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Abstract. Optimal control of Lévy jump-driven stochastic differential equations 

plays a central role in management of resource and environment. Problems 

involving large Lévy jumps are still challenging due to their mathematical and 

computational complexities. We focus on numerical control of a real-scale dam 

and reservoir system from the viewpoint of forward-backward stochastic 

differential equations (FBSDEs): a new mathematical tool in this research area. 

The problem itself is simple but unique, and involves key challenges common to 

stochastic systems driven by large Lévy jumps. We firstly present an exactly-

solvable linear-quadratic problem and numerically analyze convergence of 

different numerical schemes. Then, a more realistic problem with a hard 

constraint of state variables and a more complex objective function is analyzed, 

demonstrating that the relatively simple schemes perform well. 
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1 Introduction 

Uncertainties are ubiquitous in mathematical modeling and control for environmental 

and resource management. Stochastic differential equations (SDEs) have been principal 

tools for efficiently as well as rigorously describing stochastic dynamics of environ-

ments and resources [1-3]. Stochastic control based on Markovian feedback policy [4] 

is a well-established concept implementable in applications because it enables decision-

makers to make decisions based on system observations. 

Operation of dam and reservoir systems has been a major problem involving man-

agement of both resource and environment [5]. A dam and reservoir system consists of 

a reservoir created in a river to receive and store stochastic inflow discharge and an 

associated dam as a hydraulic structure to control outflow discharge [6]. Each dam and 

reservoir system has different operation goal depending on its construction purpose; 

however, it has a common principle that there exist some targeted reservoir water vol-

ume and outflow discharge. In this way, operation of a dam and reservoir system is 

understood as a stochastic control problem having targeted state. 



Existing stochastic control models of dam and reservoir systems are based on dy-

namic programming approaches where finding an optimal control reduces to solving 

an optimality equation of a degenerate elliptic or parabolic type [6-8]. This methodol-

ogy works only if the optimality equation is solvable analytically or its dimension is 

relatively low, one or two in most cases, such that a common numerical method like a 

finite difference scheme is implementable [9]. Such cases are too simple from an engi-

neering viewpoint [10]. Furthermore, the previous study suggested that the inflow dis-

charge follows an SDE driven by both small and large Lévy jumps [11], leading to an 

optimality equation of an integro-differential type having a singular integral kernel that 

is not necessarily easy to numerically discretize. 

To tackle the above-mentioned issue in the stochastic control of dam and reservoir 

systems, we introduce forward-backward stochastic differential equations (FBSDEs) 

[4, 12] as a new mathematical tool in this research area. FBSDEs are often equivalent 

to the optimality equations of the degenerate elliptic and parabolic types [12-13] but 

are more suited to higher-dimensional problems. This is because they can be imple-

mented using a Monte-Carlo method that can mitigate or even defeat the curse of di-

mensionality [14-16]. Our FBSDEs are based on a stochastic maximum principle [4] 

and fully couple forward and backward processes, both of which are driven by a Lévy 

jump process having infinite activities. To the best of our knowledge, FBSDEs, espe-

cially those driven by jumps, have not been investigated in dam and reservoir control 

problems. In addition, studies focusing on numerical computation of jump-driven 

FBSDEs are still rare except for purely theoretical ones [17-18]. 

The objective of this paper is thus set to be formulation and analysis of new jump-

driven FBSDEs for stochastic control of dam and reservoir systems. The model pro-

posed in this paper is simple but unique and oriented to engineering applications. A 

simplified linear-quadratic problem that is solvable analytically but still non-trivial is 

firstly derived and analyzed numerically using different least-squares Monte-Carlo 

methods. We use the exact discretization formula [19] to efficiently simulate the inflow 

discharge process driven by Lévy jumps having infinite activities. A more realistic case 

having constrained state variables and a more complex objective function is then nu-

merically analyzed with a least-squares Monte-Carlo method. Through the numerical 

experiments conducted in this paper, we discuss difficulties and remaining challenges 

in modeling and computation of dam and reservoir systems using FBSDEs. 

