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3. State of the art of hardware implementation for sigmoidal functions 
 
It should be emphasized that both functions are non-linear, because they include division and 
exponential operations, so they are the bottleneck of the artificial neuron design. The rest of the 
artificial neuron is formed by multiplications and sums. That is, the implementation of sigmoid 
functions is not immediate in fixed-point arithmetic and is usually approximated with some method. 
 
One approach is using Look-up Tables (LUTs), which store samples of the function; this method 
needs a lot of hardware resources but gets a high speed [11, 20, 60-66]. The LUTs can be 
implemented with memory elements, or using logical resources. The two solutions can have 
different benefits. In the first case, the design optimization depends on the type of memories 
available in the device; in the second case, it is possible to develop logical simplifications. Other 
approximation form is the Piece Wise Lineal (PWL), which approaches each section with a straight 
line, in this case a multiplication and a sum are necessary [18, 19, 21, 38, 44, 45, 63, 66, 68, 69, 70]. 
 
It is also possible to approximate each section with polynomials, usually of grade two [70] or cubic 
[71], which increases the number of multipliers. Other authors use piecewise Taylor approximations 
[72, 73]. In all previous cases, it is possible to reduce the error by increasing the number of sections. 
Other approaches propose specific shape functions that consider the characteristics of the sigmoid 
functions; firstly where its derivative tends to a constant, and secondly its symmetry characteristics 
[4, 11, 21, 26]. Other authors use functions that look like sigmoid functions [9, 13, 74, 75], in such 
cases the error is bounded. 
 
The comparison of these solutions is based on the functionality, which is measured with the error. 
There are several types of errors, and sometimes implementations are compared with different 
error values and error types [2, 47, 76, 77]. Once the functionality is fixed, there are three 
parameters to compare [78], which are the physical performances: the hardware resources, the 
consumed power and the speed of the system. 
 
It should be noted that the effect of the number of bits in the representation is chosen discreetly or 
arbitrarily by authors [11, 19, 20, 60, 61, 66, 67, 69, 70, 71, 75, 79, 80, 81], usually based on the 
experience or previous works. At most, a scan is performed for a discrete set of bit numbers, without 
performing a systematic study of the effect of the number of bits on the functionality. A small 
number of bits can cause degradation of system functionality. An excessive number of bits may not 
improve functionality, but increase area and consumed power, and decrease speed. 
 
Usually, authors extract area and speed, but almost never the consumed power [11, 19, 20, 45, 60-
64, 66, 67, 70, 71, 75, 79, 80-83]; with the exception of [69]. Power is the most complicated feature 
to evaluate, it must be estimated with specific tools and a set of parameters must be fixed by the 
designer. Consumed power becomes important with the use of portable personal devices and the 
autonomy of the batteries [84, 85]. Many authors study the speed as the latency of the system, 
number of clock cycles required, but without estimating the maximum frequency [70, 71]. 
 
 
 
 



4. Objectives 
 
The objective of this research is to fix a methodology for sigmoidal functions designed on digital 
programmable devices, in particular, the hyperbolic tangent. The approximation type will be based 
on LUTs implemented with logical elements. 
 
There are many design methods [86], this development focuses on Simulink [87] of Matlab [88] 
using fixed-point arithmetic. This design flow is fast and flexible, allowing to check different 
architectures and the effect of the binary format in different points of the system; this makes 
possible to scan the number of bits in a systematic and extensive form. 
 
A suitable parameter will be chosen to measure the functionality, which obviously will be associated 
with the representation error. This allows identifying different systems with similar functionality. 
 
Once the systems have been chosen, which reach the functionality with the smaller sizes of fixed-
point representation, from Simulink can be generated the project in a standard Hardware 
Description Language (HDL). One of them is Very High Speed Integrated Circuit Hardware 
Description Language (VHDL) [89, 90], and the other is Verilog [91, 92]. The generated project is 
formed by the digital implementation and files with input and output signals, to perform the 
necessary simulations. Besides, the physical performances of area, speed and power will be 
extracted for the chosen device. The speed will take into account the latency of the system, and also 
the maximum frequency. 
 
It is also possible to design in Simulink for the two main FPGA providers, which are Altera [93] and 
Xilinx [94]; with their own tools, which are respectively DSP Builder [95] and System Generator [96]. 
In the design tools of these manufacturers it is possible to extract the performances for the chosen 
device [97, 98]. 
 
To show this design method the manufacturer Altera has been chosen, and the project has been 
generated in Verilog language. In this work it is assumed that ANN training is performed outside the 
device, this is called offline type [99], so it is not considered the approximation of the first derivative 
of the function. For example, for offline training can be used the Neural Network Toolbox [100] from 
Matlab.  
 
