

ὰέὫίὭὫ ὼ ὸὥὲίὭὫ ρ (4)

3. State of the art of hardware implementation for sigmoidal functions

It should be emphasized that both functions are non-linear, because they include division and
exponential operations, so they are the bottleneck of the artificial neuron design. The rest of the
artificial neuron is formed by multiplications and sums. That is, the implementation of sigmoid
functions is not immediate in fixed-point arithmetic and is usually approximated with some method.

One approach is using Look-up Tables (LUTs), which store samples of the function; this method
needs a lot of hardware resources but gets a high speed [11, 20, 60-66]. The LUTs can be
implemented with memory elements, or using logical resources. The two solutions can have
different benefits. In the first case, the design optimization depends on the type of memories
available in the device; in the second case, it is possible to develop logical simplifications. Other
approximation form is the Piece Wise Lineal (PWL), which approaches each section with a straight
line, in this case a multiplication and a sum are necessary [18, 19, 21, 38, 44, 45, 63, 66, 68, 69, 70].

It is also possible to approximate each section with polynomials, usually of grade two [70] or cubic
[71], which increases the number of multipliers. Other authors use piecewise Taylor approximations
[72, 73]. In all previous cases, it is possible to reduce the error by increasing the number of sections.
Other approaches propose specific shape functions that consider the characteristics of the sigmoid
functions; firstly where its derivative tends to a constant, and secondly its symmetry characteristics
[4, 11, 21, 26]. Other authors use functions that look like sigmoid functions [9, 13, 74, 75], in such
cases the error is bounded.

The comparison of these solutions is based on the functionality, which is measured with the error.
There are several types of errors, and sometimes implementations are compared with different
error values and error types [2, 47, 76, 77]. Once the functionality is fixed, there are three
parameters to compare [78], which are the physical performances: the hardware resources, the
consumed power and the speed of the system.

It should be noted that the effect of the number of bits in the representation is chosen discreetly or
arbitrarily by authors [11, 19, 20, 60, 61, 66, 67, 69, 70, 71, 75, 79, 80, 81], usually based on the
experience or previous works. At most, a scan is performed for a discrete set of bit numbers, without
performing a systematic study of the effect of the number of bits on the functionality. A small
number of bits can cause degradation of system functionality. An excessive number of bits may not
improve functionality, but increase area and consumed power, and decrease speed.

Usually, authors extract area and speed, but almost never the consumed power [11, 19, 20, 45, 60-
64, 66, 67, 70, 71, 75, 79, 80-83]; with the exception of [69]. Power is the most complicated feature
to evaluate, it must be estimated with specific tools and a set of parameters must be fixed by the
designer. Consumed power becomes important with the use of portable personal devices and the
autonomy of the batteries [84, 85]. Many authors study the speed as the latency of the system,
number of clock cycles required, but without estimating the maximum frequency [70, 71].

4. Objectives

The objective of this research is to fix a methodology for sigmoidal functions designed on digital
programmable devices, in particular, the hyperbolic tangent. The approximation type will be based
on LUTs implemented with logical elements.

There are many design methods [86], this development focuses on Simulink [87] of Matlab [88]
using fixed-point arithmetic. This design flow is fast and flexible, allowing to check different
architectures and the effect of the binary format in different points of the system; this makes
possible to scan the number of bits in a systematic and extensive form.

A suitable parameter will be chosen to measure the functionality, which obviously will be associated
with the representation error. This allows identifying different systems with similar functionality.

Once the systems have been chosen, which reach the functionality with the smaller sizes of fixed-
point representation, from Simulink can be generated the project in a standard Hardware
Description Language (HDL). One of them is Very High Speed Integrated Circuit Hardware
Description Language (VHDL) [89, 90], and the other is Verilog [91, 92]. The generated project is
formed by the digital implementation and files with input and output signals, to perform the
necessary simulations. Besides, the physical performances of area, speed and power will be
extracted for the chosen device. The speed will take into account the latency of the system, and also
the maximum frequency.

