The Complete Proof of the Riemann Hypothesis

Frank Vega

EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair.

The Complete Proof of the Riemann Hypothesis

Frank Vega

CopSonic, 1471 Route de Saint-Nauphary 82000 Montauban, France

Abstract

Robin criterion states that the Riemann Hypothesis is true if and only if the inequality $\sigma(n)<e^{\gamma} \times$ $n \times \log \log n$ holds for all $n>5040$, where $\sigma(n)$ is the sum-of-divisors function and $\gamma \approx 0.57721$ is the Euler-Mascheroni constant. We show there is a contradiction just assuming the possible smallest counterexample $n>5040$ of the Robin inequality. In this way, we prove that the Robin inequality is true for all $n>5040$ and thus, the Riemann Hypothesis is true.

Keywords: Riemann hypothesis, Robin inequality, sum-of-divisors function, prime numbers 2000 MSC: 11M26, 11A41, 11A25

1. Introduction

In mathematics, the Riemann Hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part $\frac{1}{2}$ [1]. As usual $\sigma(n)$ is the sum-of-divisors function of n [2]:

$$
\sum_{d \mid n} d
$$

where $d \mid n$ means the integer d divides to n and $d \nmid n$ means the integer d does not divide to n. Define $f(n)$ to be $\frac{\sigma(n)}{n}$. Say Robins(n) holds provided

$$
f(n)<e^{\gamma} \times \log \log n .
$$

The constant $\gamma \approx 0.57721$ is the Euler-Mascheroni constant, and log is the natural logarithm. The importance of this property is:

Theorem 1.1. Robins(n) holds for all $n>5040$ if and only if the Riemann Hypothesis is true [1].
Let $q_{1}=2, q_{2}=3, \ldots, q_{m}$ denote the first m consecutive primes, then an integer of the form $\prod_{i=1}^{m} q_{i}^{e_{i}}$ with $e_{1} \geq e_{2} \geq \cdots \geq e_{m}$ is called an Hardy-Ramanujan integer [2]. A natural number n is called superabundant precisely when, for all $m<n$

$$
f(m)<f(n) .
$$

[^0]Theorem 1.2. If n is superabundant, then n is an Hardy-Ramanujan integer [3].
Theorem 1.3. The smallest counterexample of the Robin inequality greater than 5040 must be a superabundant number [4].

We prove the nonexistence of such counterexample and therefore, the Riemann Hypothesis is true.

2. Proof of Main Theorems

Let $n=\prod_{i=1}^{s} q_{i}^{e_{i}}$ be a factorisation of n, where we ordered the primes q_{i} in such a way that $e_{1} \geq e_{2} \geq \cdots \geq e_{s}$. We say that $\bar{e}=\left(e_{1}, \ldots, e_{s}\right)$ is the exponent pattern of the integer n [2]. Note that $\prod_{i=1}^{s} p_{i}^{e_{i}}$ is the minimal number having exponent pattern \bar{e} when $p_{1}=2, p_{2}=3, \ldots, p_{s}$ denote the first s consecutive primes and $e_{1} \geq e_{2} \geq \cdots \geq e_{s}$. We denote this (Hardy-Ramanujan) number by $m(\bar{e})$ [2].

Theorem 2.1. Let $\prod_{i=1}^{m} q_{i}^{e_{i}}$ be the representation of n as a product of the primes $q_{1}<\cdots<q_{m}$ with natural numbers as exponents e_{1}, \ldots, e_{m}. We obtain a contradiction just assuming that $n>5040$ is the smallest integer such that Robins(n) does not hold.

