
EasyChair Preprint
№ 1981

Self-Replicating AI : Integrating New Neural
Networks Through a Natural Selection Process

Poondru Prithvinath Reddy

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

November 18, 2019

Self-Replicating AI : Integrating New

Neural Networks Through a Natural

Selection Process

 Poondru Prithvinath Reddy

ABSTRACT

Self-replication is any behavior of a system that yields construction of an

identical copy of itself. Biological cells, given suitable environments,

reproduce by cell division. In this paper, we present a self-replicating neural

network that integrates new neural networks through natural selection

process. The network replicates itself by integrating other neural networks

and by learning to output identical copies of its own components for which it

is trained. Also we describe a method of an optimization technique using

Genetic Algorithm (GA) for updating and optimizing the neural network

weights. GA creates multiple solutions and evolves them through a number

of generations, and each solution holds all weights in all layers to help

achieve higher accuracy. The evolutionary algorithm (i.e. GA) was used

as an optimization approach that mimics the concept of natural evolution

for creating fitter individuals that have higher chance of survival through

natural selection. The GA processes integrated with the ANN predictive

model (GA-ANN) and the network replicates itself by learning to optimize

its own weights. We observe from the test results that the networks were

able to replicate through natural selection with good accuracy. It is

observed that self-replication mechanism for artificial intelligence is

convenient because it establishes the possibility of persistent improvement

through natural selection.

INTRODUCTION

Self-replication is any behavior of a dynamical system that yields
construction of an identical copy of itself. Biological cells, given suitable
environments, reproduce by cell division. During cell division, DNA is
replicated and can be transmitted to offspring during reproduction.

The ability to pass on successful traits is a defining characteristic of
biological organisms. Earlier this year, two researchers from Columbia
University found a way to apply this principle to artificially intelligent
systems — creating self-replicating neural networks called “quines.” The
idea of self-replicating, self-evolving AI that can automatically take on the
most successful traits of previous generations is a pretty tantalizing one,
with lots of potentially useful applications.

While self-replication has been studied in many automata, it is notably

absent in neural network research, despite the fact that neural networks

appear to be the most powerful form of AI known to date. In this paper, we

identify and attempt to solve the challenges involved in building and training

a self-replicating neural network that integrates new networks. Specifically,

we propose to view a neural network as a differentiable computer program

composed of a sequence of tensor operations. Our objective then is to

construct a neural network that integrates with other neural networks to

replicate components and also a neural network that optimizes its own

weights. The best solution for a self-replicating network was found by

alternating optimization steps.

METHODOLOGY

The methodology essentially consists of two parts :-

1. Integrating new neural networks through natural selection process

2. Optimization steps –The best solution for a self-replicating network

by using genetic algorithm.

https://en.wikipedia.org/wiki/Quine_(computing)

ARCHITECTURE

Integrating New Neural Networks

CODE Input

 Code

IMAGE Input

 Image

Figure 1: The INNN(Integrating New Neural Networks) architecture. It contains three
subsystems that are trained separately.. In the image subsystem, the encoder can transfer an
input (or predicted) image into a population representation vector I at the DNN layer (mimicking
the Deep Neural Network for high-level image representation), and the decoder can reconstruct
a vector output from LSTM to a predicted image, which can be fed into the encoder to form the
guided loop. In the code subsystem, The coding system which consists of a mapping to transfer
symbol texts into respective numeric and a RNN to extract the sequence dependencies from the
input texts, and an output encoder to convert numeric values into text symbols. There is a
memory layer implemented by a RNN to extract sequence information from the vector C. The
LSTM layer serves as working memory, that takes the concatenated input [C, I] from both code
and image subsystems, and output the predicted next element representation that could be fed
back into both subsystems to form a guided loop.