It is also possible to design in Simulink for the two main FPGA providers, which are Altera [93] and
Xilinx [94]; with their own tools, which are respectively DSP Builder [95] and System Generator [96].
In the design tools of these manufacturers it is possible to extract the performances for the chosen
device [97, 98].

To show this design method the manufacturer Altera has been chosen, and the project has been
generated in Verilog language. In this work it is assumed that ANN training is performed outside the
device, this is called offline type [99], so it is not considered the approximation of the first derivative
of the function. For example, for offline training can be used the Neural Network Toolbox [100] from
Matlab.

5. The measure of functionality

Therefore, there are four parameters that can be evaluated in digital implementations: the
functionality, the area, the power and the system speed. The intention is to analyse approximations
with equal or similar functionality; afterwards, the three remaining parameters are contrasted. The
first question is how to measure functionality, clearly associated with the error, but with different
versions.

Let the function y=f(x) be the one to be approximated, and let ya=fa(x) be the expression of the
approximation; the error is defined as E(x)=ya-y=fa(x)-f(x), which generally has null mean value. The
absolute error is defined as Eabs(x)=|E(x)|.

In the input the size of fractional bits (nbfi) can be varied, which affects the resolution. The question
is how many bits to use for the input integer part (nbii). When the number of bits of the input
fractional part is large the input range tends to [-2nbii, +2nbii); in fact, the range will be [-2nbii, +2nbii-
2nbfi]. Then, with nbii equal to 1 the representation range is [-2, +2-2nbfi], with nbii equal to 2 the
range is [-4, +4-2nbfi], with nbii equal to 3 the range is [-8, +8-2nbfi], etc. It is proposed to represent
the function in an interval centred in the origin, and saturate the output to ±1 values outside that
interval, since the function has two horizontal asymptotes. For this purpose, the SNR is measured
when a sawtooth signal is introduced in the range [-16, +16]. Figure 4 shows the saturation error
outside the range [-4, + 4], which is the input range with 2 bits for the integer part when the number
of fractional bits grows indefinitely. That is, the saturation approximation is given by expression 8.
The SNR obtained is 81.25 dB, which is a high value; the signal power is noise power multiplied by
1.33·10+08. This is the maximum SNR for the input range [-16, +16] when the hyperbolic tangent is
approximated in the interval [-4, +4].

Figure 4. The saturation error outside the range [-4, + 4].

 ώί ὼ ρ ὼ τὸὥὲίὭὫ ὼ τ ὼ τρ τ ὼ (8)

With the saturation out of the range [-2, +2], with 1 integer bit, the SNR for input range [-16, +16] is
46.61 dB; a high value but easily surmountable. The saturation out of the range [-8, +8], for 3 integer
bits, the SNR for input range [-16, +16] is 150.73 dB, extremely high and unnecessary value. Besides,
using 3 bits for the input integer part increases the bit size and the range to be approximated,
disperses the samples, and input values reached are too much high for most scenarios. Therefore,
the number of integer bits in the input is set to 2, the approximation will be performed within the
range [-4, +4], and the circuit will saturate outside that range (equation 9). For measure the SNR of
the approximation, the input signal will be a sawtooth signal in the range [-4, +4]. This coincides
with the assumption that all values in the input for that range are equally likely.
 ώίὥ ὼ ρ ὼ τώὥ ὼ τ ὼ τρ τ ὼ (9)

Finally, the parameters to be varied will be: the number of fractional bits of the input signal (nbfi),
the number of bits of the LUT address bus (n), and the number of fractional bits for stored words in
the LUT (nbfo).

 nbfo
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

nbfi

0 13,75 14,01 15,33 14,62 14,65 14,85 14,91 14,93 14,93 14,93 14,93 14,93 14,93 14,93 14,93 14,93 14,93

1 12,33 14,65 16,28 17,11 17,28 17,38 17,35 17,37 17,37 17,37 17,37 17,37 17,37 17,37 17,37 17,37 17,37

