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Abstract – Since some cloud resources are located as edge servers 

near mobile devices, these devices can offload some of their tasks 

to those servers. This will accelerate the task execution to meet the 

increasing computing demands of mobile applications. Various 

approaches have been proposed to make offloading decisions 

about offloading. In this paper we present a Reinforcement 

Learning(RL) approach that considers delayed feedback from the 

environment, which is more realistic than conventional RL 

methods. The simulation results show that the proposed method 

succeeded to handle the random delayed feedback of the 

environment properly and enhanced the conventional 

reinforcement methods significantly.  
 

 Keywords – Mobile-edge computing, Reinforcement Learning, 

Task offloading 

 

I.  INTRODUCTION 

 With the outstanding growth of the Internet of Things (IoT) 

and mobile applications in multi-access networks, enhancing 

the quality of user experience has attracted a lot of attention. 

Due to the limited resources of mobile devices, such as 

batteries, the execution latency must not exceed a specified 

deadline [1]. Assigning critical and compute-intensive tasks to 

the cloud may result in even longer response times owing to the 

propagation delay to the cloud data centers. Bringing these 

resources close to the network edge, reduces the transfer latency 

[2]. In this computing paradigm that is called Multi-Access 

Edge Computing (MEC), mobile devices can offload their 

compute-intensive tasks to the MEC servers to alleviate the 

network congestion problem and improve the application’s 

response time [3]. Minimizing the computation latency is the 

major objective of task offloading through which, the energy 

consumption of mobile devices can be saved. Optimum 

decision-making is necessary for maximum use of the 

offloading mechanism. In this regard there are various 

strategies whose all aim summarizes in answering two 

following questions as stated by [4]. a) which tasks should be 

offloaded? b) where should they be offloaded? These 

approaches mainly rely in model-based or model-free methods. 

Formulating the objectives of the environment based on a 

simplified model, and tries to optimize them by existing 

optimization techniques, is the essence of model-based 

approaches whereas in model-free ones, a decision making 

agent tries to realize the best decisions by online interacting 

with the environment. The main model-free decision making 

approaches are based on reinforcement learning concepts.    On 

the contrary, the model-based methods use a wide range of 

algorithms [5]. For instance, in [6] the nonlinear programming 

is applied to minimize the task completion time and power 

consumption. To simplify the model, authors did not consider 

uplink energy consumption. Authors of [7] was used Mixed 

Integer Programming (MIP) technique to perform the task 

scheduling and resource allocation in task offloading scenarios. 

Their model fails to be scalable because as the number of 

mobile devices increase, the task admission rate decreases. 

Optimal task offloading is inherently a NP hard problem [8] so 

the optimization techniques usually lead to a suboptimal 

solution of the model space.  

      In addition, the model simplification, which is necessary in 

resource limited devices, degrades the accuracy of analytical 

model-based methods. These drawbacks motivate the 

researchers to accept the challenges of machine learning 

techniques. As a branch of artificial intelligence, machine 

learning tries to learn from input data and use the knowledge to 

control and predict the system's behavior [9]. It is usually 

performed in three ways: Supervised Learning, Unsupervised 

Learning, and Reinforcement Learning (RL) [10]. Despite the 

other two paradigms, RL interacts online with the environment 

and uses the feedback to build its own knowledge base with no 

prior data. This feature makes RL interesting for decision 

making purposes. There are various studies in offloading 

decision systems that implements the RL paradigm in different 

shapes. In [11] authors, uses Q-learning method for 

computation delay and energy consumption minimization. 

Substituting deep neural networks as the state estimator with 



plain Q tables, introduces Deep Reinforcement Learning (DRL) 

which paves the way for applying RL in more sophisticated 

decision making applications. Huang et al. [12] used a deep 

reinforcement learning approach to minimize the average 

computation rate of all connected mobile devices.  In [13] 

authors use DRL to allocate computation resources of edge 

server to offloaded task. One of the main challenges of applying 

RL approaches in real world scenarios which is almost 

neglected in studies, is the delayed feedback. Upon taking an 

action by the agent over the environment. The reaction of the 

environment is often accompanied by a delay that neglecting it 

can effectively reduce sample efficiency and prolong the 

convergence to optimal policy. In this paper we propose a 

SARSA mechanism to optimize computation latency with task 

offloading in multi access networks which, efficiently handle 

the delayed feedback problem. 

 

I.  Task offloading Architecture 

In this paper we consider the case of single base station-

multiple devices architecture that has been shown in Fig 1. 

 

 

       
      

MEC Server

Base Station

 
Fig. 1 Single base station Architecture 

   

Extending the method for complex architectures is quite 

possible. In this Architecture, the mobile devices face three 

options to choose among for task computation; local execution, 

edge offloading and cloud migration. 

 

 

II. Proposed Reinforcement Learning adaptation 

 

We consider the agent as a task off loader operated on each 

device. At each decision epoch, the agent receives the state of 

the system S and issues an action A. To reduce the overhead of 

task offloading computation, the state space should be kept as 

minimal as possible. To discretize the atate-space we assign a 

rank to any continuous interval. This assigning has been 

achieved empirically.   The remaining power as an integer rank 

between one and ten (Pr ), the computation complexity of the 

dispatched task as integer rank between one and 4 (Ct) and the 

remaining bandwidth of the channel as an integer rank between 

one and ten (Br). table 1 shows the state variables of the 

environment. As it is mentioned before the action set includes 

3 Members as follow.  

 

A = {Local , Edge , Cloud} 

 

The reward function has been designed to direct the agent 

toward optimal policy. 

