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ABSTRACT 

Self-replication is any behavior of a system that yields construction of an 

identical copy of itself. Biological cells, given suitable environments, 

reproduce by cell division. In this paper, we present a self-replicating neural 

network that integrates new neural networks through natural selection 

process. The network replicates itself by integrating other neural networks 

and by learning to output identical copies of its own components for which it 

is trained. Also we describe a method of an optimization technique using 

Genetic Algorithm ( GA ) for updating and optimizing the neural network 

weights. GA creates multiple solutions and evolves them through a number 

of generations, and each solution holds all weights in all layers to help 

achieve higher accuracy. The evolutionary algorithm ( i.e. GA ) was used 

as an optimization approach that mimics the concept of natural evolution 

for creating fitter individuals that have higher chance of survival through 

natural selection. The GA processes integrated with the ANN predictive 

model ( GA-ANN ) and the network replicates itself by learning to optimize 

its own weights. We observe from the test results that the networks were 

able to replicate through natural selection with good accuracy. It is 

observed that self-replication mechanism for artificial intelligence is 

convenient because it establishes the possibility of persistent improvement 

through natural selection. 



INTRODUCTION 

Self-replication is any behavior of a dynamical system that yields 
construction of an identical copy of itself. Biological cells, given suitable 
environments, reproduce by cell division. During cell division, DNA is 
replicated and can be transmitted to offspring during reproduction. 
 
The ability to pass on successful traits is a defining characteristic of 
biological organisms. Earlier this year, two researchers from Columbia 
University found a way to apply this principle to artificially intelligent 
systems — creating self-replicating neural networks called “quines.” The 
idea of self-replicating, self-evolving AI that can automatically take on the 
most successful traits of previous generations is a pretty tantalizing one, 
with lots of potentially useful applications. 

 
While self-replication has been studied in many automata, it is notably 

absent in neural network research, despite the fact that neural networks 

appear to be the most powerful form of AI known to date. In this paper, we 

identify and attempt to solve the challenges involved in building and training 

a self-replicating neural network that integrates new networks. Specifically, 

we propose to view a neural network as a differentiable computer program 

composed of a sequence of tensor operations. Our objective then is to 

construct a neural network that integrates with other neural networks to 

replicate components and also a neural network that optimizes its own 

weights. The best solution for a self-replicating network was found by 

alternating  optimization steps.    

 

METHODOLOGY 

The methodology essentially consists of two parts :- 

1. Integrating new neural networks through natural selection process 

2. Optimization steps –The best solution for a self-replicating network  

by using genetic algorithm. 

 

https://en.wikipedia.org/wiki/Quine_(computing)
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Figure 1: The INNN( Integrating New Neural Networks ) architecture. It contains three 
subsystems that are trained separately.. In the image subsystem, the encoder can transfer an 
input (or predicted) image into a population representation vector I at the DNN layer (mimicking 
the Deep Neural Network  for high-level image representation), and the decoder can reconstruct 
a vector output from LSTM to a predicted image, which can be fed into the encoder to form the 
guided loop. In the code subsystem, The coding system  which consists of a mapping to transfer 
symbol texts into respective numeric and a RNN to extract the sequence dependencies from the 
input texts, and an output encoder to convert numeric values into text symbols. There is a 
memory layer implemented by a RNN to extract sequence  information  from the  vector C. The 
LSTM layer serves as working memory, that takes the concatenated input [C, I] from both code 
and image subsystems, and output the predicted next element representation that could be fed 
back into both subsystems to form a guided loop. 