2 13,35 16,04 18,91 20,46 20,79 20,94 20,91 20,94 20,94 20,94 20,94 20,94 20,94 20,94 20,94 20,94 20,94

3 13,64 16,51 19,92 21,98 22,44 22,64 22,61 22,65 22,65 22,65 22,65 22,65 22,65 22,65 22,65 22,65 22,65

4 13,73 16,59 20,23 22,44 22,94 23,15 23,13 23,17 23,17 23,17 23,17 23,17 23,17 23,17 23,17 23,17 23,17

5 13,75 16,62 20,3 22,56 23,07 23,29 23,27 23,31 23,31 23,31 23,31 23,31 23,31 23,31 23,31 23,31 23,31

6 13,75 16,63 20,32 22,60 23,11 23,33 23,31 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36

7 13,75 16,63 20,32 22,60 23,11 23,33 23,31 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36

8 13,75 16,63 20,33 22,60 23,11 23,33 23,31 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36

9 13,75 16,63 20,32 22,60 23,11 23,33 23,31 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36

10 13,75 16,63 20,32 22,60 23,11 23,33 23,31 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36

11 13,75 16,63 20,32 22,60 23,11 23,33 23,31 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36

12 13,75 16,63 20,32 22,60 23,11 23,33 23,31 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36

13 13,75 16,63 20,32 22,60 23,11 23,33 23,31 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36

14 13,75 16,63 20,32 22,60 23,11 23,33 23,31 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36

15 13,75 16,63 20,32 22,60 23,11 23,33 23,31 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36

16 13,75 16,63 20,32 22,60 23,11 23,33 23,31 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36

Table 1. The SNR in dBs against input and output fractional bits.

Figure 5 shows the shape of SNR in dBs for 16 words LUT against input and output fractional bits. In
other words, in order to reach the maximum SNR with the 16 words LUT, at least 6 input fractional
bits and 7 output fractional bits are required, which is marked in figure 5. Increasing fractional bit
numbers above these values do not increase the SNR.

Figure 5. The shape of SNR in dBs for 16 words LUT.

Figure 6 shows the previous behaviour in two dimensions. For each value of input fractional bits
(nbfi), the SNR in dB is plotted against the output fractional bits (nbfo). A saturation zone is
observed, for a number of output fractional bits (nbfo) greater than 7; the SNR is constant for each
value of nbfi. For nbfo less than 7 a transition zone is observed; which is linear for small values of
nbfo; for large values of nbfi the slope is 3 dB per bit. For nbfi greater or equal than 6 the SNR values
are similar. Analogous results are observed if the SNR in dB versus nbfi is represented for each value
of nbfo.

Figure 6. The two dimensions shape of SNR in dBs for 16 words LUT.

For the implementation the values 6 and 7 are chosen for nbfi and nbfo because the maximum SNR
is obtained with the minimum number of bits, this system is shown in figure 2. From Simulink the
Verilog project was generated for the Altera device EP2AGX260FF35I5 of Arria II GX family [107].
The project was compiled with Quartus II [108] and simulated with ModelSim-Altera Edition [109]
and the Simulation Waveform Editor included in Quartus II. The schematic circuit is in figure 7; which
shows the input and output of the function, the clock, the reset, and input and output enable signals.
In short, only one FPGA implementation was generated, the most convenient case of the 625
Simulink simulations.

Figure 7. The schematic circuit of 16 words LUT.

The ModelSim simulation is shown in figure 8 for 25 MHz clock frequency. Only the input and output
signals are shown in this figure; avoiding auxiliaries signals for simplification. The simulation input
rate is 25·10+6 values per second. The input and output registers, shown in Figure 7, set the latency
of the system in 2 clock cycles. These registers, which are not shown in figure 2 for simplification,
are necessary in Simulink for generating the clock signal in the project. The output Y_OUT of figure
8 is equal to the output signal in Simulink. This can be ensured because when the project is
generated from Simulink, the input and output test signals (testbench) are also generated. The fixed
point input signal is used in circuit simulation with ModelSim. On the other hand, the output signal
of this simulator is compared with the Simulink fixed-point output signal, at the end the message
"test completed passed" indicates that output signals have the same values. In this case, 100 points
were generated for each interval on the x-axis, a total of 1600 discrete time values. The Verilog
description circuit occupies 203 lines and the testbench 3540 lines, including blank and comments
lines, this is difficult to generate using manual implementation.