2 Stochastic Process Model 

2.1 Stochastic Differential Equations 

We consider a continuous-time operation problem of a dam and reservoir system hav-

ing the three state variables: the inflow discharge ( )
0t t

I


 as a non-negative variable 

having the range  )0,I = + , the water volume ( )
0t t

V


 of a reservoir having the 

range ,V V V  =    with constants V V , and the outflow discharge ( )
0t t

O


 having 

the range ,O O O  =    with constants O O . Typically, we have 0V O= = . 



Assume that the inflow is uncontrollable while the outflow is indirectly controllable by 

tuning its acceleration ( )
0t t

a


 having the range  ,A a a= −  with 0a  . The state and 

control variables must be constrained in the corresponding ranges for any 0t  . Math-

ematically, the constants , , , ,O O V V a  are not necessarily bounded. We consider both 

bounded and unbounded cases in this paper. Clearly, the former is more realistic. 

We consider the problem in a complete probability space as in the usual setting [4]. 

The stochastic system dynamics we consider are formulated as follows: 

 ( ) ( )
0

d d d ,dt tI I I t zN z t


= − +  , (1) 

 d dt tO a t= , (2) 

 ( )d dt t tV I O t= − , (3) 

where (1), (2), and (3) describe inflow, outflow, and storage processes, respectively. 

Here, 0   is the inverse of the correlation time of the inflow, N  is a Poisson random 

measure of a subordinator type having only positive jumps with the Lévy measure 

( )dv z . Based on a recent identification result for a real river [11], set 

 ( ) ( )1
d dbzv z az e z




− + −= , 0z   (4) 

with constants a , b , and ( )0,1  . This Lévy measure is of the infinite activities type 

since ( )
0

dv z


= + . Its first-order moment ( )1
0

dM zv z


=   is bounded and is given 

as ( )1

1 1 0M ab  −=  −   with a Gamma function  . The inflow discharge is more 

intermittent as   gets closer to 0; in real cases   is close to 0.5 [11]. 

We assume that the system (1)-(3) is equipped with a deterministic initial condition 

( )0 0 0, ,I O V  belonging to the space 
I O V   . Furthermore, a natural filtration 

generated by the Poisson random measure N  is denoted as ( )
0t t

F . We consider a 

Markovian setting, and the control 
ta  is assumed to be progressively measurable with 

respect to the filtration 
tF  at each 0t  . The control should be chosen so that the fol-

lowing constraint is satisfied as explained above: 
t OO   and 

t VV   with 
ta A  

for each 0t  . The earlier studies considered that the outflow discharge is directly con-

trollable [6-8]; however, instantaneously adjusting the outflow discharge is not only 

technically difficult but also triggers catastrophic failures of reservoir walls [20]. We 

therefore consider problems without such an impulsive adjustment. 

For simplicity of the analysis, we assume that the system (1)-(3) with each control 

( )
0t t

a


 has a unique path-wise solution that is right-continuous and has left limits. This 

assumption itself is interesting because our problem is a of state-constrained problem: 

a non-classical problem requiring a careful treatment at boundaries [6, 8], but its rigor-

ous mathematical analysis is beyond the scope of this paper. 



 

2.2 Objective Function 

The objective function to optimize the process ( )
0t t

a


 is formulated. We focus on a 

discounted case whose long-run limit is an infinite horizon case. Assume that the time 

horizon of the optimization problem is  0,T T =  with a terminal time 0T  . Our 

objective function   is a functional of the initial condition and the process ( )
0t t

a


: 

 

( )( ) ( )

( ) ( )  

0, , ,

0 0 0
0
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0

, , ; , , , d

ˆˆ max ,0 d
2 2 2 2

T
i o v

s s s s

T
i o v s

s s s s s

I O V a f I O V a s

ww w w
e a I O V V O O s




−

 
  

  
= + − + − + −  

  




. (5) 

Here, , , ,t i o v  is the conditional expectation using the information 

( ) ( ), , , , , ,t t tt I O V t i o v= , 0   is the discount rate, ˆ
VV   is the target water volume, 

and ˆ
OO  is the threshold discharge, and 

1 2 3 4, , , 0w w w w   are weighting coeffi-

cients satisfying 
1 2 3 4 0w w w w  . The parameters in (5) are allowed to be time-depend-

ent if necessary. 

