

Exploiting Architecture/Runtime Model-driven
Traceability for Performance Improvement

Davide Arcelli, Vittorio Cortellessa, Daniele Di Pompeo, Romina Eramo, Michele Tucci
Department of Information Engineering, Computer Science and Mathematics, University of L’Aquila, Italy
fdavide.arcelli, vittorio.cortellessa, daniele.dipompeo, romina.eramo, michele.tuccig@univag.it

Abstract—Model-Driven Engineering techniques may achieve
a major support to the software development when they allow
to manage relationships between a running system and its archi-
tectural model. These relationships can be exploited for different
goals, such as the software evolution due to new functional
requirements. In this paper, we define and use relationships that
work as support to the performance improvement of a running
system. In particular, we combine: (i) a bidirectional model
transformation framework tailored to define relationships be-
tween performance monitoring data and an architectural model,
with (ii) a technique for detecting performance antipatterns
and for suggesting architectural changes, aimed at removing
performance problems identified on the basis of runtime in-
formation. The result is an integrated approach that exploits
traceability relationships between the monitoring data and the
architectural model to derive recommended refactoring solutions
for the system performance improvement. The approach has been
applied to an e-commerce application based on microservices that
has been designed by means of UML software models profiled
with MARTE.

Index Terms—Software Performance, Architecture traceability,
Model-driven engineering

I. INTRODUCTION

Over the last decades, the fast growing complexity of software
systems has forced practitioners to use and investigate different
development techniques to tackle advances in productivity and
quality. To this extent, software engineering needs to relay
on automated approaches to keep low the development costs
while tackling the rapid changes of software capabilities that
expose different non-functional properties.

In order to manage software complexity, ever more com-
panies are considering Model-Driven Engineering (MDE) [1]
approaches, with the perceived benefit of enabling developers
to work at a higher level of abstraction and to rely on
automation throughout the development process. Nevertheless,
MDE solutions need to be further developed to scale up for
real-life industrial projects [2]. To this intent, one of the major
challenges is to work on achieving a more efficient integration
between the design and runtime aspects of systems. For
instance, through observation and instrumentation, logs and
metrics can be collected and related to the original software
design in order to comprehend, extrapolate and analyze the
inner behavior of running software system [3].

This research was supported by the ECSEL-JU through the MegaM@Rt2
project (grant agreement No 737494).

In support of this, a recent European project' has been
founded and supported by both industry and academic part-
ners. As part of its continuous system engineering approach
[4], the project notably aims at providing a runtime-design
time feedback loop that could be deployed and used in
different industrial domains. Such a feedback from runtime
to architectural design level can certainly be exploited to let
the developers have some sort of control and manipulation
possibilities over elements they would not be able to access
otherwise.

In this context, non-functional properties (e.g. performance,
power consumption or memory footprint) are becoming ever
more relevant for the success of a software application, and
the early identification of problems induces lower cost solu-
tions [5]. On one side, in model-based software performance
engineering, a number of approaches have been proposed
for detecting and removing performance problems in soft-
ware models. Some techniques are based on the concept
of performance antipattern, which characterizes bad design
practices that may jeopardize software performance, along
with possible refactoring actions aimed to remove them [6].
On the other side, methods and tools have been proposed for
monitoring system execution and measuring performance of
running systems. However, many of them do not envisage a
solid integration with architectural design models [2]. Instead,
one of the main benefits in adopting model-based performance
evaluation is the ability to conduct analysis (e.g., what-if
analysis) that would be expensive on a real system, such as
to analyze the system behavior when subjected to different
workloads, or to analyze the performance sensitivity to system
parameter variations within some ranges. Basing on a solid
connection between runtime information and architectural
design, developers can suggest architectural changes needed
to meet performance requirements before the system actually
experiments certain scenarios (e.g., some specific workloads).

This paper proposes a model-driven approach to support
designers in their performance analysis and model refactoring
processes by exploiting design/runtime interactions. In partic-
ular, the system behavior at runtime is related to the archi-
tectural design in order to investigate potential performance
issues in design and to suggest possible model refactoring
actions. The approach has been realized within Eclipse EMF?

MegaM@Rt2 project: https://megamart2-ecsel.eu/
2Eclipse Modeling Framework: https://www.eclipse.org/modeling/emf/

(a) Static view (UML Component diagram)

(b) Deployment view (UML Deployment diagram)

categoryServer : productServer :

C7 actor : Actar [1] il TR D [gateway: Categories- T Products-Server o itemServer:
1 T Web-Service [1] T Gateway [1] servor 1] 1 o T ltems-Server [1]
@, home e
%}, get(category) N @ getCategory()
1 - .