8. Experiments and results

In the previous section has been set: the model, the parameters, the design methodology and the
measurement of performances. This section presents the results when the design parameters are
varied. For this purpose the number of bits in LUT address bus (n) was varied until 16, the LUT
reaches 64 kilowords. For each n value, the number of input and output fractional bits, nbfi and nbfo
respectively, were varied from 0 to 24. A similar study to the previous section was done, the results
of SNR were stored in matrices of 25 by 25 elements, similar behaviours were obtained to figure 5.
For each n value, only the case of maximum SNR with the minimum numbers of bits was
implemented, and its performances were evaluated. Figure 10.a shows the 16 responses obtained.
Obviously, if the number of words in the LUT increases, the maximum SNR grows, but it is necessary
to increase the number of input and output fractional bits; this tendency is observed in figure 10.b.
In Simulink the number of simulations for generating figure 10.a was 10,000 (16x25x25), which were
performed by running a loop for each n value.

Figure 10. The SNR in dBs versus input and output fractional bits (a) and maximum SNR in dBs (b),

 for each number of bits in LUT address bus.

If it is desired to reach a SNR value, which coincides with a horizontal zone of figure 10.a for a n
value, this n value and the smallest values of nbfi and nbfo would be taken. If it does not coincide
and the horizontal plane of constant SNR intersects the curves, must be taken the minor n, and the
lowest values of nbfi and nbfo; this involves minimizing the area. Anyway, this type of search can be
done in the three-dimensional matrix where the SNR values are stored.

8.1 Measurements and results with no device dependency

Figure 11 shows the maximum SNR for each n value. The SNR is almost linear versus n, and increases
6 dB per bit. The SNR in equation 6 is multiplied by 4 when the number of words is doubled in the
LUT.

(a) (b)

[20] E. M. Ortigosa, A. Canas, E. Ros and R. R. Carrillo, “FPGA implementation of a perceptron-like neural
network for embedded applications,” in 7th International Work Conference on Artificial and Natural
Neural Networks, Lecture Notes in Computer Science, 2003.

[21] R. A. Callejas-Molina, V. M. Jimenez-Fernandez and H. Vazquez-Leal, “Digital Architecture to
Implement a Piecewise-Linear Approximation for the Hyperbolic Tangent Function,” in IEEE
International Conference on Computing Systems and Telematics-ICCSS, 2015.

[22] S. Gomar, M. Mirhassani and M. Ahmadi, “Precise Digital Implementations of Hyperbolic Tanh and
Sigmoid Function,” in 50th Asilomar Conference on Signals; Systems and Computers, 2016.

[23] C. Lin and J. Wang, “A digital circuit design of hyperbolic tangent sigmoid function for neural
networks,” in IEEE International Symposium on Circuits and Systems, 2008.

[24] A. H. Namin, K. Leboeuf, R. Muscedere, H. Wu and M. Ahmadi, “Efficient Hardware Implementation
of the Hyperbolic Tangent Sigmoid Function,” in IEEE International Symposium on Circuits and
Systems, 2009.

[25] M. Panicker and C.Babu, “Efficient FPGA Implementation of Sigmoid and Bipolar Sigmoid Activation
Functions for Multilayer Perceptrons,” IOSR Journal of Engineering (IOSRJEN), vol. 2, no. 6, pp. 1352-
1356, 2012.

[26] B. Zamanlooy and M. Mirhassani, “Efficient VLSI Implementation of Neural Networks with
Hyperbolic Tangent Activation Function,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 22, no. 1, pp. 39-48, 2014.

[27] C. M. Bishop, Neural Networks for Pattern Recognition, 13ª ed., Oxford University Press, 2005.