As is shown in Figure 1, the INNN network contains three main subsystems 
including the code, image and LSTM subsystems. The image encoder 
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network was trained separately. After training, the encoder is separated 
into two parts: the encoder (or recognition) part ranges from the image 
entry point to the final encoding layer,  to provide the high-level abstract 
representation of the input image; the decoder part ranges  up to image 
prediction point. The activity vector of the  encoding layer  are 
concatenated with code activity vector  as input signals to the LSTM. 
Finally, the predicted  image is fed back to the encoder network for the next  
iteration. The code processing component first converts the input text 
symbol into a sequence of binary vectors [C(t = 0), . . . ,C(T)], where T is 
the text length. To improve the code recognition, we added one RNN layer 
to generate the sequence dependencies  of the text.   The LSTM  training 
based on the next component prediction (NCP). The LSTM  is trained by 
the NCP principle, where the goal of the LSTM is to output the 
representation vectors (including both code and image) of the next 
component which required the understanding of the previous text code and 
observed images. The LSTM subsystem contains a LSTM and a full 
connected layer. It receives inputs from both code and image subsystems 
in a concatenated form of c(t) = [C(t),I(t)] at time t, and gives a prediction 
output a a'(t) = [C'(t), I'(t)], which is expected to be identical to a(t + 1) = [C(t 
+ 1), I(t + 1)] at time t+1. This has been achieved with a next component 
prediction (NCP). So given an input image, the LSTM can predict the 
corresponding code description. The strategy of learning by predicting its 
own next component is essentially an unsupervised learning.  Our LSTM 
subsystem was trained separately after code and image components had 
completed their functionalities. Finally, we demonstrate how the network 
forms a thinking loop with text code and predicted images. 

DATASET 

User Interface Elements 
When designing the user interface, the following Interface elements are 
considered but are not limited to: 

 Input Controls: pointer, checkboxes, radio buttons, dropdown lists, list 
boxes, buttons, toggles, text fields, date field, frames, combo boxes, timer, 
hscrollbar, vscrollbar, drivelistboxes, dirlistboxes, filelistboxes, shape, line, 
pictureboxes, data, ole, labels, charts 

 Navigational Components: breadcrumb, slider, search field, pagination, 
slider, tags, icons 



 Informational Components: tooltips, icons, progress bar, notifications, 
message boxes, modal windows, links 

 Containers: accordion 

A total of 40 user interface components / elements along with C 
programming language scripts / code associated with each visual 
component has been selected as dataset. 

CODE SUBSYSTEM 

The First problem is to represent our data. 

A neural network treats only numbers. Everything else is unknown to the 
network. Thus, each character of our dataset should be represented in this 
form (a number / characters). 

First we need to Load the text file and create character to integer 
mappings. The entire text file is read, we would be mapping each character 
to a respective number and all characters are converted to numbers. This 
is done to make the computation part of the RNN easier. 

 For example, if the character “=” is assigned to the number 7,  we will then 
represent each number in one hot encoding in order to better converge 
during the backpropagation. 

The three important variables to remember here are                 
 vocab_to_int, int_to_vocab and encoded. The first two allow us to easily 
switch between a character and an int and vice versa. The last is the 
representation of all our dataset in an encoder format. (Only int  instead of 
characters ) 

We  therefore create a neural network taking into account the temporal 
space of the characters type. To do this, we need to use a reccurent neural 
network. 

Recurrent neural network  

 



 

In order to illustrate, a classic classifier (on the left of the diagram) takes the 
preceding letter; it’s passed by the hidden layer represented in blue in order 
to deduce an output. A recurring neural network is architecturally different. 
Each cell (represented in red) is not only connected to the inputs, but also to 
the cell of the instant t-1. In order to represent our code subsystem, we will 
use RNN (Recurrent Neural Network) cells. 

Building the model  

We will describe this with 5 main parts. Placeholder serving as an entry to 
our model. The initialization of our  cells used to create the RNN. The output 
layer connected to each cell. The operation used to measure the model 
error. Finally, we  will define the training operation. 

Graph inputs 

We define a placeholder for the input, and the shape expected for our input 
is therefore of size [number, size]. Each entry of the input batch being 
associated with a single output, we can define the same shape for our 
target. Finally we define a placeholder for the value of the probability used 
for the future dropout. 