As is shown in Figure 1, the INNN network contains three main subsystems
including the code, image and LSTM subsystems. The image encoder

LSTM

RNN

DNN

network was trained separately. After training, the encoder is separated
into two parts: the encoder (or recognition) part ranges from the image
entry point to the final encoding layer, to provide the high-level abstract
representation of the input image; the decoder part ranges up to image
prediction point. The activity vector of the encoding layer are
concatenated with code activity vector as input signals to the LSTM.
Finally, the predicted image is fed back to the encoder network for the next
iteration. The code processing component first converts the input text
symbol into a sequence of binary vectors [C(t = 0), . . . ,C(T)], where T is
the text length. To improve the code recognition, we added one RNN layer
to generate the sequence dependencies of the text. The LSTM training
based on the next component prediction (NCP). The LSTM is trained by
the NCP principle, where the goal of the LSTM is to output the
representation vectors (including both code and image) of the next
component which required the understanding of the previous text code and
observed images. The LSTM subsystem contains a LSTM and a full
connected layer. It receives inputs from both code and image subsystems
in a concatenated form of c(t) = [C(t),I(t)] at time t, and gives a prediction
output a a'(t) = [C'(t), I'(t)], which is expected to be identical to a(t + 1) = [C(t
+ 1), I(t + 1)] at time t+1. This has been achieved with a next component
prediction (NCP). So given an input image, the LSTM can predict the
corresponding code description. The strategy of learning by predicting its
own next component is essentially an unsupervised learning. Our LSTM
subsystem was trained separately after code and image components had
completed their functionalities. Finally, we demonstrate how the network
forms a thinking loop with text code and predicted images.

DATASET

User Interface Elements
When designing the user interface, the following Interface elements are
considered but are not limited to:

 Input Controls: pointer, checkboxes, radio buttons, dropdown lists, list
boxes, buttons, toggles, text fields, date field, frames, combo boxes, timer,
hscrollbar, vscrollbar, drivelistboxes, dirlistboxes, filelistboxes, shape, line,
pictureboxes, data, ole, labels, charts

 Navigational Components: breadcrumb, slider, search field, pagination,
slider, tags, icons

 Informational Components: tooltips, icons, progress bar, notifications,
message boxes, modal windows, links

 Containers: accordion

A total of 40 user interface components / elements along with C
programming language scripts / code associated with each visual
component has been selected as dataset.

CODE SUBSYSTEM

The First problem is to represent our data.

A neural network treats only numbers. Everything else is unknown to the
network. Thus, each character of our dataset should be represented in this
form (a number / characters).

First we need to Load the text file and create character to integer
mappings. The entire text file is read, we would be mapping each character
to a respective number and all characters are converted to numbers. This
is done to make the computation part of the RNN easier.

 For example, if the character “=” is assigned to the number 7, we will then
represent each number in one hot encoding in order to better converge
during the backpropagation.

The three important variables to remember here are
 vocab_to_int, int_to_vocab and encoded. The first two allow us to easily
switch between a character and an int and vice versa. The last is the
representation of all our dataset in an encoder format. (Only int instead of
characters)

We therefore create a neural network taking into account the temporal
space of the characters type. To do this, we need to use a reccurent neural
network.

Recurrent neural network

In order to illustrate, a classic classifier (on the left of the diagram) takes the
preceding letter; it’s passed by the hidden layer represented in blue in order
to deduce an output. A recurring neural network is architecturally different.
Each cell (represented in red) is not only connected to the inputs, but also to
the cell of the instant t-1. In order to represent our code subsystem, we will
use RNN (Recurrent Neural Network) cells.

Building the model

We will describe this with 5 main parts. Placeholder serving as an entry to
our model. The initialization of our cells used to create the RNN. The output
layer connected to each cell. The operation used to measure the model
error. Finally, we will define the training operation.

Graph inputs

We define a placeholder for the input, and the shape expected for our input
is therefore of size [number, size]. Each entry of the input batch being
associated with a single output, we can define the same shape for our
target. Finally we define a placeholder for the value of the probability used
for the future dropout.