[28] D. Graupe, Principles of Artificial Neural Networks, 3ª ed., World Scientific, 2013.

[29] Y. H. Hu and J. N. Hwang, Handbook of Neural Network Signal Processing, CRC Press, 2002.

[30] A. R. Omondi and J. C. Rajapakse, FPGA Implementations of Neural Networks, Springer, 2006.

[31] D. Tebbe, J. Doner and T. Billhartz, “Neural Network Communications Signal Processing,” Harris
Corporation, Government Communications Systems Division, USA, 1994.

[32] S. T. Pérez, C. M. Travieso and J. B. Alonso, “Design Methodology of an Equalizer for Unipolar Non
Return to Zero Binary Signals in the Presence of Additive White Gaussian Noise Using a Time Delay
Neural Network on a Field Programmable Gate Array,” Sensor, vol. 13, no. 12, pp. 16829-16850,
2013.

[33] M. Costa, D. Palmisano and E. Pasero, “A system design methodology for analog feed forward
artificial neural networks,” Analog Integrated Circuit and Signal Processing, vol. 21, no. 1, pp. 45-55,
1999.

[34] D. Maliuk, H. G. Stratigopoulos and Y. Makris, “An Analog VLSI Multilayer Perceptron and its
Application Towards Built-In Self-Test in Analog Circuits,” in IEEE 16th International On-Line Testing
Symposium (IOLTS 2010), 2010.

[35] S. Satyanarayana, Y. Tsividis and H. Graf, “A reconfigurable VLSI Neural Network,” IEEE Journal of
Solid-State Circuits, vol. 27, no. 1, pp. 67-81, 1992.

[36] P. Dong, G. L. Bilbro and M. Y. Chow, “Implementation of artificial neural network for real time
applications using field programmable analog arrays,” in IEEE International Joint Conference on
Neural Network (IJCNN), 2006.

[37] R. Manjunath and K. Gurumurthy, “Artificial neural networks as building blocks of mixed signal
FPGA,” in 2nd International Conference on Field-Programmable Technology (ICFPT 2003), 2003.

[38] D. Myers and R. Hutchinson, “Efficient implementation of piecewise linear activation function for
digital VLSI neural networks,” Electronics Letters, vol. 25, no. 24, pp. 1662-1663, 1989.

[39] X. Wang and Z. Ma, “Discussion on the methodology of neural network hardware design and
implementation,” in 6th International Conference on Solid-State and Integrated-Circuit Technology,
2001.

[40] R. Selow, H. S. Lopes and C. R. Erig, “A comparison of FPGA and FPAA technologies for a signal
processing application,” in International Conference on Field Programmable Logic and Applications,
2009.

[41] P. Belanovic, Library of Parameterized Hardware Modules for Floating-Point Arithmetic with An
Example Application, Ph. D. Dissertation, Northeastern University Boston, Massachusetts, 2002.

[42] P. Belanovic and M. Leeser, “A library of parameterized floating-point modules and their use,” in
12th International Conference on Field-Programmable Logic and Applications, Lecture Notes in
Computer Science, 2002.

[43] M. A. Cavuslu, C. Karakuzu, S. Sahin and M. Yakut, “Neural network training based on FPGA with
floating point number format and it's performance,” Neural Computing and Applications, vol. 20, no.
2, pp. 195-202, 2011.

[44] S. Kawamura and M. S. Yoshida, “FPGA Implementation of Neuron Model Using Piecewise Nonlinear
Function on Double-Precision Floating-Point Format,” in 29th International Conference on Industrial
Engineering and Other Applications of Applied Intelligent Systems, Lecture Notes in Computer
Science, 2016.

[45] A. W. Savich, M. Moussa and S. Areibi, “The impact of arithmetic representation on implementing
MLP-BP on FPGAs: A study,” IEEE Transactions on Neural Networks, vol. 18, no. 1, pp. 240-252, 2007.

[46] K. Han, Automating transformations from floating-point to fixed-point for implementing digital signal
processing algorithms, Ph. D. Dissertation, University of Texas, Austin, 2006.