In the expectation of (5), the first term penalizes sudden changes of the outflow 

discharge; the second term penalizes the deviation from the run-of-river condition 

(
t tI O= ) not only for sustainable operation of the reservoir with smaller impacts 

against the downstream river but also for continuous hydropower generation [21]; the 

third term penalizes deviation of the water volume from the prescribed target value V̂ ; 

and the fourth term penalizes outflow discharges smaller than the prescribed threshold 

value Ô  below which the downstream environment is severely threatened [6]. The dis-

count rate   is the inverse of the effective time length of the decision-making, meaning 

that the decision-maker, an operator of the dam and reservoir system, controls the sys-

tem considering future events of the time 
1 −
 ahead in the mean. The objective func-

tion is simple but is oriented to concurrent management of resource and environment 

considering multiple objectives using a scalarization technique. It reduces to be quad-

ratic if 
4 0w = . 

We introduce the dynamic counterpart of (5) to optimize the process ( )
0t t

a


 using 

a maximum principle approach based on FBSDEs: 

 
( )( ) ( ), , ,ˆ , , , ; , , , d

T
t i o v t

t t t s s s s
t

t I O V a e f I O V a s


 = −
    (6) 

and set its dynamically optimized counterpart, the value function, as 

 ( )
( )

( )( )ˆ, , , sup , , , ;t t t
a

t i o v t I O V a



 = . (7) 



Clearly, (6) is equivalent to (5) when 0t = . Taking the minus sign in (6) is simply to 

follow the existing argument of the stochastic maximum principle [4]. A maximizing 

control of (7) (and also minimizing (5)) is called an optimal control and is denoted as 

( )*

0t t
a


. We explore Markovian optimal feedback controls, with an abuse of notations, 

of the form ( )* , , ,t t t t ta a t I O V= . This is a dynamic and thus adaptive control based on 

the observation process ( )
0

, , ,t t t t
t I O V


 up to the current time. 

 

2.3 Stochastic Maximum Principle 

Stochastic maximum principle approach [4] reduces the optimization problem (6) to 

initial and terminal value problems of FBSDEs. It is a standard machinery for analyzing 

stochastic control problems in finance, economics, insurance, and related research 

fields. Our problem does not fall into them, but the approach is still applicable. Re-

markable advantages of the approach based on FBSDEs over that using the dynamic 

programming principle is that the former can naturally handle high-dimensional prob-

lems and that both optimal controls and the controlled processes are derived simultane-

ously without any postprocessing. On the other hand, its disadvantage is that the 

FBSDEs are computationally inefficient for low-dimensional problems having one or 

two state variables. Another advantage of using FBSDEs is the capability to manage 

non-Markovian problems. Among these advantages, our modeling and computation 

benefit from the capability to manage high-dimensional problems and the characteristic 

that is able to simulate both the forward and backward processes simultaneously. 

In our case, if we neglect the constraint on the state variables for simplicity, a 

lengthy but straightforward calculation [e.g., Theorem 5.4 of 4] with (6) leads to the 

following backward system of adjoint equations to be coupled with (1)-(3): 

( ) ( ) ( ) ( ) ( )  ( ) ( ) ( ) ( ) 2
0

d d , d ,d d d
I I V I

t t t t tp w I O p p t t z N z t v z t  


= − + + − + − , (8)

 
( )

( ) ( ) ( )

 
( ) ( ) ( ) ( ) 