 RNN

 create_cell() is used to create an RNN cell composed of neurons. This
function also adds a dropout to the cell output.

 tf.contrib.rnn.MultiRNNCell is used to easily instantiate our rnn. We
give as a parameter an array of create_cell() because we want an RNN
consisting of several layers.

 initial_state: Knowing that each cell of an RNN depends on the
previous state, we must instantiate an initial state filled with zero that will
serve as input to the first entries.

 cell_outputs gives us the output of each cell of our RNN.

 final_state returns the state of our last cell which can be used during
training as a new initial state for a next batch.

 Graph outputs

The values at the output of our cells are stored in a three-dimensional table
[number of sequences, sequence size, number of neurons] or [2, 10, 4]. We
no longer need to separate the outputs by sequences. We then resize the
output to get an array of dimension [20, 4] stored in
the seq_out_reshape variable.

Finally, we apply a simple linear operation: tf.matmul (..) + b. This followed
by a softmax in order to represent our outputs in the form of probability.

 Loss

In order to apply our error operation, the targets of our batch must be
represented in the same way and in the same dimension as the output
values of the model. We use tf.one_hot to represent our outputs under the
same encoding as our inputs. Then we resize the array (tf.reshape ()) to
the same dimensions of the linear output: tf.matmul (..) + b. We can now
use this function to calculate the error of the model.

Training

We simply apply an AdamOptimizer to minimize our errors.

Results

 It‘s finally the results of the training. We have for this one used the following
parameters:

• Size of a sequence: 50
• Size of a batch: 40
• Number of neurons : 256
• Depth of RNN: 2
• Learning rate: 0.0005
• Dropout: 0.5

The results presented below were obtained after training the model on
CPU and the model is fit over 100 epochs.

Finally, let’s look at what type of code our model is capable of generating .
It’s interesting to see that this model has clearly understood the general
structure of a program related to visual components; A function,
parameters, variables, conditions, etc.

IMAGE SUBSYSTEM

This is an implementation of building a deep neural network with
TensorFlow.for Image Classification in user interface component dataset.

We used 40 images of different visual components / elements from User

Interface elements dataset.

We start with a pretty simple analysis with the help of the ndim and size

attributes of the images array: Note that the images and labels variables

are lists, so we might need to use np.array() to convert the variables to an

array.

As guessed the 40 labels that are included in this dataset, the

components are different from each other. Also These images are not of

the same size.

Let’s start first with extracting some features - we’ll rescale the images, and

we’ll convert the images that are held in the images array to grayscale.

We’ll do this color conversion mainly because the color matters less in

classification.

To tackle the differing image sizes, we’re going to rescale the images; We
can do this with the help of the skimage or Scikit-Image library, which is a
collection of algorithms for image processing.

In this case, the transform module will come in handy, as it offers a resize()
function; We’ll see that we make use of list comprehension to resize each
image to 28 by 28 pixels. Once again, for every image that we find in the
images array, we’ll perform the transformation operation that is borrowed
from the skimage library. Finally, we store the result in the images28
variable:

. Next we’ll also go through the trouble of converting the images to
grayscale. Just like with the rescaling, we again count on the Scikit-Image
library to help out; In this case, it’s the color module with its rgb2gray()
function that we need to use to get where we need to be.

However, we need to convert the images28 variable back to an array, as
the rgb2gray() function does expect an array as an argument.

We checked the result of grayscale conversion by plotting some of the

images;

Now that we have explored and manipulated the data, it’s time to construct
neural network architecture, layer by layer with the help of the TensorFlow
package.

 Next, we build up the network. We first start by flattening the input
with the help of the flatten() function, which will give an array of
shape [None, 784] instead of the [None, 28, 28], which is the shape
of our grayscale images.

 Activation function :The activation function of a node defines the
output given a set of inputs. A common activation function is a Relu,
Rectified linear unit.

 After we have flattened the input, we construct a fully connected
layer that generates logits of size [None, 40]. Logits is the function
operates on the unscaled output of previous layers, and that uses
the relative scale to understand the units is linear.

