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Abstract. This paper investigates the actuator fault detection for one-sided Lip-
schitz systems. The feature of the nonlinear function lies that the Lipschitz con-
stant is unknown and one-sided Lipschitz constant is known. The aims is to design
an adaptive observer for this system. Then, based on the observer, an algorithm to
detect the fault occurrence in the actuator is proposed. An example is simulated
to verify the feasibility of the approach.
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1 Introduction

Recently, the investigation of one-sided Lipshitz systems (OLSs) has drawn consid-
erable attention in the control community. [1] firstly proposed the definition of one-
sided Lipschitz in the nonlinear observer design problem. [2] presented the definition
of quadratical inner-boundedness (QIB), and the existence conditions of observers were
formulated by the form of linear matrix inequalities (LMIs). In order to obtain less con-
servative conditions, [3] improved the results of [2] by S-procedure method. After that,
many works were dedicated to the observer design for OLSs, such as [4–6]. In [4], a
stochastic observer design method for OLSs is proposed. [5] considered the unknown
input observers for the continuous and discrete systems, respectively. [6] extended the
observer design method to singular OLSs.

Generally speaking, fault detection (FD) and reconstruction has always been a hot
topic in the study of safety for practical systems. If the fault appears in the actuator, the
harm caused by is enormous. Thus, it is essential to detect the actuator fault online. To
name a few, there exist many methods to deal with the FD, among which the method
based on observer is very popular. Indeed, FD based on observer of Lipschitz systems
have been studied extensively in the past decades [7–10]. When turns to OLSs, few
works have been done except for [11]. In [11], Li et.al considered the nonlinear function
which conforms to be both one-sided Lipschitz and QIB. As pointed out in [12], the
plants considered in the mentioned references [2–6, 11] are in fact a subclass of OLSs.

Motivated by the above analysis, we further consider the FD problem for OLSs,
where the nonlinear function only satisfies one-sided Lipschitz constraint but not QIB.
The remainder of this paper is organized as follows: Section 2 presents necessary basics,
main results including the adaptive observer(AO) and FD algorithm are given in Section
3. Section 4 simulates one example to show the validation of the proposed approach.



2 Problem formulation and preliminaries

Consider the system with actuator fault:{
ẋ = Ax+B f (Hx,u)+Dg(x,u)+Tu f ,
y =Cx, (1)

where x ∈ Rn, u ∈ Rm, and y ∈ Rq are the state, the control input, and the output re-
spectively. f (·, ·) ∈ Rr and g(·, ·) ∈ Rp are both nonlinear matrix functions. The signal
u f ∈ Rs stands for the unknown actuator fault vector. A ∈ Rn×n, B ∈ Rn×r, C ∈ Rq×n,
D ∈ Rn×p, H ∈ Rr×n, and T ∈ Rn×s are determined matrices.
Assumption 1. f (·, ·) is one-sided Lipschitz with respect to w, i.e.,

< f (w,u)− f (ŵ,u),w− ŵ >≤ α||w− ŵ||2, (2)

where α is the one-sided Lipschitz constant.
Assumption 2. g(·, ·) is Lipschitz with respect to w, i.e.,

||g(w,u)−g(ŵ,u)|| ≤ σ ||w− ŵ||, (3)

where σ is the Lipschitz constant but unknown.
Assumption 3. There exist positive definite matrice P ∈ Rn×n, matrices L ∈ Rn×q,
F ∈ Rr×q, W ∈ Rp×q and constant ε > 0 such that

(A−LC)T P+P(A−LC)+2α(H−FC)T (H−FC)+2εI ≤ 0, (4)

PB = (H−FC)T , (5)

DT P =WC. (6)

Remark 1. Generally, f (Hx,u) is only one-sided Lipschitz in this paper. For the pur-
pose of design, checking the condition of QIB is not so easy. Thus, if we remove this
constraint, it will obviously extend the type of the system.