2

0
4

d d , d ,d d d
ˆmax ,0

O V

t t t tO O

t

t

w O I p p
p t t z N z t v z t

w O O





 − + + 

= + − 
− −  

 , (9) 

 
( ) ( ) ( )  ( ) ( ) ( ) ( ) 3

0

ˆd d , d ,d d d
V V V

t t tp w V V p t t z N z t v z t 


= − + + −  (10) 

with the terminal condition ( ) ( ) ( )
0

I O V

T T Tp p p= = = . The triplet 
( ) ( ) ( )( )

0
, ,

I O V

t t t
t

p p p


 is the 

adjoint variables to find an (“candidate of”, see also Remark 1) optimal control as 

 ( ) ( )  * , , , min ,max ,
O

t t t t ta t I O V a a p= −  if ( ),tO O O  and ( ),tV V V , (11) 

otherwise it is replaced by 
ta  with the smallest 

ta  to guarantee the constraints 

t OO   and 
t VV  . 



The right-hand side of (11) should be understood as a Markovian variable determined 

by ( ), , ,t t tt I O V  at each t . The triplet 
( ) ( ) ( ) ( ) ( ) ( )( )

0
, , , , ,

I O V

t
t t t  


    represents the 

predictable stochastic fields such that jump integral terms (8)-(10) exist. Consequently, 

the FBSDEs consist of the forward system (1)-(3), the backward system (8)-(10), the 

control law (11), and the corresponding initial and terminal conditions. The integrated 

system is a jump-driven fully-coupled FBSDEs not well-studied previously. 

Finally, we introduce Markovian representations of (8)-(10) that are employed in 

numerical discretization of the FBSDEs: 

 ( ) ( ) ( ) ( ) ( ) , , ,

2 dt t t
TI I Vt I O V

t s s s s
t

p w I O p p s  = − − − + +
   , (12) 

 ( ) ( )   ( ) ( ) , , ,

2 4
ˆmax ,0 dt t t

TO O Vt I O V

t s s s s s
t

p w O I w O O p p s = − − + − − −
   , (13) 

 ( ) ( ) ( ) , , ,

3
ˆ dt t t

TV Vt I O V

t s s
t

p w V V p s = − − −
   . (14) 

 

Remark 1 Recall that we have neglected the state constraint in the derivation of the 

backward system (8)-(10). Incorporating a state-constraint to the stochastic maximum 

principle results in FBSDEs having state constraints in both forward and backward sys-

tems [22]. In our case, neglecting the constraint implies that the FBSDEs give only sub-

optimal controls that are inferior to optimal ones. Nevertheless, we numerically show 

that the feasible controls based on the presented FBSDEs serve well. 

 

2.4 An Exact Solution 

The derived FBSDEs are analytically solvable under the unconstrained case because it 

then reduces to a linear-quadratic problem. The following proposition states that a so-

lution to the backward system (8)-(10) is derived as a function of the (controlled) for-

ward process ( ), , ,t t tt I O V . This analytical solution is used to verifying our numerical 

schemes. Hereafter, 
tA  represents 

d

d

tA

t
 etc.  

 

Proposition 1 Assume 
4 0w =  and , ,O V A  = . Then the backward system (8)-(10) 

admits a unique square-integrable solution of the following parametric form 

 ( )I

t t t t t t t tp A I B O CV D= + + + , (15) 

 ( )O

t t t t t t t tp B I FO GV H= + + + , (16) 

 ( )V

t t t t t t t tp C I G O LV P= + + + , (17) 

with the following backward system of Riccati type ODEs for t T : 



 ( ) 1 2

2 12 2t t t tA w A C w B  − = + + − − , 0TA = , (18) 

 ( ) 1

2 1t t t t t tB w B C G w B F  − = − + + + − − , 0TB = , (19) 

 ( ) 1

1t t t t tC C L w B G  − = + − − , 0TC = , (20) 

 ( ) ( ) 1

1 1t t t t t tD I M A D P w B H   − = − + + + − − , 0TD = , (21) 

