
EasyChair Preprint

№ 734

CodeArena: Inspecting and Improving Code

Quality Metrics in Java using Minecraft

Simon Baars and Sander Meester

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

January 18, 2019



CodeArena: Inspecting and Improving Code Quality
Metrics in Java using Minecraft

Simon Baars
University of Amsterdam
Amsterdam, Netherlands

simon.mailadres@gmail.com

Sander Meester
University of Amsterdam
Amsterdam, Netherlands

sander.meester@student.uva.nl

I. INTRODUCTION

Technical debt causes the cost of maintaining a piece a code
to rise with it, resulting in more time spend on implementing
changes later. Studies show that over 80% of the software
development process is spent on software maintenance [6].

There are several factors that influence the maintainability
of a codebase, such as code duplication and high code com-
plexity. Various tools and techniques are available that help
getting insight into and/or tackling these factors [9, 5, 7]. The
functionality of such tools varies from merely informing about
the current state of the code, to tools that assist developers
in refactoring the code. However, most of these tools do not
assist the developer in understanding the causes of factors that
influence maintainability. The field of software maintenance
and code quality is therefore difficult to make intuitive for
developers.

We propose a solution that lets the developer interact with
code that does not conform to quality guidelines [4] to gain
awareness of what good quality is and how to minimise
technical debt.

II. PROPOSED SOLUTION

To make developers aware of harmful coding practises and
how they can improve their code, we created CodeArena 1 2.
CodeArena is an extension to the popular 3D sandbox game
called Minecraft. It allows developers to experience the quality
of their code and gain progressive insight in the causes of hard-
to-maintain code. This tool translates features of a codebase
that are considered harmful to monsters in Minecraft, which
can then be ”fought” to improve the codebase. Fighting the
monsters will trace the user back to the source code. If the
developer succeeds in solving the issue, the monster will die
and the developer will be rewarded in-game. This way, the
developer can gradually improve the quality of the code, while
learning about code quality in an engaging way.

The images below show the in-game view of the tool. In
figure 1 we see the player in the arena containing the spiders
that represent code clones. Striking one of those spiders opens
up the editor window as shown in figure 2, which shows
the clone group the spiders represents. This clone can then

1Source on Github: https://github.com/SimonBaars/CodeArena
2Demo Video: https://www.youtube.com/watch?v=faQ3NKwQTL4

immediately be refactored, resulting in the code quality being
improved.

The developer can traverse different components of the
codebase and gain experience points for each metric that has
been improved. Points will be subtracted if the metrics are
worsened after the developer changes the code. The metrics
to be improved consist of code duplication, unit complexity,
unit size and unit interface size [4]. Each of these metrics
correspond to a different type of monster.

The Java project to be improved can be chosen from disk,
or a GitHub URL can be specified to download a project
from. After the project has been chosen, the tool will create a
monster for each code issue found. The user will have to fix
code issues in order to collect experience points.

Fig. 1. Player’s view of clones represented as spiders

A. Technical architecture

Our tool is made using Minecraft Forge [2], which provides
an API to extend Minecraft using Java code. In the Java code
we scan a folder on the filesystem for Java projects, in which
the user can drop the projects they want to improve. If the
user decides to choose a project from GitHub, the project
will automatically be downloaded to this folder. After the user
chooses a project, an Abstract Syntax Tree (AST) will be built
from the source code, and calculations will be performed on

https://github.com/SimonBaars/CodeArena
https://www.youtube.com/watch?v=faQ3NKwQTL4


Fig. 2. The editor windows that are opened when a spider is struck

the basis of this AST. The overall architecture can be seen in
figure 3.

Fig. 3. Architecture of CodeArena.

We have chosen to use a separate thread for our algorithm
to calculate the different metrics. This way the user can keep
using the game, and we can give the user direct feedback while
the files are being scanned. Hence, the user does not have
to wait for the algorithm to be completed, and can directly
start fixing the metrics. When the user submits a metric as
improved, we re-scan the changed files. Each metric improved
in these files will account for points (or points are subtracted
for worsening the quality), which are added to a scoreboard
in the users’ head-up display (HUD).

