
EasyChair Preprint

№ 1256

The Aspect Calculus

David Plaisted

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

July 1, 2019



The Aspect Calculus

David A. Plaisted

UNC Chapel Hill, Chapel Hill, NC 27599-3175
plaisted@cs.unc.edu

Abstract. For theorem proving applications, the aspect calculus for reasoning
about states and actions has some advantages over existing situation calculus
formalisms, and also provides an application domain and a source of problems
for first-order theorem provers. The aspect calculus provides a representation for
reasoning about states and actions that is suited to modular domains. An aspect
names a portion of a state, that is, a substate, such as a room in a building or
a city in a country. Aspects may have aspects of their own. A state is assumed
to be either a leaf state that cannot be further decomposed, or to be composed of
substates, and actions associated with one substate do not influence other, disjoint
substates. This feature can reduce the number of frame axioms that are needed
if the domain has a modular structure. It can also permit planning problems on
independent substates to be solved independently to some degree. However, in-
teractions between independent substates are also permitted.

Keywords: Situation calculus, frame problem, aspects, equational reasoning

1 Introduction

The situation calculus permits reasoning about properties of situations that result from
a given situation by sequences of actions [MH69]. In the situation calculus, situations
(states) are represented explicitly by variables, and actions a map states s to states
do(a, s). Predicates and functions on a situation or state are called fluents. In some for-
malisms, a situation denotes a state of the world, specifying the values of fluents, so that
two situations are equal if the values of all their fluents are the same. Other formalisms
reserve the term situation for a sequence of states. A problem with the situation calculus
or any formalism for reasoning about actions is the necessity to include a large number
of frame axioms that express the fact that actions do not influence many properties (flu-
ents) of a state. Since the early days of artificial intelligence research the frame problem
has been studied, beginning with McCarthy and Hayes [MH69]. Lin [Lin08] has written
a recent survey of the situation calculus.

Reiter [Rei91] proposed an approach to the frame problem in first-order logic that
avoids the need to specify all of the frame axioms. The method of Reiter, foreshadowed
by Haas [Haa87], Pednault [Ped89], Schubert [Sch90] and Davis [Dav90], essentially
solves the frame problem by specifying that a change in the truth value of a fluent,
caused by an action, is equivalent to a certain condition on the action. In this formalism,
it is only necessary to list the actions that change each fluent, and it is not necessary to



2 D. Plaisted

specify the frame axioms directly. If an action does not satisfy the condition, the fluent
is not affected. In the following discussion the term “Reiter’s formalism” will be used
for simplicity even though others have also contributed to its development. The fluent
calculus [Thi98] is another interesting approach to the frame problem. In this approach,
a state is a conjunction of known facts

In the present paper, yet another approach to the frame problem using aspects is
presented. This approach is based on the idea that the world is hierarchical or modular
to a large extent. Aspects permit one to structure fluents and actions in a modular way.

The aspect formalism considers a situation, or state, to be composed of substates,
These substates are named by aspects. Substates may have substates of their own. The
aspect calculus constructs a tree of aspects. For example, the top node could be ”earth”,
its children could be various countries, each country could have its states as children,
and each state could have its cities as children. An aspect is a sequence of identifiers
such as (earth, USA, North Carolina, Chapel Hill.) The aspect calculus is suitable if
actions in a substate do not have much influence on fluents from a disjoint substate,
roughly speaking. Thus the action of teaching a class in Chapel Hill would have aspect
(earth, USA, North Carolina, Chapel Hill) and would only influence fluents that also
had the same aspect, or an aspect referring to a part of Chapel Hill. This action would
not have any effect on fluents with aspects of a different city, state, or country. However,
calling someone in Washington DC from Chapel Hill would influence fluents in both
cities and would have to be given an aspect of (earth, USA). Instead of sequences of
names, the formal theory of aspects uses sequences of numbers.

Hayes actually mentioned “frames” which are very similar to aspects as a possible
solution to the frame problem. He did not reject frames, but felt that they would not
solve the frame problem in all cases. He wrote [Hay73], “In the long run I believe that
a mixture of frame rules and consistency-based methods will be required for non-trivial
problems ... ” (page 56).

Petrick [Pet08] has adapted Reiter’s formalism to knowledge and belief and has also
introduced the notion of a Cartesian situation that can decompose a situation into parts,
in a way that appears to be similar to the aspect calculus. However, his formalism also
considers a situation to include a sequence of states.

The aspect calculus has some advantages over Reiter’s formalism, especially in its
suitability for first-order theorem provers. In Reiter’s formalism, the successor state
axiom for a fluent essentially says that the fluent is true on a situation do(a, s) for fluent
a and situation s if a is an action that makes the fluent true, or if the fluent was already
true and a is not one of the actions that makes the fluent false. This requires one to know
under what conditions an action changes the value of the fluent to ”true” or ”false.” If for
example the action is nondeterministic this may be difficult to know. Also, to formulate
the successor state axiom, one needs a theory of equality between actions. If there are
only a small number of actions that can make a fluent false, then Reiter’s formalism is
concise because one need not list all of the actions that do not influence the fluent (the
frame axioms for the fluent). However, if there are many actions (possibly thousands
or millions) that influence the fluent, then this successor state axiom can become very
long. Further, when converting Reiter’s approach to clause form, one needs an axiom of
the form ”For all actions a, a = a1∨a = a2∨· · ·∨a = an” where ai are all the possible



The Aspect Calculus 3

actions, as well as the axioms ai 6= aj for all i 6= j. If there are many actions, the first
axiom will be huge. It is also difficult for many theorem provers to handle axioms of
this form.

Even the successor state axiom itself, when translated into clause form, produces
clauses having a disjunction of an equation and another literal. Using Φ(p, s) to denote
the value of fluent p on situation s, a simple form of the successor state axiom would be

Φ(p, do(x, s)) ≡ [(Φ(p, s) ∧ (x 6= a1) ∧ (x 6= a2)) ∨ (x = b1 ∨ x = b2)]

where a1 and a2 are the only actions that can make p false and b1 and b2 are the only
actions that make p true. Consider an even simpler form:

Φ(p, do(x, s)) ≡ [(Φ(p, s) ∧ (x 6= a1)) ∨ (x = b1)]

The clause form of the latter is¬Φ(p, do(x, s))∨Φ(p, s)∨x = b1,¬Φ(p, do(x, s))∨x 6=
a1 ∨ x = b1, x 6= b1 ∨ Φ(p, do(x, s)),¬Φ(p, s) ∨ x = a1 ∨ Φ(p, do(x, s)). Such
conjunctions of equations and inequations can be difficult for theorem provers to handle,
especially if there are more actions in which case there would be more equations and
inequations in the clauses.