 With the multi-layer perceptron built out we can define the loss
function. Loss function - after we have defined the hidden layers and
the activation function, we need to specify the loss function and the
optimizer. The loss function is a measure of the model's
performance. We make use of

sparse_softmax_cross_entropy_with_logits()

 This computes sparse softmax cross entropy between logits and
labels. In other words, it measures the probability error in discrete
classification tasks in which the classes are mutually exclusive. This
means that each entry is in exactly one class. Here, a user element
can only have one single label.

 The optimizer will help improve the weights of the network in order
to decrease the loss. In this case, we pick the ADAM optimizer, for
which we define the learning rate at 0.001.

The above has been implemented with Python and TensorFlow as a
backend.

Now that we have built up our model layer by layer, it’s time to actually run
it! To do this, we first need to initialize a session with the help of Session().
Next, we can use this initialized session to start epochs or training loops. In
this case, we pick 201 because we want to be able to register the last
loss_value; In the loop, we run the session with the training optimizer and
the loss (or accuracy) metric that we defined. We also pass a feed_dict
argument, with which we feed data to the model. After every 10 epochs,
we’ll get a log that gives us more insights into the loss or cost of the model.

We have now successfully trained our model with all the visual
components.

 We still need to evaluate our neural network. In this case, we try to get a
glimpse of how well our model performs by picking 10 random images and
by comparing the predicted labels with the real labels.

We can first print them out, by using matplotlib to plot the components
themselves and to make a visual comparison.

However, by looking at random images give us many insights into how well
our model actually performs. Then we loaded in the test component data
and run predictions , and found that images were classified with good
accuracy.

LSTM SUBSYSTEM

The LSTM subsystem contains a LSTM and a fully connected layer. It

receives inputs from both code and image subsystems in a concatenated

form of c(t) = [C(t),I(t)] at time t, and gives a prediction output a'(t) =

[C'(t),I'(t)] , which is expected to be identical to a(t + 1) = [C(t + 1),I(t + 1)]

at time t+1. This has been achieved with a next component prediction

(NCP) . So given an input image, the LSTM can predict the corresponding

code description. The strategy of learning by predicting its own next

element is essentially an unsupervised learning.

The Training is based on the next component prediction (NCP). The LSTM-

FC is trained by the NCP principle, where the goal of the LSTM-FC is to

output the representation vectors (including both code and image) of the

next component / element. At time T, the LSTM of INNN generated the

guided digit instance, which required the understanding of the previous

code language and observed images.

The LSTM subsystem was trained separately after vision and code
components had completed their functionalities. We have trained the
network to accumulatively learn different components, and the related code
results. Finally, it is demonstrated how the network forms a thinking loop
with code language and observed images.

The LSTM layer serves as working memory, that takes the concatenated
input [C,I] from both code and image subsystems, and output the predicted
next component representation that could be fed back into both
subsystems to form a guided loop.

Optimizing Artificial Neural Network using Genetic
Algorithm

 In this paper , we use the genetic algorithm (GA) for optimizing the ANN
network weights as the solution to the problem of very low accuracy in view
of the fact that no backward pass for updating the network weights is used.

Using GA with ANN

GA creates multiple solutions to a given problem and evolves them through
a number of generations. Each solution holds all parameters that might help
to enhance the results. For ANN, weights in all layers help achieve high
accuracy. Thus, a single solution in GA will contain all weights in the ANN.
According to the network structure given in the figure below, the ANN has 4
layers (1 input, 2 hidden, and 1 output). Any weight in any layer will be part
of the same solution. A single solution to such network will contain a total
number of weights equal to 102x150+150x60+60x4=24,540. If the
population has 8 solutions with 24,540 parameters per solution, then the
total number of parameters in the entire population is 24,540x8=196,320.

Looking at the above figure, the parameters of the network are in matrix
form because this makes calculations of ANN much easier. For each layer,
there is an associated weights matrix. Just multiply the inputs matrix by the
parameters matrix of a given layer to return the outputs in such layer.
Chromosomes in GA are 1D vectors and thus we have to convert the
weights matrices into 1D vectors.