 RNN 

 create_cell() is used to create an RNN cell composed of neurons. This 
function also adds a dropout to the cell output. 

 tf.contrib.rnn.MultiRNNCell is used to easily instantiate our rnn. We 
give as a parameter an array of create_cell() because we want an RNN 
consisting of several layers.  

 initial_state: Knowing that each cell of an RNN depends on the 
previous state, we must instantiate an initial state filled with zero that will 
serve as input to the first entries. 

 cell_outputs gives us the output of each cell of our RNN.  

 final_state returns the state of our last cell which can be used during 
training as a new initial state for a next batch. 

 Graph outputs 

The values at the output of our cells are stored in a three-dimensional table 
[number of sequences, sequence size, number of neurons] or [2, 10, 4]. We 
no longer need to separate the outputs by sequences. We then resize the 
output to get an array of dimension [20, 4] stored in 
the seq_out_reshape variable. 

Finally, we apply a simple linear operation: tf.matmul (..) + b. This followed 
by a softmax in order to represent our outputs in the form of probability. 

 Loss 

In order to apply our error operation, the targets of our batch must be 
represented in the same way and in the same dimension as the output 
values of the model. We use tf.one_hot to represent our outputs under the 
same encoding as our inputs. Then we resize the array (tf.reshape ()) to 
the same dimensions of the linear output: tf.matmul (..) + b. We can now 
use this function to calculate the error of the model. 

Training 



We simply apply an AdamOptimizer to minimize our errors. 

Results  

 It‘s finally the results of the training. We have for this one used the following 
parameters: 

• Size of a sequence: 50 
• Size of a batch: 40 
• Number of neurons  : 256 
• Depth of RNN: 2 
• Learning rate: 0.0005 
• Dropout: 0.5 

The results presented below were obtained after  training the model on  
CPU and the model is fit over 100 epochs. 

Finally, let’s look at what type of code our model is capable of generating . 
It’s interesting to see that this model has clearly understood the general 
structure of a program related to visual components;  A function, 
parameters,  variables, conditions, etc. 

 

IMAGE SUBSYSTEM 

This is an implementation of  building  a deep  neural network  with 
TensorFlow.for Image Classification in user interface component dataset. 

We used 40 images of different visual components / elements from User 

Interface elements  dataset. 

We  start with a pretty simple analysis with the help of the ndim and size 

attributes of the images array: Note that the images and labels variables 

are lists, so we might need to use np.array() to convert the variables to an 

array. 



As  guessed  the 40 labels that are included in this dataset, the 

components  are different from each other. Also  These  images are not of 

the same size. 

Let’s start first with extracting some features - we’ll rescale the images, and 

we’ll convert the images that are held in the images array to grayscale. 

We’ll do this color conversion mainly because the color matters less in 

classification. 

To tackle the differing image sizes, we’re going to rescale the images; We 
can  do this with the help of the skimage or Scikit-Image library, which is a 
collection of algorithms for image processing. 

In this case, the transform module will come in handy, as it offers  a resize() 
function; We’ll see that we make use of list comprehension  to resize each 
image to 28 by 28 pixels. Once again,  for every image that we find in the 
images array, we’ll perform the transformation operation that is borrowed 
from the skimage library. Finally, we store the result in the images28 
variable: 

. Next  we’ll also go through the trouble of converting the images to 
grayscale. Just like with the rescaling, we again count on the Scikit-Image 
library to help  out; In this case, it’s the color module with its rgb2gray() 
function that we need to use to get where we need to be. 

However, we need  to convert the images28 variable back to an array, as 
the rgb2gray() function does expect an array as an argument. 

We  checked  the result of grayscale conversion by plotting some of the 

images;  

Now that we have explored and manipulated the data, it’s time to construct  
neural network architecture, layer by layer with the help of the TensorFlow 
package. 

 Next, we build up the network. We first start by flattening the input 
with the help of the flatten() function, which will give  an array of 
shape [None, 784] instead of the [None, 28, 28], which is the shape 
of our grayscale images. 



 Activation function :The activation function of a node defines the 
output given a set of inputs.  A common activation function is a Relu, 
Rectified linear unit. 