The aspect calculus by contrast introduces many axioms that are unit equations,
which are particularly easy for many theorem provers to handle. If the underlying do-
main is first-order then the aspect calculus is entirely expressed in first-order logic, so
powerful first-order theorem provers can be applied to planning problems by framing
a query of the form ”There exists a situation having certain properties” and attempting
to prove it. For this, a reflexive and transitive predicate reachable can be defined, the
axioms reachable(s, do(a, s)) can be added for all actions a, and theorems of the form
(∃s)(reachable(s0, s)∧A[s]) can be proved where s0 is some starting state and A is a
first-order formula. However, Reiter’s formalism can handle domains without a clear hi-
erarchical structure, especially if there are only a small number of actions that influence
each fluent. Also, the aspect calculus does not handle knowledge and belief. Reiter’s
formalism attempts to make it easy to decide if a fluent is true on a situation obtained
from a starting situation by a sequence of actions. The aspect calculus by contrast only
attempts to preserve provability in the underlying theory while reducing the number of
frame axioms.

The aspect calculus has other advantages independent of its suitability for theorem
provers. Locality can be incorporated into the planning process. For example, if one
wants to obtain a state t from s and the only difference is that a room in a building
has changed, then one can first look for a plan that does not change anything outside
the room. If that does not work, one can look for a plan that only changes rooms on
that floor, changes to the other rooms being only temporary. If that does not work, one
can look for a plan that only changes properties of the building, and nothing outside
of it, and so on. Also, if the state space is finite, then the search space for planning
problems in the aspect calculus is also finite. With Reiter’s approach [Rei91], situations
contain sequences of states, so the search space can be infinite. Planning in disjoint
sub-states (aspects) of a state can be done independently to some extent. This reduces
redundancies due to the order of actions involving independent modules not affecting
the result.



4 D. Plaisted

Further, a possible problem with Reiter’s approach, noted in Scherl and Levesque
[SL93], is the ramification problem, namely, it can be difficult to incorporate constraints
between fluents, such as when one fluent implies another. The successor state axiom es-
sentially implies that the only way a fluent can become true is for an action to make it
true. A great deal of work [Sha99,LR94,DT07,McI00,Ter00,MM97] has been done to
handle the ramification problem in Reiter’s system. No special treatment for the ramifi-
cation problem is needed in the aspect calculus, but the theory needs to be hierarchical,
that is, it should be possible to assign aspects so that disjoint aspects are largely inde-
pendent.

2 Underlying Theory

We assume that there is some underlying set T of axioms in first-order logic concerning
states, fluents, and actions. The semantics of this axiomatization will have domains
for states and actions, with fluents mapping from states to various domains. We do
not necessarily assume that T is encoded in any particular situation calculus, such as
Reiter’s [Rei91]. We will modify such a state theory T to obtain an axiomatization
T aspect that in some cases can more economically encode frame axioms than T does.
In some cases T aspect can be custom designed without transformation from a theory
T .

Actions in T are typically indicated by the letter a, possibly with subscripts, and
fluents are typically indicated by the letters p and q, possibly with subscripts. F is the
set of all fluents and A is the set of actions. States are denoted by s, t, and u, possibly
with subscripts. The set of states is S.

If a is an action and s is a state then do(a, s) is the result of applying action a in state
s. For nondeterminism, instead of do(a, s) = t one would write do(a, s, t) indicating
that t is a possible result of applying action a in state s. It appears that the aspect formal-
ism can handle this without a problem, but this has not been formally investigated. If p
is a fluent then Φ(p, s) is the value of p on state s. Thus fluents are essentially functions
from states to various domains. If the value of a fluent is true or false, and it is not
parameterized, then Φ(p, s) may be written as p(s) instead. The semantics (interpreta-
tion) of the underlying theory T is assumed to have sorts for fluents, states, and actions,
in addition to possibly others.

The semantics of operations is defined by assertions of the following form:

λx1x2 . . . xn.E[x1, . . . , xn] : ψi · · ·ψn → ψ0

indicating that in the expressionE, xi are assumed to have sort ψi andE returns a value
of sort ψ0. One can then define the semantics of do and Φ as follows:

λas.do(a, s) : A× S → S
λps.Φ(p, s) : F × S → D for some domain D
We assume that T satisfies the action dependency condition if the fluents of do(a, s)

only depend on the fluents of s. This is formally defined as follows:

Definition 1 The theory T satisfies the action dependency condition if T |= (∀s, t ∈
S)(∀a ∈ A), ((∀p ∈ F)Φ(p, s) = Φ(p, t))→ ((∀p ∈ F)Φ(p, do(a, s)) = Φ(p, do(a, t))).



The Aspect Calculus 5

This constraint must be satisfied in order to use the aspect representation.

Example 1. We give an example state theory Ln in the ”classical representation.” For
simplicity, fluents are written as ron(i, s), lon(i, s), lonall(s), ronall(s), and onall(s)
instead of Φ(ron(i), s), Φ(lon(i), s), Φ(lonall, s), Φ(ronall, s), and Φ(onall, s), re-
spectively. In general, fluents are functions, but because these are all Booleans, we write
ron(i, s) instead of ron(i, s) = true, et cetera.

Suppose there are two banks of n switches that can be turned on and off and each
switch controls a light. So there are actions lton(i) (turn i on in the left bank) and
ltof(i) (turn i off in the left bank) for 1 ≤ i ≤ n, also rton(i) and rtof(i) for the right
bank. There are also fluents lon(i, s) and ron(i, s) telling whether the i-th light is on in
the left and right banks. There is also a fluent lonall(s) telling whether all the lights are
on in the left bank, and similarly ronall for the right bank, and onall(s) for both banks
being all on. A state is defined by whether the switches are on or off; all fluents other
than lon(i) and ron(i) are functions of these. Thus there are 4n states in all, one for
each combined setting of the 2n switches. We can indicate a state in which lon(i) = bi
and ron(i) = ci for Booleans bi, ci by [b1, . . . , bn, c1, . . . , cn]S where the subscript S
may be omitted. The fluents lonall, ronall, and onall can be determined from bi and
ci and are not explicitly shown in this notation.