Because matrix multiplication is a good option to work with ANN, we will still
represent the ANN parameters in the matrix form when using the ANN.
Thus, matrix form is used when working with ANN and vector form is used
when working with GA. This makes us need to convert the matrix to vector
and vice versa. The next figure summarizes the steps of using GA with
ANN.

Weights Matrices to 1D Vector

Each solution in the population will have two representations. First is a 1D
vector for working with GA and second is a matrix to work with ANN.
Because there are 3 weights matrices for the 3 layers (2 hidden + 1 output),
there will be 3 vectors, one for each matrix. Because a solution in GA is
represented as a single 1D vector, such 3 individual 1D vectors will be
concatenated into a single 1D vector. Each solution will be represented as a
vector of length 24,540.

Implementing GA Steps

After converting all solutions from matrices to vectors and concatenated
together, we are ready to go through the GA steps. The steps are presented
in the figure above and also summarized in the next figure.

Remember that GA uses a fitness function to returns a fitness value for
each solution. The higher the fitness value the better the solution. The best
solutions are returned as parents in the parents selection step.

One of the common fitness functions for a classifier such as ANN is the
accuracy. It is the ratio between the correctly classified samples and the
total number of samples. It is calculated according to the following equation.

The classification accuracy of each solution is calculated according to steps
in the above figure.

The single 1D vector of each solution is converted back into 3 matrices, one
matrix for each layer (2 hidden and 1 output).

The matrices returned for each solution are used to predict the class label
for each of the samples in the used dataset to calculate the accuracy. This
is done using 2 functions. The first function accepts the weights of a single
solution, inputs, and outputs of the training data, and an optional parameter
that specifies which activation function to use. It returns the accuracy of just
one solution not all solutions within the population. It order to return the
fitness value (i.e. accuracy) of all solutions within the population,
the second function loops through each solution, pass it to
the first function, store the accuracy of all solutions into an array, and finally
return such an array.

After calculating the fitness value (i.e. accuracy) for all solutions, the
remaining steps of GA as shown in the above figure are applied. The best
parents are selected, based on their accuracy, into the mating pool. Then
mutation and crossover variants are applied in order to produce the
offspring. The population of the new generation is created using both
offspring and parents. These steps are repeated for a number of
generations. We can also try different values for the GA parameters such as
a number of solutions per population, number of selected parents, mutation
percent, and number of generations.

Results

GA-ANN

Based on 100 generations, and using visualization library that shows how
the accuracy changes across each generation. It is observed that after 100
iterations, On the MNIST dataset, we are able to find an accuracy that is

more than 70%. This is compared to 35% with no backward pass for
updating the network weights and without using an optimization technique.
This is an evidence about why results might be bad not because there is
something wrong in the model or the data but because no optimization
technique is used. However, using different values for the parameters such
as 1,000 generations might increase the accuracy.

CONCLUSION

In this paper, we have described two methods of building and training a

self-replicating neural network through natural selection process. Firstly, we

proposed to integrate new neural networks to achieve self-replication in a

neural network as a method of creating identical copies of output.

Secondly, we also proposed hybrid genetic algorithm artificial neural

network (GA-ANN) predictive model as an optimization approach that

mimics the concept of natural evolution / natural selection. This allowed us

to create a neural network which optimizes its own weights. The test results

are encouraging with good accuracy.

REFERENCES

1. Oscar Chang and Hod Lipson “Neural Network Quine”

 https://arxiv.org/pdf/1803.05859.pdf

2. Poondru Prithvinath Reddy “ Artificial Intelligence that Learn to Write Code :

Memory Guided Programming” Google Scholar

3. Ahmed Gad “ Artificial Neural Networks Optimization using Genetic Algorithm

with Python” Towards Data Science

https://arxiv.org/pdf/1803.05859.pdf