 1 2

2 12t t t tF w F G w F −= + + − , 0TF = , (22) 

 1

1t t t t tG G L w F G − = + − , 0TG = , (23) 

 ( ) 1

1 1t t t t t tH I M B H P w F H  − = − + + + − , 0TH = , (24) 

 1 2

3 1t t tL w L w G − = + − , 0TL = , (25) 

 ( ) 1

1 3 1
ˆ

t t t t tP I M C w V P w G H  −= − + − + − , 0TP = . (26) 

 

The proof of Proposition 1 is omitted since it uses a direct substitution of (15)-(17) 

into the FBSDEs. The uniqueness and optimality follow from proofs similar to the ex-

isting ones [Theorem 5.4 of 4, Theorem 3.1.1 of 12]. 

3 Numerical Experiments 

3.1 Discretization 

Numerical computation of the FBSDEs consists of explicit discretization of the forward 

system (1)-(3) using (11) and an explicit or semi-implicit discretization of the backward 

system (8)-(10). We use a Monte-Carlo method with 1n   sample paths and temporal 

resolution 
1t k T− =  with k . The SDEs (2)-(3) are discretized with a classical for-

ward-Euler scheme, while the SDE (1) is with the exact sampling scheme [19] free from 

temporal discretization errors: j t j tI Y I = +  and at each time step 

 
( )

( )

01
1

N t

j t lj t
l

Y e Y  


− 

+ 
=

= + +   ( 0,1,2,...j = ), 
0 0Y I I= −  (27) 

Here, 
0  is a tempered stable variable with the exponent b  based on the stable one: 

 
( ) ( )

( )
( )( )

( )( )
1 1

1 1 cos / 2
sin / 2

cos e

ta e V V
V

V


    

 


−
−    −  − − +

  +  
  
  

, (28) 



where V  follows a uniform distribution in ( )0,1 , e  follows an exponential distribu-

tion with the intensity 1, ( )N t  is a Poisson process with the intensity 

( ) ( )1 ta e b − − −  − , and each 
l  ( 1,2,3,...l = ) are independent random variables 

generated by the probability density function 

 ( )
( ) ( )

( ) ( )11

1

tb be

t
p e e

e b

  

 
 



− + − −


= −

−  −
, 0  . (29) 

The independent random variables appearing the above-presented formula can be easily 

generated using a common rejection sampling method. Excellent theoretical perfor-

mance of the scheme compared with classical Euler-Maruyama type scheme has been 

demonstrated in Kawai and Masuda [19]; especially, the scheme works stably for arbi-

trary t  without blowing up. This stability is important in engineering applications of 

the proposed model because it is not always possible to choose sufficiently small t  

under limited computational resources. This is the reason why we do not apply the clas-

sical Euler-Maruyama scheme to (1). To the best of the author’s knowledge, this special 

scheme has not been used for computing FBSDEs. 

The backward system (8)-(10) is discretized explicitly or semi-implicitly. Both 

schemes are represented in a unified manner as follows: 

 
( )

( )
( ) ( ) ( ) ( )

( )
( )
( ) , , ,

21 1

j t j t j tj t I O VI I I V

j t j t j tj t j S t j t
p p t w I O p p   

  +  +  + 
 = +  − − − + +
 

, (30) 

 
( )

( )
( )

( )  

( )
( )

( )
( )

2 4, , ,

1

1

ˆmax ,0
j t j t j t

j t j t j tj t I O VO O

j t j t O V

j S t j t

w O I w O O
p p t

p p

  
  

 + 

+  + 

  − − + −  = +    
− −    

, (31) 

 ( )
( )
( ) ( ) ( )

( ) , , ,

31
ˆj t j t j tj t I O VV V V

j t j tj t j S t
p p t w V V p  

 +  + 
 = +  − − −
  

, (32) 

where 0S =  corresponds to the semi-implicit scheme while 1S =  to the explicit 

scheme since we are dealing with a time-backward system. Implicit and semi-implicit 

numerical schemes usually require some iterative evaluation of the system of the form 