In the following equations for Ln, the free variables s are states and are universally
quantified. (A5)c through (A8)c are the frame axioms, and they make this representa-
tion quadratic in n.

lon(i, do(lton(i), s)) ∧ ron(i, do(rton(i), s)), 1 ≤ i ≤ n (A1)c

¬lon(i, do(ltof(i), s)) ∧ ¬ron(i, do(rtof(i), s)), 1 ≤ i ≤ n (A2)c

lonall(s) ≡ lon(1, s) ∧ · · · ∧ lon(n, s) (A3)cl
ronall(s) ≡ ron(1, s) ∧ · · · ∧ ron(n, s) (A3)cr

onall(s) ≡ lonall(s) ∧ ronall(s) (A4)c

lon(i, do(lton(j), s)) ≡ lon(i, s), 1 ≤ i, j ≤ n, i 6= j (A5)cl
ron(i, do(rton(j), s)) ≡ ron(i, s), 1 ≤ i, j ≤ n, i 6= j (A5)cr

lon(i, do(rton(j), s)) ≡ lon(i, s), 1 ≤ i, j ≤ n (A6)cl
ron(i, do(lton(j), s)) ≡ ron(i, s), 1 ≤ i, j ≤ n (A6)cr

lon(i, do(ltof(j), s)) ≡ lon(i, s), 1 ≤ i, j ≤ n, i 6= j (A7)cl
ron(i, do(rtof(j), s)) ≡ ron(i, s), 1 ≤ i, j ≤ n, i 6= j (A7)cr

lon(i, do(rtof(j), s)) ≡ lon(i, s), 1 ≤ i, j ≤ n (A8)cl
ron(i, do(ltof(j), s)) ≡ ron(i, s), 1 ≤ i, j ≤ n (A8)cr

∃s(s ∈ S)(A9)c

3 Aspects

The theory T will be extended to a theory T aspect that may permit many of the frame
axioms of T to be omitted but will still permit the same plans to be derived. T aspect is



6 D. Plaisted

constructed so that any modelM of the underlying theory T can be extended to a model
Maspect of T aspect. This implies the relative consistency of T aspect with respect to T ,
which essentially means that incorrect plans cannot be derived in T aspect. With notation
as in the introduction, this means that (∃s)(reachable(s0, s) ∧ A[s]) is derivable in
T aspect iff it is derivable in T , but T aspect may have many fewer frame axioms. When
presenting aspects the model Maspect is essentially being described.

In T aspect there are aspects and statelets in addition to the states, actions, and fluents
of T . Also, Ψ is the set of aspects and Ŝ is the set of statelets.

The aspects are organized in T aspect in an aspect tree. This can be regarded as part
of the model Maspect.

Definition 2 The aspect tree Υ is a finite tree with a root node. Every other node in the
tree is either a leaf with no children or else has finitely many children ordered from left
to right. The nodes in the tree are labeled with sequences or strings of integers. The root
is labeled with ε, the empty string. If a node N is labeled with α and has n children
then its n children left to right are labeled α1 through αn. These sequences or strings of
integers are called aspects. Aspects are indicated by Greek letters α, β, γ, possibly with
subscripts. If nodeN with n children has aspect α then the aspects α1 · · ·αn are called
the children of aspect α, and α is called the parent of αi for all i. Sometimes aspects
can be written with commas between the numbers, as, 1, 2, 1 or (1, 2, 1). If node L has
aspect α and nodeN has aspect β and L is an ancestor ofN in the aspect tree, then we
say that α is an ancestor of β and β is a descendant of α. Thus if α is a prefix of β then
α is an ancestor of β and β is a descendent of α. If α is (3, 2, 4) then αi is (3, 2, 4, i).

Definition 3 There is an ordering relation < on aspects with α < β if α is an ancestor
(proper prefix) of β, α < β iff β > α and ≥, ≤ are defined as usual. Thus for example
1, 2 > 1.

Also, if two aspects α and β are neither ancestors or descendants of one another, so
that neither one is a prefix of the other, they are said to be incomparable, independent,
or disjoint, written α#β.

Actions and fluents have unique aspects assigned to them in T aspect. This assign-
ment has to be done manually. If the theory has a natural hierarchical structure then this
should be easier.

We write a : α to indicate that action a has aspect α, and p : α to indicate that a
fluent p has aspect α; one can also write aspect(p) = α and aspect(a) = α.

Example 2. Continuing with the example from Example 1, for L3 (three switches in
the left and right banks) in Laspect3 there would be aspects ε, (1), (2) and (i, j) for
i = 1, 2 and j = 1, 2, 3. The aspect ε refers to the whole problem, (1) to the left bank
of switches, (2) to the right bank, and (i, j) to switch j in the left or right bank.

4 Statelets

In addition to states, there is a set Ŝ of statelets or modules in T aspect. Statelets can
be indicated by the letters s, t, and u, possibly with subscripts. In T aspect, actions and
fluents are extended from states to statelets. Thus



The Aspect Calculus 7

λas.do(a, s) : A× Ŝ → Ŝ ∪ {⊥} where ⊥ is ”don’t care.”
λps.Φ(p, s) : F × Ŝ → D ∪ {⊥} for some domain D where ⊥ is ”don’t care.”

An assignment of aspects will be called unconstraining if it does not impose additional
restrictions on T , in a way that will be made precise later (Definition 16).

In general, statelets have unique aspects; writing s : α indicates that the aspect of
statelet s is α. Equality for statelets s : α and t : β is defined by their fluents and their
aspect, as follows:

If for all p in F , Φ(p, s) = Φ(p, t) and α = β, then s = t. (1)

Thus statelets are entirely determined by how fluents map them, and by their aspect.
This differs from states, which may have additional properties not used by our formal-
ism. Also, there is a new value⊥ such that for all fluents p and all states s, Φ(p, s) 6= ⊥.
Further, ⊥ is not equal to any state or statelet. If s is a statelet and p is a fluent then
Φ(p, s) can be ⊥ (don’t care).

Example 3. ForLaspect3 , there would be 64 statelets at aspect ε, indicating the combined
setting of all six switches. Therefore if statelet s has aspect ε then lon(i, s) and ron(i, s)
would be true or false for all i. There would be eight statelets at aspect (1), specifying
the combined setting of the three left switches, and similarly eight statelets at aspect
(2). Also, there would be two statelets at aspects (i, j) for i = 1, 2 and j = 1, 2, 3,
specifying the two possible settings of the corresponding switch.

Definition 4 The⊥ values of a statelet are specified as follows: If a statelet s has aspect
α then (∀p ∈ F)(∀β ∈ Ψ)[(p : β)→ (β ≥ α ≡ (Φ(p, s) 6= ⊥))].

Letting the aspect be part of the statelet eliminates some complexities from the
system; one can then speak unambiguously about the parent and children of a statelet.

Statelets in Laspectn can be indicated by [b1, . . . , bn, c1, . . . , cn]Ŝ where the bi and ci
can be Booleans or ⊥ and the subscript Ŝ may be omitted. Technically one should also
indicate the aspect as well as the values of the fluents, but in this example the values of
the fluents are enough to determine the aspect.