- getreply &+ getCategory_reply
ommmme e Y e

& getifindan) & findal

> —»

4 - get_reply PR el S U

e —

B, get(findProduct)

@'hndpmduu[)

g getifinditemsRandomByldProduct)

4 - getreply b ===c==
e

4 findProduct_reply

E" get(findFeaturesitemRandom)

B finditemsRandomByldProduct(
8 i) N
-- findltemsRandomByldProduct_reply
4 -- get_reply T e
P S bl AP [
8 getfinditemRandom)
& finditemRandam() R
gt reply e 4+~ findltemRandom_reply
PSS 0% el N B L PR L LR T L EY EE LR e e P TR R R LT LR RELER e

B, findFeaturesitemRandom()

4 -~ home_reply
[R R | |

4--getreply | e L.
P o0 s S <

4 -- findFeaturesitemRandom_reply

(c) Dynamic view (UML Sequence diagram)

Fig. 2: An excerpt of the E-Shopper UML Software Model

16bb4e7b689f807a that have been gathered during the mon-
itoring (ie., trace id, duration, timestamp, service and related
end point, type of span, IP address, port humber, etc.).

V. THE APPROACH IN PRACTICE

In this section we show a stepwise application of the proposed
approach to an E-Shopper case study.

A. Runtime information mining

The raw logs obtained from the infrastructure described in the
previous section have to be specified by means of a model-
based representation. To this aim, we have defined a dedicated
metamodel, as depicted in Fig. 4. It basically defines the notion
of Log, which is the root element of a log model. A Log stores
all the Trace information for messages being sent to EndPoints
representing the microservices (Services) of an application. A
Trace is identified by a unique ID and includes a set of Spans
that represent execution events. A Span is specified by the
following attributes: timestamp that describes when the event
occurs, duration that describes the time to complete the call,
and kind that is SERVER, CLIENT or undefined. A Span refers

to an EndPoint that is an URL used to access the project and
refers to one or more Services.

Figure 5 depicts a sample of a Log Model that repre-
sents the original logs shown in Fig. 3. For instance, the
topmost Span (id 16bb4e7b689f807a) represents the first span
in Fig. 3 with a 27ms duration, by SERVER kind, and with
the 18/11/20 09:52:48.107 timestamp for the call to the
http://categories/category EndPoint belonging to the gateway
Service. Note that the information that is negligible for our
purposes has not been included. The model is automatically
generated from the original raw log by means of a Java trans-
formation able to serialize the textual representation of the logs
into xmi-encoded models conforms to the Log Metamodel.

B. Design-Runtime traceability with JTL

Starting from the Log and UML models, a Traceability Model
is automatically generated by means of JTL [14]. In order
to represent the traceability information between design and
runtime artefacts, the JTL traceability reference metamodel
is considered. As depicted in Fig. 6, it basically defines

Fig. 6: JTL Traceability Metamodel

interaction. The where clause invokes the execution of
the EndPoint2Signature relation;

- The EndPoint2Signature relation (Lines 23-31) maps an
EndPoint of a Span and an Operation type element that
represents the signature of a message;

- The top relation Service2Component (Lines 32-40) maps
a Service type container element to a Component type

one.
1 transformation Log2UML (log:Log, uml:UML) {
2 -
3 top relation Trace2UseCase {
4 checkonly domain log t : Log::Trace {
5 spans = s : Log::Span { }
6 ;
7 checkonly domain uml uc : UML::UseCase {
8 ownedBehavior = ob : UML::Interaction {

9 message = m : UML::Message { }

10 }

11 };

12 where { Span2Message(s, m); }

13

14 relation Span2Message {

15 checkonly domain log s : Log::Span {

16 endpoint = ep : Log::EndPoint { }

17 ;

18 checkonly domain uml m : UML::Message {
19 signature = s : UML::Operation { }

20 }:

21 where { EndPoint2Signature(ep, s); }

22

23 relation EndPoint2Signature {

24 n : String;

25 checkonly domain log ep : Log::EndPoint {
26 name = n

27 ;

28 checkonly domain uml s : UML::Operation {
29 name = n

30 };

31 }

32 top relation Service2Component {

33 n : String;

34 checkonly domain log s : Log::Service {
35 name = n

36 ;

37 checkonly domain uml ¢ : UML::Component {
38 name = n

39 }:

40 }

41 -

42 3}

Listing 1: Log2UML correspondences specification

The described mapping assumes that models are consistent
with the monitored code. In this case study, models and
code are also consistent in terms of naming convention used.
However, JTL allows specifying also complex relationships

between elements, e.g., elements that do not trivially match
by names, or model elements that do not map one-to-one to
the code [7].

