

# The Complete Proof of the Riemann Hypothesis

Frank Vega

EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair.

October 4, 2021

## The Complete Proof of the Riemann Hypothesis

Frank Vega

CopSonic, 1471 Route de Saint-Nauphary 82000 Montauban, France

#### Abstract

Robin criterion states that the Riemann Hypothesis is true if and only if the inequality  $\sigma(n) < e^{\gamma} \times n \times \log \log n$  holds for all n > 5040, where  $\sigma(n)$  is the sum-of-divisors function and  $\gamma \approx 0.57721$  is the Euler-Mascheroni constant. We show there is a contradiction just assuming the possible smallest counterexample n > 5040 of the Robin inequality. In this way, we prove that the Robin inequality is true for all n > 5040 and thus, the Riemann Hypothesis is true.

*Keywords:* Riemann hypothesis, Robin inequality, sum-of-divisors function, prime numbers 2000 MSC: 11M26, 11A41, 11A25

### 1. Introduction

In mathematics, the Riemann Hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part  $\frac{1}{2}$  [1]. As usual  $\sigma(n)$  is the sum-of-divisors function of n [2]:

$$\sum_{d|n} d$$

where  $d \mid n$  means the integer d divides to n and  $d \nmid n$  means the integer d does not divide to n. Define f(n) to be  $\frac{\sigma(n)}{n}$ . Say Robins(n) holds provided

$$f(n) < e^{\gamma} \times \log \log n.$$

The constant  $\gamma \approx 0.57721$  is the Euler-Mascheroni constant, and log is the natural logarithm. The importance of this property is:

**Theorem 1.1.** Robins(n) holds for all n > 5040 if and only if the Riemann Hypothesis is true [1].

Let  $q_1 = 2, q_2 = 3, ..., q_m$  denote the first *m* consecutive primes, then an integer of the form  $\prod_{i=1}^{m} q_i^{e_i}$  with  $e_1 \ge e_2 \ge \cdots \ge e_m$  is called an Hardy-Ramanujan integer [2]. A natural number *n* is called superabundant precisely when, for all m < n

$$f(m) < f(n).$$

Preprint submitted to Elsevier

October 4, 2021

Email address: vega.frank@gmail.com (Frank Vega)

**Theorem 1.2.** If n is superabundant, then n is an Hardy-Ramanujan integer [3].

**Theorem 1.3.** The smallest counterexample of the Robin inequality greater than 5040 must be a superabundant number [4].

We prove the nonexistence of such counterexample and therefore, the Riemann Hypothesis is true.

#### 2. Proof of Main Theorems

Let  $n = \prod_{i=1}^{s} q_i^{e_i}$  be a factorisation of n, where we ordered the primes  $q_i$  in such a way that  $e_1 \ge e_2 \ge \cdots \ge e_s$ . We say that  $\overline{e} = (e_1, \dots, e_s)$  is the exponent pattern of the integer n [2]. Note that  $\prod_{i=1}^{s} p_i^{e_i}$  is the minimal number having exponent pattern  $\overline{e}$  when  $p_1 = 2, p_2 = 3, \dots, p_s$  denote the first s consecutive primes and  $e_1 \ge e_2 \ge \cdots \ge e_s$ . We denote this (Hardy-Ramanujan) number by  $m(\overline{e})$  [2].

**Theorem 2.1.** Let  $\prod_{i=1}^{m} q_i^{e_i}$  be the representation of *n* as a product of the primes  $q_1 < \cdots < q_m$  with natural numbers as exponents  $e_1, \ldots, e_m$ . We obtain a contradiction just assuming that n > 5040 is the smallest integer such that Robins(*n*) does not hold.

*Proof.* According to the theorems 1.2 and 1.3, the primes  $q_1 < \cdots < q_m$  must be the first m consecutive primes and  $e_1 \ge e_2 \ge \cdots \ge e_m$  since n > 5040 should be an Hardy-Ramanujan integer. Let  $\overline{e}$  denote the factorisation pattern of  $n \times q_m$ . Based on the result of the article [5], the value  $n \times q_m$  cannot be a square full number [2]. Therefore  $n \times q_m > m(\overline{e})$  and consequently,  $n > \frac{m(\overline{e})}{q_m}$ . Thus, we have that Robins $(\frac{m(\overline{e})}{q_m})$  holds, because of n > 5040 is the smallest integer such that Robins(n) does not hold. We know that  $f(p^e) > f(q^e)$  if p < q [2]. In this way, we would have that  $f(\frac{m(\overline{e})}{q_m}) > f(n)$  since  $f(q_i^2) > f(q_i) \times f(q_m)$  for some positive integer  $1 \le i < m$ . Certainly, we have that

$$\frac{f(q_i^2)}{f(q_i)} = \frac{q_i^3 - 1}{q_i^2 \times (q_i - 1)} \times \frac{q_i}{q_i + 1} = \frac{q_i^3 - 1}{q_i^3 - q_i}.$$
(1)

Let's define  $\omega(n)$  as the number of distinct prime factors of n [2]. From the article [5], we know that  $\omega(n) \ge 969672728$  and the number of primes lesser than  $q_m$  which have the exponent equal to 1 in n is approximately

$$\omega(n) - \frac{\omega(n)}{14} = \frac{13 \times \omega(n)}{14} \ge \frac{13 \times 969672728}{14} > 900410390.$$

In this way, there exists a positive integer  $1 \le i < m$  such that

$$\frac{f(q_i^2)}{f(q_i)} = \frac{q_i^3 - 1}{q_i^3 - q_i} \ge f(q_{i+90000000}) > f(q_m)$$

where we could have that  $q_i^2 \nmid n, q_i \mid n, q_{i+90000000} \mid n$  and  $q_i^2 \mid \frac{m(\overline{e})}{q_m}$ . Finally, we have that

$$f(n) < f(\frac{m(\overline{e})}{q_m}) < e^{\gamma} \times \log \log \frac{m(\overline{e})}{q_m} < e^{\gamma} \times \log \log n.$$

However, this a contradiction with our initial assumption. To sum up, we obtain a contradiction just assuming that n > 5040 is the smallest integer such that Robins(*n*) does not hold.

**Theorem 2.2.**  $\operatorname{Robins}(n)$  holds for all n > 5040.

*Proof.* Due to the theorem 2.1, we can assure there is not any natural number n > 5040 such that Robins(*n*) does not hold.

Theorem 2.3. The Riemann Hypothesis is true.

Proof. This is a direct consequence of theorems 1.1 and 2.2

#### Acknowledgments

I thank Richard J. Lipton and Craig Helfgott for helpful comments.

### References

- G. Robin, Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann, J. Math. pures appl 63 (2) (1984) 187–213.
- [2] Y. Choie, N. Lichiardopol, P. Moree, P. Solé, On Robin's criterion for the Riemann hypothesis, Journal de Théorie des Nombres de Bordeaux 19 (2) (2007) 357–372. doi:doi:10.5802/jtnb.591.
- [3] L. Alaoglu, P. Erdős, On highly composite and similar numbers, Transactions of the American Mathematical Society 56 (3) (1944) 448–469. doi:doi:10.2307/1990319.
- [4] A. Akbary, Z. Friggstad, Superabundant numbers and the Riemann hypothesis, The American Mathematical Monthly 116 (3) (2009) 273–275. doi:doi:10.4169/193009709X470128.
- [5] R. Vojak, On numbers satisfying Robin's inequality, properties of the next counterexample and improved specific bounds, arXiv preprint arXiv:2005.09307.