(30)-(32); however, the adjoint variables in the conditional expectations of (30)-(32) 

are of the affine form and we do not need such an iteration. For example, in the semi-

implicit scheme, (32) can be rewritten to directly find 
( )V

j tp  : 

 
( ) ( ) ( )

( ) ( )1 , , ,

31
ˆ1 j t j t j tj t I O VV V

j t j tj t
p t p tw V V   

− 

 + 
 = +  − −
 

. (33) 

Each conditional expectation in (30)-(32) must be evaluated numerically for imple-

menting the schemes. We employ a least-squares Monte-Carlo method [14] using mo-

nomial and piece-wise smooth basis functions. The method itself is quite standard in 

numerical computation of FBSDEs as explained in Chassagneux et al. [14] but the ad-

missible set S  of basis are specialized for the proposed model: 



   ˆ1, , max ,0 0, , , 0,1,2,...
O

i O v i v

i o v i o vi o v i O o v


          = −  =S . (34) 

This is a collection of constant, monomial, and modified monomial functions consid-

ering the functional form of the fourth term of (5) that is inherited in the driver of (9).  

After discretizing the conditional expectations of (30)-(32), the multiplication co-

efficient of each base is computed using a least-square procedure [14] with a classical 

conjugate gradient method. Other numerical solvers for inverting linear systems can be 

equally used as well if preferred. The optimal control (11) at each time step is imple-

mented using the corresponding basis representation of 
( )O

j tp  . 

The forward and backward systems are computed in an alternating manner using a 

Picard algorithm [Chapter4 of 14]. The convergence criterion of the Picard iteration in 

this paper is the following: the candidate of numerical solution obtained at the i th Pi-

card iteration ( )i  is a numerical solution if the updated increment of ( )
0

O
p , which 

is a deterministic value because we are assuming a deterministic initial condition, be-

tween the i th and the ( )1i − th iteration becomes smaller than a threshold value 

6( 10 ) −= . The candidate of numerical solution at the 0 th iteration is the initial guess 

of the iteration. The iteration procedure starts from simulating forward processes using 

the initial guesses ( )
0

I

tp  , ( )
0

O

tp  , ( )
0

V

tp  . In our computation below, the iteration 

is terminated at most 200 steps. It is less than 10 steps for the unbounded cases. 

 

3.2 Unconstrained Case 

We use the following parameter values of an existing dam and reservoir system in Japan 

[11]: 
76 10V =   (m3), 0I =  (m3/s), 0.5 =  (-), 0.696 =  (1/day), 0.195a =  

(m1.5/s0.5), 0.007b =  (s/m3), 
0 0I O I= =  (m3/s), 0V V=  (m3). The parameter values 

for the objective function are determined so that each penalization is balanced: 0.1 =  

(1/day) assuming a decision-maker having a daily perspective, 
1 7,000w = , 

2 10w = , 

3

3 1.2 10w −=  , 
4 0w = , ˆ 0.5V V=  (m3), ˆ 5O =  (m3/s). These values are used unless 

otherwise specified. Statistical moments of the modelled inflow are as follows: average 

5.130 (m3/s), standard deviation 17.71 (m3/s), skewness 12.84 (-), and kurtosis 259.1 

(-), agreeing well with the observation [11]. Set 30T =  (day) for the unconstrained 

case and 120T =  (day) for the constrained case. Set , ,O V A  =  in the uncon-

strained case. 

We firstly numerically analyze the unconstrained case having the exact solution of 

Proposition 1. The coefficients of the adjoint variables were obtained using a forward-

Euler method with a sufficiently fine time resolution: 0.0005 (day). This numerical so-

lution is considered as a reference solution with which performance of the explicit and 

semi-implicit schemes is discussed. Here, we focus on the adjoint variable ( )O

tp , 

namely its coefficients , , ,t t t tB F G H , because they directly determine the optimal con-

trol (11). The basis employed for the computation here are 1, , ,i o v . This is the exact 

choice by Proposition 1. Hence, we can analyze statistical and temporal errors. 