 
5. The measure of functionality 
 
Therefore, there are four parameters that can be evaluated in digital implementations: the 
functionality, the area, the power and the system speed. The intention is to analyse approximations 
with equal or similar functionality; afterwards, the three remaining parameters are contrasted. The 
first question is how to measure functionality, clearly associated with the error, but with different 
versions. 
 
Let the function y=f(x) be the one to be approximated, and let ya=fa(x) be the expression of the 
approximation; the error is defined as E(x)=ya-y=fa(x)-f(x), which generally has null mean value. The 
absolute error is defined as Eabs(x)=|E(x)|. 
 
 







In the input the size of fractional bits (nbfi) can be varied, which affects the resolution. The question 
is how many bits to use for the input integer part (nbii). When the number of bits of the input 
fractional part is large the input range tends to [-2nbii, +2nbii); in fact, the range will be [-2nbii, +2nbii-
2nbfi]. Then, with nbii equal to 1 the representation range is [-2, +2-2nbfi], with nbii equal to 2 the 
range is [-4, +4-2nbfi], with nbii equal to 3 the range is [-8, +8-2nbfi], etc. It is proposed to represent 
the function in an interval centred in the origin, and saturate the output to ±1 values outside that 
interval, since the function has two horizontal asymptotes. For this purpose, the SNR is measured 
when a sawtooth signal is introduced in the range [-16, +16]. Figure 4 shows the saturation error 
outside the range [-4, + 4], which is the input range with 2 bits for the integer part when the number 
of fractional bits grows indefinitely. That is, the saturation approximation is given by expression 8. 
The SNR obtained is 81.25 dB, which is a high value; the signal power is noise power multiplied by 
1.33·10+08. This is the maximum SNR for the input range [-16, +16] when the hyperbolic tangent is 
approximated in the interval [-4, +4]. 

 

 
Figure 4. The saturation error outside the range [-4, + 4]. 
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With the saturation out of the range [-2, +2], with 1 integer bit, the SNR for input range [-16, +16] is 
46.61 dB; a high value but easily surmountable. The saturation out of the range [-8, +8], for 3 integer 
bits, the SNR for input range [-16, +16] is 150.73 dB, extremely high and unnecessary value. Besides, 
using 3 bits for the input integer part increases the bit size and the range to be approximated, 
disperses the samples, and input values reached are too much high for most scenarios. Therefore, 
the number of integer bits in the input is set to 2, the approximation will be performed within the 
range [-4, +4], and the circuit will saturate outside that range (equation 9). For measure the SNR of 
the approximation, the input signal will be a sawtooth signal in the range [-4, +4]. This coincides 
with the assumption that all values in the input for that range are equally likely. 
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Finally, the parameters to be varied will be: the number of fractional bits of the input signal (nbfi), 
the number of bits of the LUT address bus (n), and the number of fractional bits for stored words in 
the LUT (nbfo). 
 





  nbfo 
  0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

nbfi 

0 13,75 14,01 15,33 14,62 14,65 14,85 14,91 14,93 14,93 14,93 14,93 14,93 14,93 14,93 14,93 14,93 14,93 

1 12,33 14,65 16,28 17,11 17,28 17,38 17,35 17,37 17,37 17,37 17,37 17,37 17,37 17,37 17,37 17,37 17,37 

2 13,35 16,04 18,91 20,46 20,79 20,94 20,91 20,94 20,94 20,94 20,94 20,94 20,94 20,94 20,94 20,94 20,94 

3 13,64 16,51 19,92 21,98 22,44 22,64 22,61 22,65 22,65 22,65 22,65 22,65 22,65 22,65 22,65 22,65 22,65 

4 13,73 16,59 20,23 22,44 22,94 23,15 23,13 23,17 23,17 23,17 23,17 23,17 23,17 23,17 23,17 23,17 23,17 

5 13,75 16,62 20,3 22,56 23,07 23,29 23,27 23,31 23,31 23,31 23,31 23,31 23,31 23,31 23,31 23,31 23,31 

6 13,75 16,63 20,32 22,60 23,11 23,33 23,31 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 

7 13,75 16,63 20,32 22,60 23,11 23,33 23,31 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 

8 13,75 16,63 20,33 22,60 23,11 23,33 23,31 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 

9 13,75 16,63 20,32 22,60 23,11 23,33 23,31 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 

10 13,75 16,63 20,32 22,60 23,11 23,33 23,31 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 

11 13,75 16,63 20,32 22,60 23,11 23,33 23,31 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 

12 13,75 16,63 20,32 22,60 23,11 23,33 23,31 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 

13 13,75 16,63 20,32 22,60 23,11 23,33 23,31 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 

14 13,75 16,63 20,32 22,60 23,11 23,33 23,31 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 

15 13,75 16,63 20,32 22,60 23,11 23,33 23,31 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 

16 13,75 16,63 20,32 22,60 23,11 23,33 23,31 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 

Table 1. The SNR in dBs against input and output fractional bits. 
 