Proof. According to the theorems 1.2 and 1.3, the primes $q_{1}<\cdots<q_{m}$ must be the first m consecutive primes and $e_{1} \geq e_{2} \geq \cdots \geq e_{m}$ since $n>5040$ should be an Hardy-Ramanujan integer. Let \bar{e} denote the factorisation pattern of $n \times q_{m}$. Based on the result of the article [5], the value $n \times q_{m}$ cannot be a square full number [2]. Therefore $n \times q_{m}>m(\bar{e})$ and consequently, $n>\frac{m(\bar{e})}{q_{m}}$. Thus, we have that Robins $\left(\frac{m(\bar{e})}{q_{m}}\right)$ holds, because of $n>5040$ is the smallest integer such that $\operatorname{Robins}(n)$ does not hold. We know that $f\left(p^{e}\right)>f\left(q^{e}\right)$ if $p<q$ [2]. In this way, we would have that $f\left(\frac{m(\bar{e})}{q_{m}}\right)>f(n)$ since $f\left(q_{i}^{2}\right)>f\left(q_{i}\right) \times f\left(q_{m}\right)$ for some positive integer $1 \leq i<m$. Certainly, we have that

$$
\begin{equation*}
\frac{f\left(q_{i}^{2}\right)}{f\left(q_{i}\right)}=\frac{q_{i}^{3}-1}{q_{i}^{2} \times\left(q_{i}-1\right)} \times \frac{q_{i}}{q_{i}+1}=\frac{q_{i}^{3}-1}{q_{i}^{3}-q_{i}} . \tag{1}
\end{equation*}
$$

Let's define $\omega(n)$ as the number of distinct prime factors of n [2]. From the article [5], we know that $\omega(n) \geq 969672728$ and the number of primes lesser than q_{m} which have the exponent equal to 1 in n is approximately

$$
\omega(n)-\frac{\omega(n)}{14}=\frac{13 \times \omega(n)}{14} \geq \frac{13 \times 969672728}{14}>900410390
$$

In this way, there exists a positive integer $1 \leq i<m$ such that

$$
\frac{f\left(q_{i}^{2}\right)}{f\left(q_{i}\right)}=\frac{q_{i}^{3}-1}{q_{i}^{3}-q_{i}} \geq f\left(q_{i+900000000}\right)>f\left(q_{m}\right)
$$

where we could have that $q_{i}^{2} \nmid n, q_{i}\left|n, q_{i+900000000}\right| n$ and $q_{i}^{2} \left\lvert\, \frac{m(\bar{e})}{q_{m}}\right.$. Finally, we have that

$$
f(n)<f\left(\frac{m(\bar{e})}{q_{m}}\right)<e^{\gamma} \times \log \log \frac{m(\bar{e})}{q_{m}}<e^{\gamma} \times \log \log n .
$$

However, this a contradiction with our initial assumption. To sum up, we obtain a contradiction just assuming that $n>5040$ is the smallest integer such that Robins (n) does not hold.

Theorem 2.2. Robins(n) holds for all $n>5040$.

Proof. Due to the theorem 2.1, we can assure there is not any natural number $n>5040$ such that Robins(n) does not hold.

Theorem 2.3. The Riemann Hypothesis is true.
Proof. This is a direct consequence of theorems 1.1 and 2.2

Acknowledgments

I thank Richard J. Lipton and Craig Helfgott for helpful comments.

References

[1] G. Robin, Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann, J. Math. pures appl 63 (2) (1984) 187-213.
[2] Y. Choie, N. Lichiardopol, P. Moree, P. Solé, On Robin's criterion for the Riemann hypothesis, Journal de Théorie des Nombres de Bordeaux 19 (2) (2007) 357-372. doi:doi:10.5802/jtnb.591.
[3] L. Alaoglu, P. Erdős, On highly composite and similar numbers, Transactions of the American Mathematical Society 56 (3) (1944) 448-469. doi:doi:10.2307/1990319.
[4] A. Akbary, Z. Friggstad, Superabundant numbers and the Riemann hypothesis, The American Mathematical Monthly 116 (3) (2009) 273-275. doi:doi:10.4169/193009709X470128.
[5] R. Vojak, On numbers satisfying Robin's inequality, properties of the next counterexample and improved specific bounds, arXiv preprint arXiv:2005.09307.

[^0]: Email address: vega.frank@gmail. com (Frank Vega)