  After we have flattened the input, we construct a fully connected 
layer that generates logits of size [None, 40]. Logits is the function 
operates on the unscaled output of previous layers, and that uses 
the relative scale to understand the units is linear. 

 With the multi-layer perceptron built out we can define the loss 
function. Loss function - after we have defined the hidden layers and 
the activation function, we need to specify the loss function and the 
optimizer. The loss function is a measure of the model's 
performance. We make use of 

sparse_softmax_cross_entropy_with_logits() 

 This computes sparse softmax cross entropy between logits and 
labels. In other words, it measures the probability error in discrete 
classification tasks in which the classes are mutually exclusive. This 
means that each entry is in exactly one class. Here, a user element 
can only have one single label.  

  The optimizer will help improve the weights of the network in order 
to decrease the loss. In this case, we pick the ADAM optimizer, for 
which we define the learning rate at 0.001. 

The above has been implemented with Python and TensorFlow as a 
backend. 

Now that we have built up our model layer by layer, it’s time to actually run 
it! To do this, we first need to initialize a session with the help of Session().  
Next, we can use this initialized session to start epochs or training loops. In 
this case, we pick 201 because we want to be able to register the last 
loss_value; In the loop, we run the session with the training optimizer and 
the loss (or accuracy) metric that we defined. We also pass a feed_dict 
argument, with which we feed data to the model. After every 10 epochs, 
we’ll get a log that gives us more insights into the loss or cost of the model. 

We have now successfully trained our model with all the visual 
components. 



 We still need to evaluate our neural network. In this case, we  try to get a 
glimpse of how well our model performs by picking 10 random images and 
by comparing the predicted labels with the real labels. 

We can first print them out, by using matplotlib to plot the components 
themselves and to make a visual comparison. 

However, by looking at random images  give us many insights into how well 
our model actually performs. Then we loaded  in the test component  data 
and  run predictions , and found that images were classified with good  
accuracy. 

 

LSTM SUBSYSTEM 

The LSTM subsystem contains a LSTM and a fully connected layer. It 

receives inputs from both code and image subsystems in a concatenated 

form of c(t) = [C(t),I(t)] at time t, and gives a prediction output a'(t) = 

[C'(t),I'(t)]  , which is expected to be identical to a(t + 1) = [C(t + 1),I(t + 1)] 

at time t+1. This has been achieved with a next component prediction 

(NCP) . So given an input image, the LSTM  can predict the corresponding 

code description.  The strategy of learning by predicting its own next 

element is essentially an unsupervised learning. 

The Training is based on the next component prediction (NCP). The LSTM-

FC is trained by the NCP principle, where the goal of the LSTM-FC is to 

output the representation vectors (including both code and image) of the 

next component / element.  At time T, the LSTM of INNN  generated  the 

guided digit instance, which required the understanding of the previous 

code language and observed images. 

The  LSTM subsystem was trained separately after vision and code 
components had completed their functionalities. We have trained the 
network to accumulatively learn different components, and the related code 
results. Finally, it is demonstrated how the network forms a thinking loop 
with code  language and observed images.  



The LSTM  layer serves as working memory, that takes the concatenated 
input [C,I] from both code and image subsystems, and output the predicted 
next component representation that could be fed back into both 
subsystems to form a guided loop.  

Optimizing Artificial Neural Network using Genetic 
Algorithm  
 
 In this paper , we use the genetic algorithm (GA) for optimizing the ANN 
network weights as the solution to the problem of very low accuracy in view 
of the fact that no backward pass for updating the network weights is used. 

Using GA with ANN 

GA creates multiple solutions to a given problem and evolves them through 
a number of generations. Each solution holds all parameters that might help 
to enhance the results. For ANN, weights in all layers help achieve high 
accuracy. Thus, a single solution in GA will contain all weights in the ANN. 
According to the network structure  given in the figure below, the ANN has 4 
layers (1 input, 2 hidden, and 1 output). Any weight in any layer will be part 
of the same solution. A single solution to such network will contain a total 
number of weights equal to 102x150+150x60+60x4=24,540. If the 
population has 8 solutions with 24,540 parameters per solution, then the 
total number of parameters in the entire population is 24,540x8=196,320. 
 