Fig. 1 compares these coefficients for the reference solution, numerical solution 

with the explicit scheme, and numerical solution with the semi-implicit scheme. The 

total number of sample paths is 10,000n =  and the time increment is 1/ 24  (day). 

Both schemes capture characteristics of the reference solution despite n  is not large, 

especially the semi-implicit scheme performs better with smaller bias. Sharp transitions 

of the coefficients are captured in the numerical solutions despite they have remarkably 

varied sizes. Both schemes have oscillatory coefficients near the initial time 0t = , 

which is considered due to using a deterministic initial condition with which least-

squares Monte-Carlo methods become more ill-conditioned near 0t = . One may be 

able to avoid this issue by using some probabilistic initial condition or by adding some 

regularization term to the least-squares procedure. 

Considering the superior performance of the semi-implicit scheme, only this 

scheme is analyzed in the rest of this paper. Fig. 2 compares the coefficient 
tF  among 

the reference solution (black curve) and numerical solutions (unfilled circles) of the 

semi-implicit scheme for different computational resolution: 2,500n =  (red), 

 
Fig. 1. Comparison of the coefficients tB  (black), tF  (red), tG  (blue), and tH  (green). 
Curve represent reference solution; unfilled circles (〇) numerical solution with the explicit 
scheme; filled circles (●) numerical solution with the semi-implicit scheme. 

 

 
Fig. 2. Comparison of the coefficient tF  among the reference solution (black curve) and 
numerical solutions (unfilled circles) of the semi-implicit scheme for different computational 
resolution: 2,500N =  (red), 10,000N =  (blue), and 40,000N =  (green). 



10,000n =  (blue), and 40,000n =  (green), where the time increment depends on n  

as /100t n =  based on the basic error analysis result of FBSDEs with Monte-Carlo 

method [e.g., Chapter 14 of 4]. Increasing n  gives less oscillatory numerical solutions 

closer to the reference one. The spiky oscillation visible for smaller n  is considered 

due to the lack of total number of samples to be used in the least-squares Monte-Carlo 

method. Similar problems would be encountered in simulating FBSDEs driven by large 

jumps but have not been reported so far. Sampling large jumps are insufficient for the 

small n  because they are rare. The 
2l -errors of the coefficient F  for 2,500n = , 

10,000n = , and 40,000n =  in ( )0,T  are 0.2204, 0.0992, and 0.0496, respectively, 

suggesting an almost first-order convergence of the scheme in t . 

 

3.3 Constrained Case 

We compare the impacts of basis in computing more realistic cases having the state 

constraint. We choose 
4 5w =  to consider a case that is not a linear-quadratic type, and 

set 
1 3,000w =  and 4

3 1.2 10w −=   to allow for larger acceleration of the outflow dis-

charge. The semi-implicit scheme is employed here, and the two sets of basis functions 

are considered for approximating the adjoint variables. The first set of basis is 

 1 1, , ,i o v=S  that is considered to be too simple for the constrained case because of 

considering the constraint as well as 
4 0w  . The second set of basis is 

  2 1, , , , max ,0 O VIi o v i O o v
 

= −S  where ( ), ,I O V    is ( )0,2,0 , ( )1,1,0 , and 

( )0,1,1 . We also examined other choices of the basis such as 
2S  equipped with the 

base ( ) ( ), , 1,0,1I O V   = , but they did not converge. We empirically found that using 

too correlated basis or monomials having a too high order does not converge. However, 

at this stage, criterion to choose basis to guarantee both stability and convergence of 

numerical solutions has not been found. In addition, we artificially multiply 3 by the 

last term of (27) to emulate stronger jumps like floods under severe climate changes 

that would be more challenging to manage. 