For Laspect3 , if s : (1) (statelet s has aspect (1)) then lon(i, s) = true or false and
ron(i, s) = ⊥ for i = 1, 2, 3. Thus statelets at aspect (1) are of the form [b1, b2, b3,⊥,
⊥ ,⊥] where the bi are Booleans. If s : (2) (statelet s has aspect (2)) then ron(i, s) =
true or false and lon(i, s) = ⊥ for i = 1, 2, 3. Thus statelets at aspect (2) are of the
form [⊥,⊥,⊥, c1, c2, c3] where the ci are Booleans. If s : (1, i) then lon(j) = ⊥ for
j 6= i and ron(j) = ⊥ for j = 1, 2, 3 but lon(i, s) = true or false. If s : (2, i) then
ron(j) = ⊥ for j 6= i and lon(j) = ⊥ for j = 1, 2, 3 but ron(i, s) = true or false.
So a statelet at aspect (1, 2) is of the form [⊥, b2,⊥,⊥,⊥,⊥] and a statelet at aspect
(2, 3) is of the form [⊥,⊥,⊥,⊥,⊥, c3].

Definition 5 For states or statelets s and t, one writes s ≡α t if for all fluents p with
p : β and β ≥ α, Φ(p, s) = Φ(p, t). Corresponding to this there is the assertion s ≡[α] t
in T that does not mention aspects. This is defined as Φ(p1, s) = Φ(p1, t)∧Φ(p2, s) =
Φ(p2, t) ∧ · · · ∧ Φ(pn, s) = Φ(pn, t) where {p1, p2, · · · , pn} is the set of all fluents
having aspects β in Maspect with β ≥ α.



8 D. Plaisted

Thus s ≡ε t if s, t agree on all fluents in F . In Laspect3 , [b1, b2, b3, c1, c2, c3] ≡(1)

[b1, b2, b3, c
′
1, c
′
2, c
′
3].

In Maspect, states are related to statelets as follows:

Definition 6 The bridging axioms are the following: If s is a state then sε is a statelet
and Φ(p, sε) = Φ(p, s) for all p ∈ F . Also, if a is an action and s, t are states and
do(a, s) = t then do(a, sε) = tε Furthermore, for all statelets s at aspect α there is a
state t such that s ≡α t.

In Laspect3 , [b1, b2, b3, c1, c2, c3]εS = [b1, b2, b3, c1, c2, c3]Ŝ .
There is also a function that restricts statelets at an aspect to statelets at another

aspect. The function sβ with semantics λsβ.sβ : Ŝ × Ψ → Ŝ defined as follows:

Definition 7 If s is a statelet, s : α, and β ≥ α then sβ is defined as the statelet at
aspect β such that Φ(p, sβ) = Φ(p, s) if aspect(p) ≥ β, else Φ(p, sβ) = ⊥. Thus
sβ : β and sβ ≡β s. If β ≤ α or α#β then sβ is not defined. If s is a state then
sα = (sε)α.

Thus in Laspect3 , [b1, b2, b3, c1, c2, c3](1) = [b1, b2, b3,⊥,⊥,⊥] and [b1, b2, b3, c1,
c2, c3](1,2) = [⊥, b2,⊥,⊥,⊥,⊥]. Also [b1, b2, b3,⊥,⊥,⊥](1,3) = [⊥,⊥, b3,⊥,⊥,⊥].
In general, Ŝ is {sα : s ∈ S, α ∈ Ψ}.

There is also a function fα, the composition function, that combines statelets (sub-
modules) at aspects α1 · · ·αn to produce a statelet (module) at aspect α. It has the
semantics λαs1s2 . . . sn.fα(s1, . . . , sn) : Ψ × Ŝn → Ŝ where n is the number of
children of α.

Recall that αi is the sequence α with i added to the end.

Definition 8 Suppose α is an aspect with n children (which are α1, . . . , αn). Suppose
s1 : α1, · · · , sn : αn for statelets si. Then fα(s1, s2, · · · , sn) = s where s is a statelet
at aspect α, and where for fluent p, if p : β with β ≥ αi then Φ(p, s) = Φ(p, si). For
fluents p with p : α, Φ(p, s) is defined by the leaf dependency constraint, Definition 9,
below. For other fluents p with p : β for β 6≥ α, Φ(p, s) = ⊥.

InLaspect3 , f ε([b1, b2, b3,⊥,⊥,⊥], [⊥,⊥,⊥, c1, c2, c3]) = [b1, b2, b3, c1, c2, c3]. The
first argument of f ε is a statelet at aspect (1) and the second argument is a statelet at as-
pect (2). The value of f ε is a statelet at aspect ε. Also, f (1)([b1,⊥,⊥,⊥,⊥,⊥], [⊥, b2,
⊥, ⊥,⊥,⊥], [⊥,⊥, b3,⊥,⊥,⊥]) = [b1, b2, b3,⊥,⊥,⊥]. f (1) can also be written f1.

From this definition it follows that s ≡αi si for all i and sαi = si. Definition 8 also
implies the following aspect composition equation for non-leaf aspects α and statelets
s at aspect α:

fα(sα1, sα2, · · · , sαn) = s (2)

In addition, there is a dependency constraint on fluents. That is, non-leaf fluents
have to depend on fluents at the leaves of the aspect tree.

Definition 9 The leaf dependency constraint on fluents is the following: If p is a fluent
at non-leaf aspect α, s and t are statelets at aspect α, and Φ(q, s) = Φ(q, t) for all
fluents q at leaf aspects γ with γ > α, then Φ(p, s) = Φ(p, t).

In terms of T , this is expressed as a collection of assertions



The Aspect Calculus 9

{A(p, q1, · · · , qn) : (p : α), α is a non-leaf aspect, and {q1, · · · , qn} is the set of
fluents at leaf aspects γ with γ > α}

where A(p, q1, · · · , qn) is the following assertion:

For all states s and t,
Φ(q1, s) = Φ(q1, t) ∧ · · · ∧ Φ(qn, s) = Φ(qn, t)→ Φ(p, s) = Φ(p, t)

The leaf dependency constraint on fluents is necessary for fα to be a mathematical
function. This is the first constraint that must be satisfied when assigning aspects to
actions and fluents. If one wants a statelet s to have properties that do not depend on the
children aspects, then one can add a ”virtual” child of the aspect of s that includes the
extra information about s.

For Laspect3 , the leaf aspects are (1, i) and (2, i) for i = 1, 2, 3. The fluents at
these aspects are lon(i) and ron(i), respectively. Thus the values of all other fluents
have to be determined by these. For statelet s at aspect ε or (1), Φ(lonall, s) is deter-
mined by Φ(lon(i), s) for i = 1, 2, 3. Also, for Laspect3 and statelet s at aspect ε or (2),
Φ(ronall, s) is determined by Φ(ron(i), s) for i = 1, 2, 3 so this constraint is satisfied.
Similarly, for statelet s at aspect ε, Φ(onall, s) is determined by the values Φ(lon(i), s)
and Φ(ron(i), s) for i = 1, 2, 3.

