed experiments and simulations. Our evaluation re-

sults demonstrated that DynaQ ensures work conservation,

weighted fair sharing, and low latency without protocol

dependency.
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