
EasyChair Preprint
№ 7932

M|M|∞ Busy Period and Busy Cycle
Distribution Functions Bounds

Manuel Alberto M. Ferreira and Marina Andrade

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

May 8, 2022



            𝑴|𝑴|∞ BUSY PERIOD AND BUSY CYCLE  

            DISTRIBUTION FUNCTIONS BOUNDS1
  

 

             Prof. Dr. MANUEL ALBERTO M. FERREIRA 

      Instituto Universitário de Lisboa (ISCTE – IUL), BRU - IUL, Lisboa, Portugal 

 manuel.ferreira@iscte.pt 

 

                         Prof. Dr. MARINA ANDRADE 

      Instituto Universitário de Lisboa (ISCTE – IUL), BRU - IUL, Lisboa, Portugal 

 marina.andrade@iscte.pt 

 

 

 

ABSTRACT 

 

The busy period length distribution function knowledge is important for any queue 

system, and in particular for the 𝑀|𝐺|∞ queue. But the mathematical expressions are in 

general very complicated, with a few exceptions, involving usually infinite sums and 

multiple convolutions. So, in this work are deduced some bounds for the 𝑀|𝑀|∞ system 

busy period length distribution function, meaning the second M exponential service 
time, which analytic expressions are simpler than the exact one. As a consequence, also 

some bounds for the 𝑀|𝑀|∞ system busy cycle length distribution function are 
presented. 
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1. INTRODUCTION 

 

  In a 𝑀|𝐺|∞ queue system, 𝜆 is the Poisson process arrivals rate, 𝛼 is the mean 

service time, 𝐺(. )  is the service time distribution function and so 𝛼 = ∫ [1 −
∞

0

𝐺(𝑡)] 𝑑𝑡.   𝐹(. )  is the service time equilibrium distribution function which expression 

is 𝐹(𝑡) =
1

𝛼
∫ [1 − 𝐺(𝑥)]𝑑𝑥

𝑡

0
. The traffic intensity is 𝜌 = 𝜆𝛼 and B is the busy period 

length. 

Note the importance of the busy period study, for this queuing system, because 

in it any customer, when arrives, finds immediately an available server. So the problem 

is “for how long the servers – and how many servers – must be available? That is: how 

long is the busy period length?” 

The B distribution function has not a simple form and it can be written as, see 

(1), 

 
1 This work was financially supported by FCT through the Strategic Project PEst-OE/EGE/UI0315/2011. 
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                       𝑃(𝐵 ≤ 𝑡) = 1 − 𝜆−1 ∑ 𝑐∗𝑛∞
𝑛=1 (𝑡), 𝑡 ≥ 0               (1.1) 

where  𝑐∗𝑛 is the 𝑛𝑡ℎ convolution of c with itself being 

𝑐(𝑡) =  𝜆(1 − 𝐺(𝑡))𝑒−𝜆 ∫ [1−𝐺(𝑥)]𝑑𝑥
𝑡

0       (1.2). 

              Only for the service time distribution function given by
2
, see (2, 3), 

𝐺(𝑡) = 1 −
(1 − 𝑒−𝜌)(𝜆 + 𝛽)

𝜆𝑒−𝜌(𝑒(𝜆+𝛽)𝑡 − 1) + 𝜆
, 𝑡 ≥ 0, −𝜆 ≤ 𝛽 ≤

𝜆

𝑒𝜌 − 1
     (1.3) 

the expression (1.1) becomes simple
3
: 

           𝑃(𝐵 ≤ 𝑡) = 1 −
(1−𝑒−𝜌)(𝜆+𝛽)

𝜆
𝑒−𝜌(𝜆+𝛽)𝑡, 𝑡 ≥ 0, −𝜆 ≤ 𝛽 ≤

𝜆

𝑒𝜌−1
     (1.4). 

            This does not happen for the 𝑀|𝑀|∞ queuing systems – exponential service 

times – and so, in this work, some simple bounds will be presented for 𝑃(𝐵𝑀 ≤ 𝑡). 

             An idle period followed by a busy period is a busy cycle. Calling Z the busy 

cycle length, 

𝑍 = 𝐼 + 𝐵        (1.5), 

 
2 It results from, see (4),  
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making β(𝑡) =𝛽 (constant). 
 
3 It results from, see still (4),  
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 making β(𝑡) =𝛽 (constant). 



where I is the idle period length. So, bounds for 𝑃(𝑍𝑀 ≤ 𝑡), obtained with simple 

manipulations after the 𝑃(𝐵𝑀 ≤ 𝑡) ones, and much simpler than the exact expression, 

will also be presented. 

             Finally note that if the probability distribution function allows the study of the 

distribution structure, only the distribution function allows the probabilities direct 

calculation.  