Definition 10 The combining axiom is the following: For all aspects α with n children
and for all states s1, · · · , sn there is a state s such that

s ≡[α1] s1 ∧ · · · ∧ s ≡[αn] sn.

The combining axiom is the second constraint that must be satisfied when assigning
aspects to fluents and actions. This is satisfied for Laspect3 because all combinations of
all switch settings are permitted. This follows from (A9)c and the effects of the actions.

5 Actions

For action a at aspect α, do(a, s) is defined for statelets s at aspect β iff β ≤ α.
Otherwise, do(a, s) = ⊥. Thus do(a, s) is not always a statelet or a state, because it can
be ⊥. If do(a, s) 6= ⊥ then aspect(do(a, s)) = aspect(s).

There are some locality constraints on actions that need to be respected for T aspect
to be unconstraining. Taken collectively, these are the third constraint that must be sat-
isfied by the assignment of aspects to fluents and actions.

Definition 11 The locality constraints on actions are as follows: Suppose a : α and
p : β. If α#β then Φ(p, do(a, s)) = Φ(p, s) for all states s. (Formally, this has to be a
theorem of T for all such α and β). Also, if s ≡α t for states s and t (expressed in T by
s ≡[α] t) and β ≥ α then Φ(p, do(a, s)) = Φ(p, do(a, t)).

These constraints are satisfied forLaspect3 because the action lton(i) does not change
the values of any fluents except lon(i) at aspect (1, i) and possibly lonall and onall,
but these are at aspects (1) and ε which are smaller than the aspect (1, i) of lton(i).
Similar comments apply to rton(i) and the fluents ron(i), ronall, and onall.



10 D. Plaisted

5.1 Frame Axioms

Definition 12 If for fluent p and action a and for some state s, Φ(p, s) 6= Φ(p, do(a, s))
then we say that action a influences fluent p. If for all states s and t, Φ(p, s) =
Φ(p, do(a, s)) (if this is a theorem of T ) then a does not influence p.

Frame axioms are encoded in the aspect system by the following action locality equa-
tion:

do(a, fα(s1 · · · sn)) = fα(s1 · · · do(a, si) · · · sn) (3)

for all a, α such that aspect(a) ≥ αi. Also, there is the fluent locality equation:

Φ(p, fα(s1 · · · sn)) = Φ(p, si) (4)

for all p, α such that aspect(p) ≥ αi.
These equations imply that if one has p : α and a : β and α, β are incomparable then

a does not influence p. This is how frame axioms are encoded in the aspect system. For
Laspect3 , do(lton(2), f (1)(s1, s2, s3)) = f (1)(s1, do(lton(2), s2), s3) because turning
on left switch 2 does not influence left switches 1 or 3. Also,Φ(lon(2), f (1)(s1, s2, s3)) =
Φ(lon(2), s2) because the fluent lon(2) only depends on the setting of switch 2.

Definition 13 Given T , an aspect tree Υ , and an assignment Π of aspects to fluents
and actions,MΥ,Π (or justM) is the conjunction of Equation 1 for statelet equality,
the bridging axioms, Definition 6, the aspect composition equation, Equation 2, and the
locality axioms, Equations 3 and 4.

Theorem 1. FromM it follows that if one has p : α and a : β and α, β are incompa-
rable then Φ(p, do(a, s)) = Φ(p, s) for statelets s such that s : γ where γ is the greatest
lower bound of α and β, that is, γ is the largest aspect such that γ < α and γ < β.

Proof. Since γ is the greatest lower bound of α and β, α > γi for some i and β > γj
for some j 6= i. Suppose γ has n children. Then s = fγ(sγ1 · · · sγn) by Equa-
tion 2. Thus Φ(p, do(a, s)) = Φ(p, s) is equivalent to Φ(p, do(a, fγ(sγ1 · · · sγn))) =
Φ(p, fγ(sγ1 · · · sγn)). However, by Equation 4, Φ(p, fγ(sγ1 · · · sγn)) = Φ(p, sγi).
Also, by Equation 3, do(a, fγ(sγ1 · · · sγn)) = fγ(sγ1, · · · , do(a, fγj), · · · , sγn). Thus
Φ(p, do(a, fγ(sγ1 · · · sγn))) = Φ(p, fγ(sγ1, · · · , do(a, fγj), · · · , sγn)) = Φ(p, sγi),
again by Equation 4, so the equation Φ(p, do(a, s)) = Φ(p, s) holds with both sides
equal to Φ(p, sγi). ut

Lemma 1. Suppose ξ is an aspect and for some i, aspect(p) ≥ ξi and aspect(a) ≥ ξi.
Suppose s : ξ and let s be fξ(s1 · · · sn). Then fromM it follows that Φ(p, do(a, s)) =
Φ(p, s) implies Φ(p, do(a, si)) = Φ(p, si), and the reverse implication also holds.

Proof. Suppose Φ(p, do(a, s)) = Φ(p, s). Then by Equation 3, do(a, s) = fα(s1 · · · ,
do(a, si) · · · sn), so by Equation 4, Φ(p, do(a, s)) = Φ(p, do(a, si)), and by Equation
4 again, Φ(p, s) = Φ(p, si). Therefore Φ(p, do(a, si)) = Φ(p, do(a, s)) = Φ(p, s) =
Φ(p, si) so Φ(p, do(a, si)) = Φ(p, si). The reverse implication is shown in a similar
way. ut



The Aspect Calculus 11

Theorem 2. FromM it follows that if one has p : α and a : β and α, β are incompa-
rable then Φ(p, do(a, s)) = Φ(p, s) for statelets s with s : ξ where ξ ≤ α and ξ ≤ β.
Also, it follows that Φ(p, do(a, s)) = Φ(p, s) for all states s.

Proof. The first part follows by repeated application of Lemma 1. For the rest, letting
ξ be ε, Φ(p, do(a, s)) = Φ(p, s) for statelets s with s : ε and therefore by the bridging
axioms, Φ(p, do(a, s)) = Φ(p, s) for all states s. ut

This result shows that in T aspect one can omit any frame axioms involving fluents
and actions at incomparable aspects.

6 Encoding a domain in the aspect formalism

A domain in the aspect calculus can be obtained in two ways: 1. By systematic transla-
tion from an existing domain. 2. By custom design. We first discuss the first possibility.

