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I. INTRODUCTION

Technical debt causes the cost of maintaining a piece a code
to rise with it, resulting in more time spend on implementing
changes later. Studies show that over 80% of the software
development process is spent on software maintenance [6].

There are several factors that influence the maintainability
of a codebase, such as code duplication and high code com-
plexity. Various tools and techniques are available that help
getting insight into and/or tackling these factors [9, 5, 7]. The
functionality of such tools varies from merely informing about
the current state of the code, to tools that assist developers
in refactoring the code. However, most of these tools do not
assist the developer in understanding the causes of factors that
influence maintainability. The field of software maintenance
and code quality is therefore difficult to make intuitive for
developers.

We propose a solution that lets the developer interact with
code that does not conform to quality guidelines [4] to gain
awareness of what good quality is and how to minimise
technical debt.

II. PROPOSED SOLUTION

To make developers aware of harmful coding practises and
how they can improve their code, we created CodeArena 1 2.
CodeArena is an extension to the popular 3D sandbox game
called Minecraft. It allows developers to experience the quality
of their code and gain progressive insight in the causes of hard-
to-maintain code. This tool translates features of a codebase
that are considered harmful to monsters in Minecraft, which
can then be ”fought” to improve the codebase. Fighting the
monsters will trace the user back to the source code. If the
developer succeeds in solving the issue, the monster will die
and the developer will be rewarded in-game. This way, the
developer can gradually improve the quality of the code, while
learning about code quality in an engaging way.

The images below show the in-game view of the tool. In
figure 1 we see the player in the arena containing the spiders
that represent code clones. Striking one of those spiders opens
up the editor window as shown in figure 2, which shows
the clone group the spiders represents. This clone can then

1Source on Github: https://github.com/SimonBaars/CodeArena
2Demo Video: https://www.youtube.com/watch?v=faQ3NKwQTL4

immediately be refactored, resulting in the code quality being
improved.

The developer can traverse different components of the
codebase and gain experience points for each metric that has
been improved. Points will be subtracted if the metrics are
worsened after the developer changes the code. The metrics
to be improved consist of code duplication, unit complexity,
unit size and unit interface size [4]. Each of these metrics
correspond to a different type of monster.

The Java project to be improved can be chosen from disk,
or a GitHub URL can be specified to download a project
from. After the project has been chosen, the tool will create a
monster for each code issue found. The user will have to fix
code issues in order to collect experience points.

Fig. 1. Player’s view of clones represented as spiders

A. Technical architecture

Our tool is made using Minecraft Forge [2], which provides
an API to extend Minecraft using Java code. In the Java code
we scan a folder on the filesystem for Java projects, in which
the user can drop the projects they want to improve. If the
user decides to choose a project from GitHub, the project
will automatically be downloaded to this folder. After the user
chooses a project, an Abstract Syntax Tree (AST) will be built
from the source code, and calculations will be performed on

https://github.com/SimonBaars/CodeArena
https://www.youtube.com/watch?v=faQ3NKwQTL4


Fig. 2. The editor windows that are opened when a spider is struck

the basis of this AST. The overall architecture can be seen in
figure 3.

Fig. 3. Architecture of CodeArena.

We have chosen to use a separate thread for our algorithm
to calculate the different metrics. This way the user can keep
using the game, and we can give the user direct feedback while
the files are being scanned. Hence, the user does not have
to wait for the algorithm to be completed, and can directly
start fixing the metrics. When the user submits a metric as
improved, we re-scan the changed files. Each metric improved
in these files will account for points (or points are subtracted
for worsening the quality), which are added to a scoreboard
in the users’ head-up display (HUD).

III. DISCUSSION

We believe that this tool is an example of how we could edu-
cate novice developers using gamification. It is a novel way to
get familiar to the field of technical debt and related concepts,
and increases understanding by immersing the developer in
the problems found in the code.

A. Threats to validity
The effectiveness of our approach is not tested. We do

however mainly want to show the possibilities of using a 3D
game to educate developers and do not claim to have fully
tackled the stated problem. Our approach is however a step in
a direction that shows promise [8, 1, 3, 10].

Since we make use of an AST to analyse the code, it will not
work when code is not valid Java code. For instance, a missing
bracket would invalidate the AST for that file. We therefore
advice to first make sure the code is compilable before putting
it through our tool.

B. Future work
The most important step now is to validate the effectiveness

of our approach and find out if and how much developers
benefit from using our tool. An approach would be to use it
in an introductory programming course. We could then assess
whether students that have been using the tool write high
quality code and are aware what the characteristics of high-
quality code are. This could be compared to other years of
students to get a baseline.

Another step forward is, in our opinion, investigating the
different approaches that can be taken when using Minecraft
to visualise the code and problems that are in it. These different
approaches have to be checked for effectiveness to see what
works and what does not. Minecraft allows for almost limitless
creativity, but not every approach will be viable.

IV. CONCLUSION

We presented an approach to educate novice developers to
the field of technical debt and what the they can do to improve
their code. Using our approach, developers can use Minecraft
to interact with their code while gaining insight in the quality
of the code, and immediately improve it while learning. Our
tool is not validated for effectiveness, but is an example of
an approach that can be taken to educate new developers, and
could lead to new methods and approaches.
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