2. BOUNDS FOR 𝑷(𝑩𝑴 ≤ 𝒕) 

 

              Write c (t) as  

𝑐(𝑡) = 𝜌𝑓(𝑡)𝑒−𝜌𝐹(𝑡)           (2.1) 

where 𝑓(𝑡)=
𝑑𝐹(𝑡)

𝑑𝑡
. So, 

𝑐(𝑡) ≥ 𝜌𝑓(𝑡)𝑒−𝜌              (2.2) 

and 

                         𝑃(𝐵 ≤ 𝑡) ≤ 1 − 𝜆−1 ∑ 𝑓∗𝑛∞
𝑛=1 (𝑡)𝜌𝑛𝑒−𝑛𝜌, 𝑡 ≥ 0    (2.3) 

 

or 

𝑐(𝑡) ≤ 𝜌𝑓(𝑡)            (2.4) 

and 

 

𝑃(𝐵 ≤ 𝑡) ≥ 1 − 𝜆−1 ∑ 𝑓∗𝑛

∞

𝑛=1

(𝑡)𝜌𝑛 , 𝑡 ≥ 0              (2.5). 

            The 𝑛𝑡ℎ convolution of f with itself, 𝑓∗𝑛, is the probability density function of 

the sum of n independent and identically distributed random variables which 

distribution function is given by F(t). Then the bounds given in (2.3) and (2.5) depend 

only on 𝜌 , 𝜆 and F (.). 

              For the 𝑀|𝑀|∞ queue, 𝐺(𝑡) = 1 − 𝑒−
𝑡

𝛼 and, so, 𝑓(𝑡) =  
1

𝛼
𝑒−

𝑡

𝛼. Then, 

𝑓∗𝑛(𝑡) = (
1

𝛼
𝑒−

𝑡

𝛼)
∗𝑛

=
𝑡𝑛−1

𝛼𝑛(𝑛−1)!
𝑒−

𝑡

𝛼.  And ∑ 𝑓∗𝑛∞
𝑛=1 (𝑡)𝜌𝑛𝑒−𝑛𝜌 =

∑
𝑡𝑛−1

𝛼𝑛(𝑛−1)!
𝑒−

𝑡

𝛼∞
𝑛=1 𝜌𝑛𝑒−𝑛𝜌 =

𝜌

𝛼
𝑒−𝜌𝑒−

𝑡

𝛼 ∑
1

(𝑛−1)!
(

𝜌

𝛼
𝑒−𝜌𝑡)

𝑛−1

= 𝜆∞
𝑛=1 𝑒−𝜌−

𝑡

𝛼𝑒𝜆𝑒−𝜌𝑡 =

𝜆𝑒−𝜌+(𝜆𝑒−𝜌+
1

𝛼
)𝑡 = 𝜆𝑒−𝜌+

𝜌𝑒−𝜌−1

𝛼
𝑡.  

So 



𝑃(𝐵𝑀 ≤ 𝑡) ≤ 1 − 𝑒−𝜌−
1−𝜌𝑒−𝜌

𝛼
𝑡, 𝑡 ≥ 0                   (2.6) 

after (2.3). 

                From (2.5), as ∑ 𝑓∗𝑛∞
𝑛=1 (𝑡)𝜌𝑛=∑

𝑡𝑛−1

𝛼𝑛(𝑛−1)!
𝑒−

𝑡

𝛼∞
𝑛=1 𝜌𝑛 =

𝜌

𝛼
𝑒−

𝑡

𝛼 ∑
1

(𝑛−1)!
(

𝜌

𝛼
𝑡)

𝑛−1

= 𝜆∞
𝑛=1 𝑒−

𝑡

𝛼𝑒−𝜆𝑡 it is concluded that 

  

𝑃(𝐵𝑀 ≤ 𝑡) ≥ 1 − 𝑒−
1−𝜌

𝛼
𝑡 ,   𝑡 ≥ 0                 (2.7). 

               The bound given by (2.6) is always lesser than 1. The one given by (2.7) is 

positive only for 𝜌 < 1.   

                    Otherwise 1 − 𝑒−𝜌−
1−𝜌𝑒−𝜌

𝛼
𝑡 ≥ 1 − 𝑒−

1−𝜌

𝛼
𝑡 ⇔ −𝜌 −

1−𝜌𝑒−𝜌

𝛼
𝑡 ≤ −

1−𝜌

𝛼
𝑡 ⇔

1−𝜌−1+𝜌𝑒−𝜌

𝛼
𝑡 ≤ 𝜌 ⟺

𝜌(𝑒−𝜌−1)

𝛼
𝑡 ≤ 𝜌 ⇔ 𝑡 ≥

𝜌𝛼

𝜌(𝑒−𝜌−1)
= −

𝛼

(1−𝑒−𝜌)
< 0, 𝜌 > 0 and the 

bound given by (2.6) is always greater than the one given by (2.7). 

               In (5) it was proved that  

𝐺(𝑡)𝑒−𝜌 ≤ 𝑃(𝐵 ≤ 𝑡) ≤ 𝐺(𝑡), 𝑡 ≥ 0       (2.8). 