Definition 14 Suppose one has an underlying state theory T with states, actions, and
fluents and some axioms relating them. We want to encode T in the aspect formalism
to obtain T aspect that encodes as many of the frame axioms of T as possible in a more
efficient manner, but does not imply frame axioms that are not theorems of T . Suppose
that an aspect tree Υ has been defined and aspects have been assigned for fluents and
actions. Let T ′ be some theory such that T ′ ∪ MΥ,Π is equivalent to T ∪ MΥ,Π .
Typically T ′ can be T with frame axioms implied byMΥ,Π deleted. Then T aspectΥ,Π is
T ′ ∪MΥ,Π for some such T ′.

Thus there is some flexibility in defining T aspectΥ,Π . For concreteness, here is a more
specific definition:

Definition 15 Suppose one has an underlying theory T that can be expressed as d1 ∧
d2 ∧ · · · ∧ dn. Let T ′ be e1 ∧ e2 ∧ · · · ∧ em where {e1, e2, · · · , em} = {di : 1 ≤ i ≤
n,M 6|= di}. Then T aspectΥ,Π is T ′ ∪M.

Here is an example of such an underlying theory, in this case in first-order logic:

7 Switches Example

Let T , that is, Ln, be the theory from Example 1. We construct the theory Laspectn in
the aspect representation.

7.1 Aspect Representation

The aspect tree Υ has a root node with two children, child 1 for the left bank and child
2 for the right bank. Each child has in turn n children numbered 1 through n, one for
each switch. So the aspects are ε, (1), (2), (1, 1), (1, 2), · · · , (1, n), (2, 1), (2, 2), · · · ,
(2, n). The actions lton(i) and ltof(i) have aspects (1, i), and rton(i) and rtof(i)



12 D. Plaisted

have aspects (2, i). Also, lon(i) has aspect (1, i) and ron(i) has aspect (2, i). The fluent
lonall has aspect 1, ronall has aspect 2, and onall has aspect ε.

This is T ′, that is, Laspectn ; frame axioms are not needed and are omitted. Also, free
occurrences of s refer to universally quantified states as before.

lon(i, do(lton(i), s)) ∧ ron(i, do(rton(i), s)), 1 ≤ i ≤ n (A1)c

¬lon(i, do(ltof(i), s)) ∧ ¬ron(i, do(rtof(i), s)), 1 ≤ i ≤ n (A2)c

lonall(s) ≡ lon(1, s) ∧ · · · ∧ lon(n, s) (A3)cl
ronall(s) ≡ ron(1, s) ∧ · · · ∧ ron(n, s) (A3)cr
(onall(s) ≡ lonall(s) ∧ ronall(s)) (A4)c

(∃s)(s ∈ S)(A9)c

Here isMΥ , consisting of the necessary portion (fluents at leaf aspects) of the bridging
axioms, Definition 6, the locality axioms, Equations 3 and 4, and the aspect composition
equation, Equation 2.

(lon(i, s) = lon(i, sε)) ∧ (ron(i, s) = ron(i, sε)), 1 ≤ i ≤ n
do(lton(i), s)ε = do(lton(i), sε), 1 ≤ i ≤ n
do(rton(i), s)ε = do(rton(i), sε), 1 ≤ i ≤ n
do(ltof(i), s)ε = do(ltof(i), sε), 1 ≤ i ≤ n
do(rtof(i), s)ε = do(rtof(i), sε), 1 ≤ i ≤ n

∀t ∈ Ŝ(t : α→ ∃s ∈ S(sα = t))

In the following lines, the ti refer to statelets.

do(lton(i), f ε(t1, t2)) = f ε(do(lton(i), t1), t2)

do(rton(i), f ε(t1, t2)) = f ε(t1, do(rton(i), t2))

do(ltof(i), f ε(t1, t2)) = f ε(do(ltof(i), t1), t2)

do(rtof(i), f ε(t1, t2)) = f ε(t1, do(rtof(i), t2))

do(lton(i), f1(t1, . . . , tn)) = f1(t1, . . . , do(lton(i), ti), . . . , tn)

do(rton(i), f2(t1, . . . , tn)) = f2(t1, . . . , do(rton(i), ti), . . . , tn)

do(ltof(i), f1(t1, . . . , tn)) = f1(t1, . . . , do(ltof(i), ti), . . . , tn)

do(rtof(i), f2(t1, . . . , tn)) = f2(t1, . . . , do(rtof(i), ti), . . . , tn)

lon(i, f ε(t1, t2)) = lon(i, t1)

ron(i, f ε(t1, t2)) = ron(i, t2)

lonall(f ε(t1, t2)) = lonall(t1)

ronall(f ε(t1, t2)) = ronall(t2)

lon(i, f1(t1, . . . , tn)) = lon(i, ti), 1 ≤ i ≤ n
ron(i, f2(t1, . . . , tn)) = ron(i, ti), 1 ≤ i ≤ n



The Aspect Calculus 13

In the following lines, t refers to a statelet and superscripts refer to the composition
function of Definition 8.

t : ε→ f ε(t1, t2) = t

t : 1→ f1(t1,1, . . . , t1,n) = t

t : 2→ f2(t2,1, . . . , t2,n) = t

Equation 1 for statelet equality also is included in M. The onall, lonall, and ronall
predicates are allowed in the aspect representation because they are determined by flu-
ents at their descendant leaves in the aspect tree according to the leaf dependency con-
straint of Definition 9.

A close examination shows that most of Laspectn is of complexity (size) linear in n.
However, the number of axioms involving fα for various aspects α is bounded by the
depth of the aspect tree times the number of fluents and actions. Assuming the depth of
the aspect tree is small compared to n, the complexity of Laspectn will be small relative
to the classical version. Many of the lines in Laspectn mention the n variables ti and
this gives another quadratic factor, but the constant factor is at least smaller than the
quadratic factor for the classical theory. However, even this factor can be reduced; the
idea is to make the aspect tree a binary tree. This increases the number of equations
while keeping the total number linear, but each equation will have a constant size. Also,
the depth of the aspect tree will be at most logarithmic in n assuming the aspect tree
is an approximately balanced binary tree. Many of the axioms are equations, which
tend to be easy for first-order provers to handle, so the new equations should not make
planning harder than for the classical representation.

7.2 Transmitting Switch Settings

Without going into detail, the switches example can be modified by also having an
action ltr(i) that transmits the state of left switch i to left switch i + 1, 1 ≤ i < n
and similarly rtr for right switches. Then ltr(i) could have aspect 1 but not (1, i) or
(1, i + 1) and rtr(i) could have aspect 2 but not (2, i) or (2, i + 1), even though the
switches they modify have aspects that are children of 1 and 2, respectively. The axiom
for ltr(2) in T , for example, could be

lon(3, do(ltr(2), s)) ≡ lon(2, s).