3 Main result

For the system (1), an AO is constructed as follows

˙̂x = Ax̂+B f (Hx̂+F(y−Cx̂),u)+Dg(x̂,u)+L(y−Cx̂)+
1
2

ξ̂ DW (y−Cx̂), (7)

with adaption law
˙̂
ξ = τ||W (y−Cx̂)||2, (8)

where the constant τ is positive.

From (7) and (1), the error system can be obtained

ė = (A−LC)e+B∆ f +D∆g− 1
2

ξ̂ DWCe+Tu f , (9)

where e = x− x̂, ∆ f = f (Hx,u)− f (Hx̂+F(y−Cx̂),u), ∆g = g(x,u)−g(x̂,u).



Theorem 1. Suppose that Assumptions 1-3 hold and u f = 0, the error system (9) is
asymptotically stable with lim

t→∞
e(t) = 0, i.e., the system (7) with (8) is an AO for the

system (1).

Proof. Let ξ̃ = ξ− ξ̂ , and then ˙̃
ξ =− ˙̂

ξ =−τ||WCe||2. Here we employ the Lyapunov
function candidate as follows

V = eT Pe+
1
2

τ
−1

ξ̃
2, (10)

Taking the derivative of (10) along (9), one can get

V̇ = 2eT Pė+ τ
−1

ξ̃
˙̃
ξ

= 2eT P[(A−LC)e+B∆ f +D∆g− 1
2

ξ̂ DWCe]− ξ̃ ||WCe||2

= 2eT P(A−LC)e+2eT PB∆ f +2eT PD∆g− ξ̂ eT PDWCe− ξ̃ ||WCe||2.

(11)

By Assumption 1, together with (4) and (5), we have

2eT [P(A−LC)e+PB∆ f ] = eT [(A−LC)T P+P(A−LC)

+2α(H−FC)T (H−FC)]e≤−2εeT e.
(12)

It follows from Assumption 2 and (6) that

2eT PD∆g = 2(DT Pe)T
∆g = 2(WCe)T

∆g

≤ 2||WCe|| ||∆g|| ≤ 2σ ||WCe|| ||e||

≤ 2||σWCe|| ||e|| ≤ σ2

ε
||WCe||2 + ε||e||2,

(13)

and

ξ̂ eT PDWCe = ξ̂ eT (WC)TWCe = ξ̂ ||WCe||2. (14)

Substituting (12)-(14) into (11), we have

V̇ ≤−εeT e+(
σ2

ε
− ξ̂ − ξ̃ )||WCe||2. (15)

Let ξ =
σ2

ε
, then

V̇ ≤−εeT e. (16)

By integrating two sides of (16), we can get∫ t

0
V̇ (t)dt ≤−

∫ t

0
εeT (s)e(s)ds. (17)

In view of the fact that V (t)> 0 and V (0)< ∞, it is deduced from (17) that∫ t

0
εeT (s)e(s)ds≤V (0)< ∞. (18)



By Barbalat Lemma [13], it is concluded that lim
t→∞

εeT e(t) = 0, which implies that

lim
t→∞

e(t) = 0.

Remark 2. From the above proof, it is not difficult to notice that the estimation of
unknown parameter ξ̂ or σ̂ may not converge to its original value ξ or σ . To some
extend, the error ξ̃ or σ̃ is only Lyapunov stable but not asymptotically stable.

It is indeed that Assumption 3 provides the sufficient conditions, under which we
can design the AO for the system. However, they are not the standard LMIs or linear
matrix equalities (LMEs) when α 6= 0, and we need derive another forms.

Theorem 2. If there exist positive definite matrix P ∈ Rn×n, matrices Y ∈ Rn×q, F ∈
Rr×q, W ∈ Rp×q and constant ε > 0 such that[

AT P+PA−YC−CTY T +2εI (H−FC)T

(H−FC) − I
2|α|

]
≤ 0, (19)

PB = (H−FC)T , (20)

DT P =WC, (21)

then (4)-(6) hold.