The application of the Log2UML transformation on the Log
and UML models, as shown in the left and right part of Fig. 7,
generates the corresponding Traceability model, as shown in
the middle of that figure. In particular, the arrows connect
trace links with the source and target model elements they
refer to. For instance, the Trace2UseCase_149c4cef3ac7f19f
traceability link relates the Get HomePage use case in the right
end and the corresponding 149c4cef3ac7f19f log trace in the
left end. Hence, for each message in the use case, we are able
to know when the corresponding operation has started and its
response time. As a consequence, the traceability model can be
used to derive complex measures such as the average response
time of a specific scenario or the average service time of an
operation (as mentioned in Section I11-C).

C. Performance indices annotator

In this step, the Traceability Model generated above is used to
extract performance properties and incorporate them into the
UML Model by means of the MARTE profile. In particular, the
runtime information obtained by the monitoring infrastructure
is used to obtain the performance input parameters, whereas
the relationships between runtime information and software
model are used to identify the proper UML elements that have
to be annotated with these parameters.

The considered performance properties have been ob-
tained as described in Section IlI-C and annotated in the
UML+MARTE Model as following:

- The service time S of each operation is annotated on
its relative message in the scenario by means of the
servCount attribute of the GaAcqgStep stereotype. Also,
the number of times a message occurs in the same
scenario, which corresponds to the number V of visits,
is annotated in the rep tag of the same stereotype.

- The response time of a whole scenario is annotated in the
respT tag of the GaScenario stereotype; it corresponds to
the response time of the parent span in the corresponding
trace (see the 149c4cef3ac7f19f Trace and the Get Home
Page use case in the Traceability Model of Fig. 7).

- The throughput is annotated in the throughput attribute
of the GaScenario stereotype.

- The workload is annotated in the pattern tag of GaWork-
loadEvent stereotype, which can represent an open or a
closed class of jobs.

- The utilization of a Docker container is set through the
utilization tag of the GaExecHost stereotype applied to
the corresponding UML Device.

An excerpt of the UML Component and Sequence diagrams
annotated with MARTE is depicted in Fig. 8.

D. Performance analysis and refactoring with PADRE

In this step, the obtained UML+MARTE Model is given as
input to PADRE. The Performance Antipattern detection step

different formats (eg., textual, binary, datasets) and can be
collected by means of various mechanisms (e.g., simulation,
monitoring, execution, debugging, profiling, verification). As
an enhancement, a generic runtime metamodel that deals with
different runtime information can be specified and integrated
to the approach.

As a further extension, also the adoption of different mod-
eling languages can be supported by the approach and by
the used tools. The designer can specify the correspondences
between proper languages; JTL is indeed able to deal with
any Ecore artifact conforms to EMF. Moreover, we envisage
possibly redefining the model annotation step and the antipat-
tern detection rules; PADRE indeed provides the designer with
interfaces to write the proper notation-specific rules.

Finally, as illustrated in Figure 1, the suggested refactoring
actions resulting by the application of our approach obviously
refer to the architectural design level. As a future work, we
intend to close the gap between design and runtime level by
introducing automation in the propagation of these actions
down to the runtime level (see the System Refactoring dashed
box of Figure 1). We will relay on MDE techniques, like the
traceability ones in JTL, for such closing step.

REFERENCES

[1] D. C. Schmidt, “Model-driven engineering,” IEEE Com-
puter, vol. 39, no. 2, pp. 25-31, 2006.

[2] H. Bruneliere, R. Eramo, A. Gomez, V. Besnard, J. M.
Bruel, M. Gogolla, A. Kastner, and A. Rutle, “Model-
Driven Engineering for Design-Runtime Interaction in
Complex Systems: Scientific Challenges and Roadmap -
Report on the MDE@DeRun 2018 workshop,” in Proc.
of STAF Collocated Workshops, 2018.

[3] J. Cito, P. Leitner, C. Bosshard, M. Knecht, G. Mazlami,
and H. C. Gall, “PerformanceHat: augmenting source
code with runtime performance traces in the IDE,” in
Proc. of ICSE Companion, 2018, pp. 41-44.