This example shows how sub-modules (incomparable aspects) are not completely in-
dependent but can influence one another. Now, the aspect representation would auto-
matically give frame axioms implying that ltr does not modify right switches and rtr
does not modify left switches. However, it would not, for example, give the frame ax-
iom that ltr(2) does not modify left switch 1, because the aspects of left switch 1 and
the action are not incomparable. Such frame axioms would be included in T ′. On this
example, a custom translation can give a more succinct representation of these frame
axioms. In particular, one can axiomatize ltr and rtr in T as follows, where 1 ≤ i < n,
the statelets sj with sj : (1, j) are universally quantified in the first two equations,



14 D. Plaisted

and sj : (2, j) in the second two equations. Also, ltr′(i, si) returns a statelet at aspect
(1, i+ 1) and rtr′(i, si) returns a statelet at aspect (2, i+ 1).

lon(i+ 1, ltr′(i, si)) = lon(i, si)

do(ltr(i), f1(s1, · · · , sn)) = f1(s1, · · · , si, ltr′(i, si), si+2, · · · , sn)
ron(i+ 1, rtr′(i, si)) = ron(i, si)

do(rtr(i), f2(s1, · · · , sn)) = f2(s1, · · · , si, rtr′(i, si), si+2, · · · , sn)

The binary tree idea can further reduce the complexity, as before.
This example and many similar examples involving transmitting information be-

tween disjoint aspects can be handled in a more systematic way by allowing some
actions to have a set of aspects instead of just a single aspecct. The ltr(i) action would
have aspects (1, i) and (1, i+1). Without a fully rigorous treatment, the idea is to mod-
ify Equation 3 as follows for actions a with more than one aspect and more than one i
such that αi is a prefix of at least one of the aspects of action a:

do(a, fα(s1, . . . , sn)) = fα(s′1, . . . , s
′
n)

where s′i = si if the aspect αi is disjoint from all the aspects of action a. Otherwise,
s′i is a statelet defined by axioms such as the first and third equations above. However,
if there is only one i such that αi is a prefix of at least one of the aspects of a, then
the original form of Equation 3 can be used. Thus for example do(ltr(i), f ε(s1, s2)) =
f ε(do(ltr(i), s1), s2).

8 The Unconstraining Property

Definition 16 An assignment of aspects to actions and fluents in a state theory T that
satisfies the action dependency condition, Definition 1, is unconstraining if it satisfies
the locality constraints on actions of Definition 11, the leaf dependency constraint on
fluents of Definition 9, and the combining axiom of Definition 10; that is, these must be
theorems of T .

Theorem 3. For any state theory T satisfying the action dependency condition and any
aspect tree Υ , it is possible to find an assignment of aspects to fluents and actions that
is unconstraining.

Proof. The leaf dependency constraint on fluents can be satisfied by putting all fluents at
the same leaf of Υ if necessary and the locality constraints on actions can be satisfied by
assigning all actions the aspect of ε at the root of the tree. However, such an assignment
of aspects would not encode any frame axioms, so it would not serve any purpose. ut

8.1 Relative Consistency

We now show that if MΥ.Π is unconstraining and T satisfies the action dependency
condition then T aspect is relatively consistent with T . This implies that T aspect does
not imply any new theorems on the assertions over the symbols in T .



The Aspect Calculus 15

Theorem 4. Suppose T is a theory of states, actions, and fluents that satisfies the action
dependency condition, Definition 1. Suppose that an aspect tree Υ is chosen and aspects
are assigned to fluents and actions of T in an unconstraining manner (Definition 16).
Then T aspect is relatively consistent with T .

Proof. We show that any model M of T can be extended to a model Maspect of
T aspect. Maspect interprets the symbols of T on the domains of T the same way that
M does. Maspect has additional domains, the set of statelets and the set of aspects, and
an additional element ⊥ that can be the value of fluents and of do(a, s) in Maspect.
Also, Maspect has the functions fα for aspects α in Υ mapping from tuples of statelets
to statelets, and the function mapping states and statelets s to statelet sα, for aspects α.

For every state s of M , there is a statelet sε of Maspect such that for all fluents
p ∈ F , Φ(p, sε) = Φ(p, s). Two statelets that have the same aspect and the same value
on all fluents in F are equal in Maspect; other statelets are not equal in Maspect.

The functions sα from states or statelets s to statelets are defined as in Definition
7. The functions fα are defined by fα(sα1 · · · sαn) = sα where the aspect α has n
children. In Maspect, the set Ŝ of statelets is {sα : s ∈ S, α ∈ Ψ}.

Fluents of M are extended from states of M to statelets in Maspect. The value
⊥ is allowed as a value of Φ(p, s) for fluents p and statelets s, where ⊥ is not equal
to any state or statelet and Φ(p, s) 6= ⊥ for fluents p and states s. A fluent p of M
that is assigned an aspect of α in Maspect is defined on all statelets sβ for β ≤ α
and Φ(p, sβ) = Φ(p, sε) for all such β. If a statelet s has aspect γ and γ 6≤ α then
Φ(p, sγ) = ⊥.

Actions a of M are extended from states to statelets in Maspect. Actions a of M
with aspect α satisfy do(a, sβ) = ⊥ for statelets sβ with β 6≤ α. Actions a of M with
aspect α are defined on all statelets sβ for β ≤ α. The value of do(a, sβ) in this case is
a statelet twith t : β such that t ≡α do(a, sε). This completely defines t because fluents
q with aspects γ with α#γ satisfy Φ(q, t) = ⊥ in Maspect, and fluents with aspects γ
with γ ≤ α are specified by the leaf dependency constraint on fluents. This completely
defines Maspect.

It remains to show that Maspect is a model of T aspect. Now, Maspect is a model
of T because it agrees with M there. So it remains to show that Maspect is a model of
MΥ . Recall from Definition 13 thatMΥ is the conjunction of Equation 1 for statelet
equality, the bridging axioms, Definition 6, the aspect composition equation, Equation
2, and the action and fluent locality axioms, Equations 3 and 4.

The issue is that one can have sα = tα even for unequal states s and t, so one has
to show that all the functions and properties depend only on the fluents of sα and not
directly on s.