Figure 5 shows the shape of SNR in dBs for 16 words LUT against input and output fractional bits. In 
other words, in order to reach the maximum SNR with the 16 words LUT, at least 6 input fractional 
bits and 7 output fractional bits are required, which is marked in figure 5. Increasing fractional bit 
numbers above these values do not increase the SNR. 
 

  
Figure 5. The shape of SNR in dBs for 16 words LUT. 

 
Figure 6 shows the previous behaviour in two dimensions. For each value of input fractional bits 
(nbfi), the SNR in dB is plotted against the output fractional bits (nbfo). A saturation zone is 
observed, for a number of output fractional bits (nbfo) greater than 7; the SNR is constant for each 
value of nbfi. For nbfo less than 7 a transition zone is observed; which is linear for small values of 
nbfo; for large values of nbfi the slope is 3 dB per bit. For nbfi greater or equal than 6 the SNR values 
are similar. Analogous results are observed if the SNR in dB versus nbfi is represented for each value 
of nbfo. 



 
Figure 6. The two dimensions shape of SNR in dBs for 16 words LUT. 

 
For the implementation the values 6 and 7 are chosen for nbfi and nbfo because the maximum SNR 
is obtained with the minimum number of bits, this system is shown in figure 2. From Simulink the 
Verilog project was generated for the Altera device EP2AGX260FF35I5 of Arria II GX family [107]. 
The project was compiled with Quartus II [108] and simulated with ModelSim-Altera Edition [109] 
and the Simulation Waveform Editor included in Quartus II. The schematic circuit is in figure 7; which 
shows the input and output of the function, the clock, the reset, and input and output enable signals. 
In short, only one FPGA implementation was generated, the most convenient case of the 625 
Simulink simulations. 
 

 
Figure 7. The schematic circuit of 16 words LUT. 

 
The ModelSim simulation is shown in figure 8 for 25 MHz clock frequency. Only the input and output 
signals are shown in this figure; avoiding auxiliaries signals for simplification. The simulation input 
rate is 25·10+6 values per second. The input and output registers, shown in Figure 7, set the latency 
of the system in 2 clock cycles. These registers, which are not shown in figure 2 for simplification, 
are necessary in Simulink for generating the clock signal in the project. The output Y_OUT of figure 
8 is equal to the output signal in Simulink. This can be ensured because when the project is 
generated from Simulink, the input and output test signals (testbench) are also generated. The fixed 
point input signal is used in circuit simulation with ModelSim. On the other hand, the output signal 
of this simulator is compared with the Simulink fixed-point output signal, at the end the message 
"test completed passed" indicates that output signals have the same values. In this case, 100 points 
were generated for each interval on the x-axis, a total of 1600 discrete time values. The Verilog 
description circuit occupies 203 lines and the testbench 3540 lines, including blank and comments 
lines, this is difficult to generate using manual implementation. 







8. Experiments and results 
 
In the previous section has been set: the model, the parameters, the design methodology and the 
measurement of performances. This section presents the results when the design parameters are 
varied. For this purpose the number of bits in LUT address bus (n) was varied until 16, the LUT 
reaches 64 kilowords. For each n value, the number of input and output fractional bits, nbfi and nbfo 
respectively, were varied from 0 to 24. A similar study to the previous section was done, the results 
of SNR were stored in matrices of 25 by 25 elements, similar behaviours were obtained to figure 5. 
For each n value, only the case of maximum SNR with the minimum numbers of bits was 
implemented, and its performances were evaluated. Figure 10.a shows the 16 responses obtained. 
Obviously, if the number of words in the LUT increases, the maximum SNR grows, but it is necessary 
to increase the number of input and output fractional bits; this tendency is observed in figure 10.b. 
In Simulink the number of simulations for generating figure 10.a was 10,000 (16x25x25), which were 
performed by running a loop for each n value. 
 

   
Figure 10. The SNR in dBs versus input and output fractional bits (a) and maximum SNR in dBs (b), 

 for each number of bits in LUT address bus. 
 
If it is desired to reach a SNR value, which coincides with a horizontal zone of figure 10.a for a n 
value, this n value and the smallest values of nbfi and nbfo would be taken. If it does not coincide 
and the horizontal plane of constant SNR intersects the curves, must be taken the minor n, and the 
lowest values of nbfi and nbfo; this involves minimizing the area. Anyway, this type of search can be 
done in the three-dimensional matrix where the SNR values are stored. 
 
 
8.1 Measurements and results with no device dependency 
 
Figure 11 shows the maximum SNR for each n value. The SNR is almost linear versus n, and increases 
6 dB per bit. The SNR in equation 6 is multiplied by 4 when the number of words is doubled in the 
LUT. 
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