Fig. 3 compares performance of both sets of the basis against the same sample path 

of the inflow discharge. The computational results are not critically different between 

the two sets of the basis, but there is a visible difference between the controlled water 

volumes near t T= . The fact that the set 
1S , which is a too simple to approximate the 

adjoint variables, reasonably works suggests usefulness of sub-optimal controls in an-

alyzing the constrained problem. Depletion of water ( 0tV = ) was not observed in both 

cases, but its probability is theoretically positive although it would be small. Concern-

ing the optimized   of (5), we get 15278.2 with 
2S  and 15278.5 with 

1S , showing 

that the former performs better but the difference is small. Balancing sparsity and rep-

resentability would be necessary for stable and convergent numerical computation of 

FBSDEs of dam and reservoir systems.  



Finally, the numerical computation here does not cover more challenging problems 

to manage extreme floods and draughts possibly encountered once every few decades. 

Impacts of the state constraint can be more critical in such extreme cases. 

 

 
 

Fig. 3. The inflow discharge (green), the corresponding outflow discharges, and the water vol-
umes. Colors of the legends correspond to the colored curves. The sub-scripts 1 and 2 represent 
the set of basis 1S  and 2S . The black and white contour plots are proportional to the probability 
density of the water volume with 2S ; 1S  gives a similar result. 

4 Conclusion 

We analyzed a new jump-driven stochastic control problem of dam and reservoir sys-

tems receiving stochastic inflow. The FBSDEs to find the optimal acceleration of out-

flow discharge were derived based on a maximum principle. The FBSDEs were solva-

ble analytically in the unbounded state. The exact solution itself is useful because it 

serves as a benchmark for evaluating accuracy of numerical schemes and can also be 

used as an initial guess of iteration schemes for solving extended problems in future. 

For the unconstrained case, the least-squares Monte-Carlo methods generated rea-

sonable numerical solutions except near the initial time 0t =  at which the deterministic 

initial condition was specified. The computational results suggested that using too com-

plicated basis do not converge, suggesting importance of analyzing mathematical struc-

ture of the problem, especially regularity of solutions to the FBSDEs. Indeed, the com-

putational results of the second case where the state variables are constrained suggested 

that using basis considering regularity of the coefficients in the objective function 

works well. Although the true solution of the FBSDEs in this case was not found, we 

numerically demonstrated that the controlled outflow tracks the inflow while effec-

tively following the targeted states. Solving the forward SDEs via parallel computing, 

which was not used here, is a valuable option for more efficient computation. 

Our contribution in this paper is only a starting point for modeling and control of 

dam and reservoir systems based on FBSDEs, and there remain a number of challenges. 

Firstly, the full well-posedness of the FBSDEs considering the constraints of the adjoint 

state variables, as implied in Remark 1, should be addressed theoretically. We expect 



that this issue is resolved by a singular control approach [23]. For an engineering im-

plementation, we must construct approximation sequences of singular control variables, 

but this is an unresolved issue in general. We can somehow manage this issue if a 

closed-form solution to the corresponding FBSDEs is found. 

Secondly, not only water quantity dynamics but also water quality dynamics are 

important because both critically affect environmental and ecological conditions of the 

reservoir and further its downstream river [24]. Other factors affecting the operation 

goal, such as flood mitigation, should also be considered as well when necessary. Add-

ing these factors to the problem as new state variables is straightforward, but the size 

of the system and thus computational cost increase. Establishment of a massive com-

putational environment is necessary to numerically investigate such extended prob-

lems. The forward SDEs can be simulated in a parallel manner, while the backward 

SDEs are not necessarily so unless the special basis having disjoint domains are em-

ployed [25]. Exploring the existence issue of such useful basis for jump-driven FBSDEs 

is interesting both from mathematical and engineering standpoints. To construct sparse 

as well as well-functioning basis is also important. We are currently addressing this 

issue based on a regularized least-squares Monte-Carlo approach. 
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