The proof is routine, so the details are omitted. ut

9 Solving planning problems bottom up

For a binary relation R, R(x, y) indicates that (x, y) ∈ R. If A is a logical assertion
then {x : A} is the set of x having property A. If α is an aspect then x : α iindicates
that x has aspect α. Let M be a model of T aspect and let the relations Rα, Rα1 , and Rα2



16 D. Plaisted

be defined as follows, where a superscript of ∗ indicates transitive closure and Iα is the
identity relation on statelets at aspect α:

Rα = (Rα1 ∪Rα2 )∗ ∪ Iα (5)

Rα1 = {(fα(s1 · · · sn), fα(t1 · · · tn)) : Rαi(si, ti), 1 ≤ i ≤ n} (6)

Rα2 = {(s, t) :M |= do(a, s) = t, a ∈ A, s : α, aspect(a) ≥ α} (7)

Rα gives the set of pairs (s, t) of statelets at aspect α such that t is reachable in M
from s by a finite sequence of actions at aspect α or larger aspects. Computing Rα can
be helpful for solving planning problems by exhaustive search, and it avoids repetitive
search due to actions on independent (incomparable) aspects commuting. Of course,
if the number of states is finite, Rα will always be finite. This differs from Reiter’s
formalism [Rei91], in which the number of situations can be infinite even if the number
of states is finite because situations are defined by sequences of states.

Theorem 5. With Rα defined as in Equations 5,6, and 7, Rα(s, t) for statelets s and t
with s : α and t : α iff there is a sequence s1 : α, s2 : α, . . . , sn : α of statelets where
s = s1, t = sn, and for all i, 1 ≤ i < n, there is an action ai with ai : βi such that
βi ≥ α and M |= si+1 = do(ai, si).

The proof is omitted for lack of space. Of course, this implies that Rε(sε, tε) for
states s and t iff t can be obtained in M from s by a finite sequence of actions.

10 Conclusion

The aspect calculus expresses frame axioms involving incomparable aspects of a state
efficiently for modular theories. Aspects are sequences of integers that correspond to
substates of a state; for example, in the sequence (i, j, k), i may indicate the earth, j a
country, and k a state in a country. These sequences are ordered so that sequences are
larger than (greater than) their proper prefixes. Fluents are assigned aspects based on
which portion of the state they describe, so a fluent may have an aspect corresponding
to North Carolina if it describes something about North Carolina. Then actions can
be assigned aspects that are the greatest lower bound (longest common prefix) of the
aspects of all fluents that they influence or depend on. This implies for example that
actions in North Carolina do not influence fluents from outside North Carolina, thereby
encoding many frame axioms.

This formalism is entirely in first-order logic, and powerful first-order theorem
provers can be applied to it if the underlying theory T is first-order. When converted
to clause form, the resulting clauses appear to be easier for first-order theorem provers
to handle than clauses from Reiter’s formalism. Also, for some theories, clauses from
Reiter’s formalism can become very long. Two examples are given and relative consis-
tency is shown assuming that the unconstraining property holds. This formalism also
permits an exhaustive method of solving planning problems that has some advantages
for modular domains. The ramification problem does not require any special methods in
the aspect calculus. However, this formalism does not handle knowledge and belief, but
is only concerned with logical correctness. It is also only suitable for modular theories.



The Aspect Calculus 17

References

[Dav90] E. Davis. Representations of Commonsense Knowledge. Morgan Kaufmann, 1990.
[DT07] Marc Denecker and Eugenia Ternovska. Inductive situation calculus. Artif. Intell.,

171(5-6):332–360, 2007.
[Haa87] A. R. Haas. The case for domain-specic frame axioms. In F. M. Brown, editor, The

Frame Problem in artificial intelligence. Proceedings of the 1987 workshop, pages 343–
348. Morgan Kaufmann, 1987.

[Hay73] Pat Hayes. The frame problem and related problems in artificial intelligence. In
A. Elithorn and D. Jones, editors, Artificial and Human Thinking, pages 45–59. Jossey-
Bass, Inc. and Elsevier Scientific Publishing Company, 1973.

[Lin08] Fangzhen Lin. Situation calculus. In Frank van Harmelen, Vladimir Lifschitz, and Bruce
Porter, editors, Handbook of Knowledge Representation, pages 649–669. Elsevier, 2008.

[LR94] Fangzhen Lin and Raymond Reiter. State constraints revisited. Journal of Logic and
Computation, 4(5):655–678, 1994.

[McI00] Sheila A. McIlraith. Integrating actions and state constraints: A closed-form solution
to the ramification problem (sometimes). Artificial Intelligence, 116(1):87 – 121, 2000.

[MH69] J. McCarthy and P. Hayes. Some philosophical problems from the standpoint of ar-
tificial intelligence. In Machine Intelligence 4, pages 463–502. Edinburgh University
Press, 1969.

[MM97] Pedro A. Matos and João P. Martins. Contextual logic of change and the ramifica-
tion problem. In Ernesto Coasta and Amilcar Cardoso, editors, Progress in Artificial
Intelligence, pages 267–278, Berlin, Heidelberg, 1997. Springer Berlin Heidelberg.

[Ped89] E. P. D. Pednault. ADL: Exploring the middle ground between STRIPS and the situation
calculus. In Proceedings of the International Conference on Principles of Knowledge
Representation (KR-98), pages 324–332. Morgan Kaufmann, Inc., 1989.

[Pet08] Ronald P. A. Petrick. Cartesian situations and knowledge decomposition in the situation
calculus. In Principles of Knowledge Representation and Reasoning: Proceedings of
the Eleventh International Conference, KR 2008, Sydney, Australia, September 16-19,
2008, pages 629–639, 2008.

[Rei91] Raymond Reiter. The frame problem in the situation calculus: a simple solution (some-
times) and a completeness result for goal regression. In Vladimir Lifschitz, editor, Arti-
ficial Intelligence and Mathematical Theory of Computation: Papers in Honor of John
McCarthy, pages 359–380. Academic Press, 1991.

[Sch90] Lehnart Schubert. Monotonic solution of the frame problem in the situation calculus: An
efficient method for worlds with fully specified actions. In Henry E. Kyburg, Ronald P.
Loui, and Greg N. Carlson, editors, Knowledge Representation and Defeasible Reason-
ing, volume Volume 5, pages 23–67. Kluwer Academic Publishers, Dordrecht / Boston
/ London, 1990.

[Sha99] Murray Shanahan. The ramification problem in the event calculus. In Proceedings of
the 16th International Joint Conference on Artifical Intelligence - Volume 1, IJCAI’99,
pages 140–146, San Francisco, CA, USA, 1999. Morgan Kaufmann Publishers Inc.

[SL93] Richard B. Scherl and Hector J. Levesque. The frame problem and knowledge-
producing actions. In Proceedings of the Eleventh National Conference on Artificial In-
telligence (AAAI-93), pages 689–697, Washington, D.C., USA, 1993. AAAI Press/MIT
Press.

[Ter00] Eugenia Ternovska. Id-logic and the ramification problem for the situation calculus. In
ECAI, 2000.

[Thi98] Michael Thielscher. Introduction to the fluent calculus. Electron. Trans. Artif. Intell.,
2:179–192, 1998.