Proof. Let Y = PL and by using the Schur complement, one can prove that (19)-(21)
are the sufficient conditions of (4)-(6).

Remark 3. It is obvious that (19) is LMI while (20) and (21) are LMEs. We can
use Scilab [14] to solve the feasible solutions of the constraints of (19)-(21).
Remark 4. If the actuator has no fault, the designed AO (7) with (8) is valid. In other
words, the state x of the above system (1) can be asymptotically recovered by x̂. When
the fault u f appears, the AO (7) with (8) can be used to detect the fault.

Theorem 3. Let ey = y−Cx̂ and µ > 0 be the alarm threshold. If the system (7) with
(8) is an AO for the system (1), then the following algorithm{

if ||ey|| ≤ µ, the actuator has no fault,
if ||ey||> µ, the actuator has a fault, (22)

can be used to detect the fault u f .

The proof is direct and omitted here due to the length of this paper. It is worth noting
that the alarm threshold µ is very essential in the design of practical systems and affects
the accuracy of the FD algorithm.

4 Numeric Simulation

Consider the system (1), where

A =

[
0.90 0.21
0.35 −1.2

]
, B =

[
0.10
0.72

]
, C =

[
1 0
]
,



H =
[

1.20 0.81
]
, D =

[
0.21
0.46

]
,

f (Hx,u) = 0.5sin(Hx)− (Hx)
1
3 , g(x,u) = 2sin(x), α = 0.5.

Solving the conditions (19)-(21) yields

P =

[
833.01 −3.54
−3.54 1.62

]
, L =

[
23.41
174.02

]
, F =−79.61, W = 173.12.

By Theorem 1, the AO has the following form:

˙̂x1 = 0.9x̂1 +0.21x̂2 +0.10(0.5sin(1.2x̂1 +0.81x̂2−79.61(y− x̂1))− (1.2x̂1 +0.81x̂2

−79.61(y− x̂1))
1
3 )+0.42sin(x̂1 +23.41(y− x̂1)+18.1776ξ (y− x̂1)

˙̂x2 = 0.35x̂1−1.2x̂2 +0.72(0.5sin(1.2x̂1 +0.81x̂2−79.61(y− x̂1))− (1.2x̂1 +0.81x̂2

−79.61(y− x̂1))
1
3 )+0.92sin(x̂1)+174.02(y− x̂1)+39.8176ξ (y− x̂1)

ξ̇ = 173.12(y− x̂1)

Firstly, we show the simulation result of the AO. The condition x(0) and x̂(0) are chosen
as [0.1 2]T and [0.11 0.2]T , and the initial value of ξ̂ is 0, the recovered state x̂ of the AO
is depicted in Fig.1 and Fig.2. The estimation of the unknown parameter ξ is presented
in Fig.3. It can be seen that the designed AO is effective.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time(sec)

0

5

10

15

20

25

S
ta

te

x
1

estimation of x
1

Fig. 1. The state x1 and the estimation of x1

When u f is defined by:

u f =

50, 0.4 < t ≤ 0.6,
80, 1 < t ≤ 1.2,
0, else.

The alarm threshold µ is chosen as 0.05. Fig.4 shows that the fault occurs during the
time intervals [0.4, 0.6] and [1, 1.2], which is consistent to the form of function u f .
Thus, the proposed FD algorithm is valid.
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Fig. 2. The state x2 and the estimation of x2
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Fig. 3. The estimation of the unknown parameter ξ
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Fig. 4. The time response of ||ey|| and the alarm line



5 Conclusion

This paper has studied the FD problem of OLSs. First, we design an AO for the OLS
where the nonlinear function is only one-sided Lipschitz. Then, we present FD algorith-
m based on the designed AO. Finally, an example is given to show that the FD algorithm
is effective.
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