III. DISCUSSION

We believe that this tool is an example of how we could edu-
cate novice developers using gamification. It is a novel way to
get familiar to the field of technical debt and related concepts,
and increases understanding by immersing the developer in
the problems found in the code.

A. Threats to validity
The effectiveness of our approach is not tested. We do

however mainly want to show the possibilities of using a 3D
game to educate developers and do not claim to have fully
tackled the stated problem. Our approach is however a step in
a direction that shows promise [8, 1, 3, 10].

Since we make use of an AST to analyse the code, it will not
work when code is not valid Java code. For instance, a missing
bracket would invalidate the AST for that file. We therefore
advice to first make sure the code is compilable before putting
it through our tool.

B. Future work
The most important step now is to validate the effectiveness

of our approach and find out if and how much developers
benefit from using our tool. An approach would be to use it
in an introductory programming course. We could then assess
whether students that have been using the tool write high
quality code and are aware what the characteristics of high-
quality code are. This could be compared to other years of
students to get a baseline.

Another step forward is, in our opinion, investigating the
different approaches that can be taken when using Minecraft
to visualise the code and problems that are in it. These different
approaches have to be checked for effectiveness to see what
works and what does not. Minecraft allows for almost limitless
creativity, but not every approach will be viable.

IV. CONCLUSION

We presented an approach to educate novice developers to
the field of technical debt and what the they can do to improve
their code. Using our approach, developers can use Minecraft
to interact with their code while gaining insight in the quality
of the code, and immediately improve it while learning. Our
tool is not validated for effectiveness, but is an example of
an approach that can be taken to educate new developers, and
could lead to new methods and approaches.

2



ACKNOWLEDGMENTS

We would like to thank R.A. van Rozen and dr. A.M.
Oprescu from the University of Amsterdam for their feedback
and enthusiasm.

REFERENCES

[1] Leonard Elezi, Sara Sali, Serge Demeyer, Alessandro
Murgia, and Javier Pérez. A game of refactoring: Study-
ing the impact of gamification in software refactoring.
In Proceedings of the Scientific Workshop Proceedings
of XP2016, page 23. ACM, 2016.

[2] Arun Gupta and Aditya Gupta. Minecraft Modding with
Forge: A Family-Friendly Guide to Building Fun Mods
in Java. ” O’Reilly Media, Inc.”, 2015.

[3] Thorsten Haendler and Gustaf Neumann. Serious refac-
toring games. In Proceedings of the 52nd Hawaii
International Conference on System Sciences, 2019.

[4] Ilja Heitlager, Tobias Kuipers, and Joost Visser. A
practical model for measuring maintainability. In 6th
International Conference on the Quality of Information
and Communications Technology (QUATIC 2007), pages
30–39. IEEE, 2007.

[5] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro In-
oue. Ccfinder: a multilinguistic token-based code clone
detection system for large scale source code. IEEE
Transactions on Software Engineering, 28(7):654–670,
2002.

[6] Bennet P Lientz, E. Burton Swanson, and Gail E Tomp-
kins. Characteristics of application software mainte-
nance. Communications of the ACM, 21(6):466–471,
1978.

[7] Rüdiger Lincke, Jonas Lundberg, and Welf Löwe. Com-
paring software metrics tools. In Proceedings of the
2008 international symposium on Software testing and
analysis, pages 131–142. ACM, 2008.

[8] Fiona Fui-Hoon Nah, Qing Zeng, Venkata Ra-
jasekhar Telaprolu, Abhishek Padmanabhuni Ayyappa,
and Brenda Eschenbrenner. Gamification of education: a
review of literature. In International conference on hci
in business, pages 401–409. Springer, 2014.

[9] Chris Parnin, Carsten Görg, and Ogechi Nnadi. A cata-
logue of lightweight visualizations to support code smell
inspection. In Proceedings of the 4th ACM symposium
on Software visualization, pages 77–86. ACM, 2008.

[10] Felix Raab. Codesmellexplorer: Tangible exploration
of code smells and refactorings. In Visual Languages
and Human-Centric Computing (VL/HCC), 2012 IEEE
Symposium on, pages 261–262. IEEE, 2012.

3


	Introduction
	Proposed solution
	Technical architecture

	Discussion
	Threats to validity
	Future work

	Conclusion