 



Looking at the above figure, the parameters of the network are in matrix 
form because this makes calculations of ANN much easier. For each layer, 
there is an associated weights matrix. Just multiply the inputs matrix by the 
parameters matrix of a given layer to return the outputs in such layer. 
Chromosomes in GA are 1D vectors and thus we have to convert the 
weights matrices into 1D vectors. 

Because matrix multiplication is a good option to work with ANN, we will still 
represent the ANN parameters in the matrix form when using the ANN. 
Thus, matrix form is used when working with ANN and vector form is used 
when working with GA. This makes us need to convert the matrix to vector 
and vice versa. The next figure summarizes the steps of using GA with 
ANN.  
 

 



Weights Matrices to 1D Vector 

Each solution in the population will have two representations. First is a 1D 
vector for working with GA and second is a matrix to work with ANN. 
Because there are 3 weights matrices for the 3 layers (2 hidden + 1 output), 
there will be 3 vectors, one for each matrix. Because a solution in GA is 
represented as a single 1D vector, such 3 individual 1D vectors will be 
concatenated into a single 1D vector. Each solution will be represented as a 
vector of length 24,540.  

Implementing GA Steps 

After converting all solutions from matrices to vectors and concatenated 
together, we are ready to go through the GA steps. The steps are presented 
in the  figure above and also summarized in the next figure. 
 

 

Remember that GA uses a fitness function to returns a fitness value for 
each solution. The higher the fitness value the better the solution. The best 
solutions are returned as parents in the parents selection step. 

One of the common fitness functions for a classifier such as ANN is the 
accuracy. It is the ratio between the correctly classified samples and the 
total number of samples. It is calculated according to the following equation. 



The classification accuracy of each solution is calculated according to steps 
in the above figure. 
 

 

The single 1D vector of each solution is converted back into 3 matrices, one 
matrix for each layer (2 hidden and 1 output).  

The matrices returned for each solution are used to predict the class label 
for each of the samples in the used dataset to calculate the accuracy. This 
is done using 2 functions. The first function accepts the weights of a single 
solution, inputs, and outputs of the training data, and an optional parameter 
that specifies which activation function to use. It returns the accuracy of just 
one solution not all solutions within the population. It order to return the 
fitness value (i.e. accuracy) of all solutions within the population, 
the second function loops through each solution, pass it to 
the first function, store the accuracy of all solutions into an array, and finally 
return such an array. 

After calculating the fitness value (i.e. accuracy) for all solutions, the 
remaining steps of GA as shown in the above figure are applied. The best 
parents are selected, based on their accuracy, into the mating pool. Then 
mutation and crossover variants are applied in order to produce the 
offspring. The population of the new generation is created using both 
offspring and parents. These steps are repeated for a number of 
generations. We can also try different values for the GA parameters such as 
a number of solutions per population, number of selected parents, mutation 
percent, and number of generations. 
 

Results 

GA-ANN 

Based on 100 generations, and using  visualization library that shows how 
the accuracy changes across each generation. It is observed that  after 100 
iterations, On the  MNIST dataset, we are able to  find an accuracy  that is 



more than 70%. This is compared to 35% with no backward pass for 
updating the network weights and without using an optimization technique. 
This is an evidence about why results might be bad not because there is 
something wrong in the model or the data but because no optimization 
technique is used. However, using different values for the parameters such 
as 1,000 generations might increase the accuracy.  

 

CONCLUSION 

In this paper, we have described two methods of building and training a 

self-replicating neural network through natural selection process. Firstly, we 

proposed to integrate new neural networks to achieve self-replication in a 

neural network as a method of creating identical copies of output. 

Secondly, we also proposed hybrid genetic algorithm artificial neural 

network ( GA-ANN ) predictive model as an optimization approach that 

mimics the concept of natural evolution / natural selection. This allowed us 

to create a neural network which optimizes its own weights. The test results 

are encouraging with good accuracy. 
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