 

Table 1: State Space 

 

State 

variable 

Explanation Range 

Pr Remaining Power of the Device 

(2mAh-14mAh) 

1-10 

Ct Computational Complexity of the Task 

(50m clock cycle- 800m clock cycle) 

1-4 

Br Remaining Bandwidth (2mbps – 

200mbps) 

1-10 

ql The  Available Computation Capacity 

of the Device (200m clock cycle- 

1000m clock cycle) 

1-4 

qe The  Available Computation Capacity 

of the MEC Server (2 cores - 64 cores) 

1-4 

 

The proposed function has considered computation latency, 

power consumption and bandwidth utilization.  Depending on 

the taken action, the reward is calculated differently. 

 

        - (computation power) *(computation latency) if A= Local 

R= 

        - (transmission power) *(response time) if A=Edge, Cloud 

 



Response time is equal to the summation of computation 

latency on the remote device and transmission latency on uplink 

and downlink of the wireless channel. 

 

 
Fig. 2 The flowchart of the proposed mechanism 

 

After receiving the reward, agent updates the Q-table by means 

of famous SARSA update equation. Using SARSA make the 

learning procedure more stable. 
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In real world scenarios like one discussed in this paper the 

feedback of reward (R). usually experiences a random delay 

which is needed to be considered and handled properly. We use 

a timer and computational models [14] as a side channel 

information for reward signal. The timer measure feedback 

delay of the reward and computational models calculate the 

transmission and computation power. If The timer reaches the 

deadline, the reward will be calculated by substituting the time 

elements with timer values and power elements with models F1 

and F2. It worth mentioning that we use 3 different deadlines 

for offloading (T1 , T2 , T3). Therefore, in the face of long delay 

the reward will be produced as: 

 

             - (F1) * (T1)                     if A= Local 

 

 

R=        - (F2) * (T2)                     if A= Edge        

 

                

             - (F2) * (T3)               if A= Cloud 

 

 

To mitigate the effect of inaccuracy of this method on the 

update procedure, the learning rate is reduced after meeting the 

deadline. The deadlines can be set based on the statistical 

observations. The flowchart of the mechanism is depicted in Fig 

2.  

 

 

III. Experimental Results 

 

A simulation-based set-up has been utilized to evaluate the 

performance of the proposed method. The simulation 

parameters are listed in table 2 

 

Table 2 simulation parameters 

Element Amount Randomness 

Num of mobile 

devices 

[16,24] Uniform 

distribution 

Num of wireless 

channels 

4  

Channel 

bandwidth 

1.2GHz  

Device 

computation 

capacity 

[1.2,2.5] *109 

clock cycles/sec 

Uniform 

distribution 

MEC computation 

capacity 

32*109 clock 

cycles/sec (64 

cores) 

 

 

The proposed method has been compared against ordinary 

SARSA method and greedy heuristic method . The amount of 

average power consumption and computation latency reduction 

that each method achieved in comparison with threshold 

offloading scheme has been illustrated in Fig 3 and 4. The 

horizontal axis shows the methods, and the vertical axis shows 



the percentage of reduction. Each figure consists two parts. In 

the first part. The tree task offloading methods compared in 

respect to only local execution and only edge execution scheme. 

 

 

 
Fig. 3 the amount of power reduction compared with the base 

schemes 

 

In only local execution scheme, the power consumption usually 

is high thus the effect of offloading policies is bold and 

noticeable. On the contrary, in only edge execution policy, the 

main power contributor which can be compromised by any 

approach is the transmission power. On the other hand, when it 

comes to computation latency metric, the only local execution 

scheme is less effected than edge only execution one.  

       In all modes the proposed method could outperform other 

methods. Convergence rate is one of the most important criteria 

in performance evaluation of RL algorithms. Fig 5 shows the 

convergence rate of the proposed method versus ordinary 

SARSA algorithm. Besides of the faster convergence to the 

optimal policy, the proposed method shows a more stable and 

smooth curve. The delayed feedback makes the credit 

assignment problem even worse. This problem is the source of 

misinterpretation in the relation of reward to optimal policy. 

    The performance of the reinforcement learning can indeed 

improve using further learning techniques proposed for various 

other applications, e.g., [15-25]. The optimal decisions can 

simultaneously benefit from soft computing and artificial 

intelligence techniques which are proven effective in a diverse 

range of applications, e.g., [26-36] which will be considered in 

our upcoming research.  

        

 

  
Fig. 4 the amount of computation latency reduction compared 

with the base schemes 

 

  

 
Fig. 5 convergence rate 

 

For the future research, the application and the performance of 

ensemble and hybrid machine learning, such as those proposed 

in, e.g., [37-45], should be explored. It is essential to initiate 

comparative analysis and consider standard and advanced 

machine learning methods to come up with optimal model as 

proposed in several recent works, e.g., [46-52]. Literature 



suggests that often ensemble and hybrid machine learning 

outperform other artificial intelligence methods. Therefore, an 

in depth and focused research on these techniques is essential 

for future research.   

 

IV. Conclusion 

 

Task offloading is a nontrivial decision making problem that 

have a great impact in reliability and performance of new 

generations of wireless and IoT devices in multi-access 

networks. Reinforcement Learning is a promising approach to 

such a decision making problems which can act in absence of 

any model depending on the feedback of environment. The 

delay that comes with this feedback in most real environments 

creates problems in the process of reaching the optimal policy. 

In this paper we showed that proper handling of this issue can 

boost the performance reinforcement learning approaches. The 

results demonstrate well that the proposed method has not only 

made more optimal decisions, but also has acted faster in 

reaching the optimal policy than conventional SARSA 

algorithm. 
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