[4] W. Afzal, H. Bruneliére, D. Di Ruscio, A. Sadovykh,
S. Mazzini, E. Cariou, D. Truscan, J. Cabot, A. Gomez,
J. Gorrofiogoitia, L. Pomante, and P. Smrz, “The
megam@rt2 ECSEL project: Megamodelling at runtime
- scalable model-based framework for continuous de-
velopment and runtime validation of complex systems,”
MICPRO, vol. 61, pp. 86-95, 2018.

[5] C. M. Woodside, G. Franks, and D. C. Petriu, “The
future of software performance engineering,” in FOSE
Workshop, ICSE, 2007, pp. 171-187.

[6] V. Cortellessa, “Performance antipatterns: State-of-art
and future perspectives,” in EPEW Proc., 2013, pp. 1-6.

[7]1 A. Cicchetti, D. Di Ruscio, R. Eramo, and A. Pierantonio,
“JTL: A bidirectional and change propagating transfor-
mation language,” in SLE Proc., 2010, pp. 183-202.

[8] D. Arcelli, V. Cortellessa, and D. Di Pompeo,
“Performance-driven software model refactoring,” IST
Journal, vol. 95, pp. 366-397, 2018.

[9] “Unified modeling language,” OMG, 2015, version 2.5.
[Online]. Available: http://www.omg.org/spec/UML/2.5/

[10] “A UML profile for MARTE: modeling and analysis
of real-time embedded systems,” OMG, 2008. [Online].
Available: http://www.omg.org/omgmarte/

[11] V. Cortellessa, A. Di Marco, and P. Inverardi, Model-
Based Software Performance Analysis. Springer, 2011.

[12] M. Gelfond and V. Lifschitz, “The stable model seman-

tics for logic programming,” in ICLP, 1988, pp. 1070-

1080.

N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob,

S. Perri, and F. Scarcello, “The DLV system for knowl-

edge representation and reasoning,” TOCL, vol. 7, no. 3,

pp. 499-562, 2006.

R. Eramo, A. Pierantonio, and M. Tucci, “Improved

traceability for bidirectional model transformations,” in

Proc. of MDETools workshop, MODELS, vol. 2245,

2018, pp. 306-315.

[15] V. Cortellessa, A. Di Marco, and C. Trubiani, “An ap-

proach for modeling and detecting software performance

antipatterns based on first-order logics,” SOSYM, vol. 13,

no. 1, pp. 391-432, 2014.

Kolovos, Dimitris and Rose, Louis and Paige, Richard

and Garcia-Dominguez, Antonio, The EPSILON book.

Structure, 2010.

R. F. Paige, N. Drivalos, D. S. Kolovos, K. J. Fernandes,

C. Power, G. K. Olsen, and S. Zschaler, “Rigorous

identification and encoding of trace-links in model-driven

engineering,” SOSYM, vol. 10, no. 4, pp. 469-487, 2011.

S. Winkler and J. von Pilgrim, “A survey of traceability

in requirements engineering and model-driven develop-

ment,” SOSYM, vol. 9, no. 4, pp. 529-565, 2010.

E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C.

Sevcik, Quantitative system performance: computer sys-

tem analysis using queueing network models. Prentice-

Hall, Inc., Mar. 1984.

C. Trubiani, A. Bran, A. van Hoorn, A. Avritzer, and

H. Knoche, “Exploiting load testing and profiling for

performance antipattern detection,” IST Journal, vol. 95,

pp. 329-345, 2018.

[21] J. Porter, D. A. Menascé, and H. Gomaa, “Desarm:

A decentralized mechanism for discovering software

architecture models at runtime in distributed systems,”

in Proc. of Models@run.time workshop, MODELS, vol.

1742, 2016, pp. 43-51.

H. Gomaa and E. Albassam, “Run-time software archi-

tectural models for adaptation, recovery and evolution,”

in Proc. of Models@run.time workshop, MODELS, vol.

2019, 2017, pp. 193-200.

[23] T. Altamimi, M. H. Zargari, and D. C. Petriu, “Per-

formance analysis roundtrip: Automatic generation of

performance models and results feedback using cross-

model trace links,” in Proc. of CASCON, 2016, pp. 208-

217.

C. Vogele, A. van Hoorn, E. Schulz, W. Hasselbring,

and H. Krcmar, “WESSBAS: extraction of probabilistic

workload specifications for load testing and performance
prediction - a model-driven approach for session-based

[13]

[14]

[16]

[17]

[18]

[19]

[20]

[22]

[24]