               Consequently 

(1 − 𝑒−
𝑡
𝛼) 𝑒−𝜌 ≤  𝑃(𝐵𝑀 ≤ 𝑡) ≤ 1 − 𝑒−

𝑡
𝛼 , 𝑡 ≥ 0       (2.9) 

                       The lower bound given in (2.9) is always positive, but for 𝜌 < 1 the one 

given by (2.7) is better. 

               As 1 − 𝑒−𝜌−
1−𝜌𝑒−𝜌

𝛼
𝑡 ≤ 1 − 𝑒−

𝑡

𝛼 ⇔ −𝜌 −
1−𝜌𝑒−𝜌

𝛼
𝑡 ≥ −

𝑡

𝛼
⇔

1−1+𝜌𝑒−𝜌

𝛼
𝑡 ≥ 𝜌 ⇔

𝑡 ≥ 𝛼𝑒𝜌 the upper bound given by (2.6) is better than the one given by (2.9) if 𝑡 ≥ 𝛼𝑒𝜌. 

3. BOUNDS FOR 𝑷(𝒁𝑴 ≤ 𝒕) 

 

The random variable I is exponentially distributed with parameter 𝜆, as it  

is the case of any queue system with Poisson arrivals. In (6) it was shown that I and B 

are independent. So the distribution of Z is the convolution of those of I and B. 

 

 



               In fact, the Z distribution function has not a simple form except for the service 

time given by (1.3), see (7)
4
, 

 

                        𝑃(𝑍 ≤ 𝑡) = 1 −
(1−𝑒−𝜌)(𝜆+𝛽)

𝜆−𝑒−𝜌(𝜆+𝛽)
𝑒−𝑒−𝜌(𝜆+𝛽)𝑡 +

𝛽

𝜆−𝑒−𝜌(𝜆+𝛽)
𝑒−𝜆𝑡,  

                                                𝑡 ≥ 0, −𝜆 ≤ 𝛽 ≤
𝜆

𝑒𝜌−1
                                                     (3.1). 

 

               This does not happens for the 𝑀|𝑀|∞ queuing systems and so there will be 

givens some simple bounds for 𝑃(𝑍𝑀 ≤ 𝑡). 

                   After (2.6) and (2.7), and performing the adequate convolutions 

1 −
(𝜌 − 1)𝑒−𝜆𝑡 + 𝜌𝑒

−
1−𝜌

𝛼
𝑡

2𝜌 − 1
≤ 𝑃(𝑍𝑀 ≤ 𝑡) ≤ 1 −

(𝜌 − 1)𝑒−𝜆𝑡 + 𝜌𝑒
−𝜌−

1−𝜌𝑒−𝜌

𝛼
𝑡

𝜌(1 + 𝑒−𝜌) − 1
,  

 

𝑡 ≥ 0                                                                       (3.2). 

              After (2.9), with the adequate convolutions, 

𝑒−𝜌 (1 −
𝜌𝑒−

𝑡
𝛼 − 𝑒−𝜆𝑡

𝜌 − 1
) ≤ 𝑃(𝑍𝑀 ≤ 𝑡) ≤ 1 −

𝜌𝑒−
𝑡
𝛼 − 𝑒−𝜆𝑡

𝜌 − 1
, 𝑡 ≥ 0        (3.3). 

4.  CONCLUSIONS 

              Upper and lower bounds for  𝑃(𝐵 ≤ 𝑡) that can be used for every service time 

distribution were presented. But, for exponential service times, they originate very 

simple expressions. And it is even possible to compare them in order to make the best 

option in their use through very simple rules.  

                Although the busy cycle is not so important as the busy period its study is of 

great interest. Then this study was finished with the presentation of bounds 

for 𝑃(𝑍𝑀 ≤ 𝑡) . They are also a good alternative to the exact expression that is not 

practical at all. 

 

 

 
4 -For 𝛽 = 0, 𝑃(𝑍 ≤ 𝑡)=1-𝑒−𝑒−𝜌𝜆𝑡 , 𝑡 ≥ 0 . So Z is exponentially distributed at rate 𝑒−𝜌𝜆 and it may be 

concluded that the points in time at which begin busy cycles, occur according to a Poisson Process at rate 

𝑒−𝜌𝜆.  

-For 𝛽 =
𝜆

𝑒𝜌−1
, 𝑃(𝑍 ≤ 𝑡)=1-

𝑒𝜌−1

𝑒𝜌−2
𝑒

−−
𝜆

𝑒𝜌−1
𝑡

+
1

𝑒𝜌−2
𝑒−𝜆𝑡 , 𝑡 ≥ 0, if 𝜌 ≠ ln 2. For 𝜌 = ln 2 , using 

l’Hospital’s rule it is obtained 𝑃(𝑍 ≤ 𝑡)=1-(1 + 𝜆𝑡)𝑒−𝜆𝑡 , 𝑡 ≥ 0. 
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