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Abstract— Next Generation Wireless Internet will comprise 

heterogeneous networks connected to seamlessly access multitude 

of applications and services; managing traffic will become very 

crucial to successfully run those networks. In this paper, we 

report a framework to measure end-to-end traffic between 

Server and Client located in India and USA. The measured 

traffic is used to design Hidden Markov Model based forecasting 

algorithm and is validated for different packet size. 
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I.  INTRODUCTION 

Recent trends indicate that the Internet is being rapidly 
flooded by multiple traffic flows (e.g. traffic from YouTube, 
Skype, IPTV etc.) consuming a considerable amount of 
bandwidth from the network. Such traffic requires a good 
management of the network and not only just providing of 
additional bandwidth by a service provider, but also QoS 
management and control techniques. Several traffic models for 
wired and wireless networks have been proposed in the 
literature. However, only few modelling results are derived 
from real measurement data and rarely do they provide a 
complete and consistent view of the entire wireless network 
scenario. Also, the much-needed application specific traffic 
modelling for wireless is in its infancy which gives researchers 
a direction to proceed. 

There exists a rich literature on traffic modelling and 
forecasting. The self-similar nature of Internet traffic [1, 2] 
allows researchers to measure and analyze characteristics of 
both flow level and packet level traffic which give a key to 
synthetically generate and use similar traffic for various 
applications; a time-consuming process otherwise. Lee et al. 
present a campus wide measurement set-up for Internet traffic 
in [3] and show that that the flow inter-arrival times are long-
range dependent and exhibit multifractal scaling. In [4], Estan 
et al. present the directions for traffic measurement. Traffic 
measurement approaches presented in [5] are classified as 
active, passive, offline, online etc. and also various traffic trace 
resources are documented. In [6], Mobile Internet users are 
modeled by an ON/OFF source using a fluid flow model. The 
fluid flow model is also used in [7] to measure and model 
Internet gaming traffic. In [8], Web Traffic is modelled using 
Markov Modulated Poisson Process. In [9], differentiated QoS 
based model for multimedia is presented whereas [10] proposes 

discrete-time Markov models for live and stored-media 
streaming using TCP. The source is characterized by a stream 
of fixed size packets with ON and OFF time to model VoIP in 
[11].  

The emerging new heterogeneous wireless networks bring in 
considerable challenges to traffic modelling. For example, in 
IP-based internetworking, traffic can hardly be modelled in a 
generic format. Recently, the use of Hidden Markov Model 
(HMM) [12] for learning and prediction has increased in many 
fields including traffic engineering, speech processing, finance 
etc. due to its simple learning mechanism. Performance 
improvement of networks and to ensure better QoS for end-
users, simple, tractable and realistic traffic models are to be 
designed.  

Conventional traffic models are not well suited for the 
NGWI networks because of their limitations with respect to 
outdated data traces used to design the models. The study of 
performance and optimal use of network can be carried out 
over the existing technologies in a laboratory environment 
considering the transition from available technologies to next 
generation technologies as shown in Fig. 1. The trace collected 
by such measurements can further be used to model the traffic, 
which in turn can be utilized for traffic prediction, network 
performance management, security monitoring, network 
planning and QoS provisioning. 

Figure 1.  Transition to the Next Generation Wireless Internet 

This work is carried out under the Vodafone Essar IIT Centre of Excellence in 

Telecommunications (VEICET) at IIT Kharagpur, India. 
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II. MEASUREMENT SET-UP 

The next generation Wireless Internet is envisioned to have 
heterogeneous networks comprising of multiple technologies 
like Wi-Fi, LTE, LTE-A, WiMAX. A set-up is established at 
Houston, USA, accessible from High Performance Computing 
and Networking laboratory at the Department of Mechanical 
Engineering, Indian Institute of Technology Kharagpur, to take 
traces using Internet over LTE. The set-up is an enhancement 
to the already existing IP QoS testbed for wired networks [14–
16]. The complete set-up is shown in Fig. 2. The client access 
Wi-Fi using Novatel 4510L, 4G (LTE) MiFi which in turn runs 
on the Verizon LTE network. The server is in the wired domain 
in IIT Kharagpur, India. 

We use simple Ping command to collect RTT traces at the 
client side. A windows batch file is developed and deployed at 
the client. It sends automated ping requests to the server 
continuously for a fixed packet size. Traces like round-trip-
time (RTT), packet loss and IPDV (Inter Packet Delay 
Variation) are collected for the packet size of 10 bytes to 1400 
bytes with a difference of 50 bytes each. Fig. 3 shows the RTT 
of a sequence of 1024 byte packets sent from client to server 
using the LTE set-up and Fig. 4 shows the average RTT for 
different packet size. For each packet size, thousand packets 
are considered for averaging. 

Figure 2.  Testbed measurement set-up to access LTE 

 

 

Figure 3.  Average RTT for wired-to-LTE for different packet size 

III. JOINT PARAMETRIC FORECASTING MODEL 

We propose to use an HMM [13] for packet-level network 
traffic for (a) fixed packet size and (b) variable packet size.  

The model is designed using the real test traces as described in 

the previous section. The model is scalable, flexible and can be 

easily incorporated into any practical system. In general, the 

HMM consists of two variables: 

(a) The hidden variable whose temporal evolution 

follows a Markov chain.  

(b) The observable variable (the observed output) that 

stochastically depends on the hidden state. 

 

A Hidden Markov Model consists of two sets of states and 

three sets of probabilities: 

 hidden states: the states of a system that may be 

described by a Markov process 

 observable states: the states of the process that are 

visible  

 Initial probabilities for hidden states  

 Transition probabilities for hidden states 

 Emission probabilities from hidden states to 

observable states 

 

 

 

 

Figure 4.  RTT for packet size 1024 bytes using LTE set-up 

Fig. 2. LTE-WiFi Set-up for Data Collection 



 

HMM consists of three phases: evaluation, reconstruction, and 

learning. The main challenges in using an HMM are: (a) 

computation of probability of a particular measured output data 

sequence from the trace and the probabilities of hidden states, 

(b) finding the most likely sequence of hidden states that could 
have generated a given output sequence and (c) finding the 

most likely sequence of state transition and output probabilities 

when an output sequence or a set of such sequences is given. 

The challenges are addressed by the forward-backward 

algorithm, Viterbi algorithm and Baum-Welch algorithm 

respectively [17]. Fig. 5 shows a sample Viterbi path for 100 

packets for a four-state HMM while training is in progress. 

Each observed packet can come from one of the four hidden 

states. For example, packet number 10 has come from the 

fourth state while packet number 30 has come from state 

number one.  

 

  

Figure 5. Sample Viterbi Path for 100 Packets 

Some of the assumptions considered while modelling are as 

follows: 

a. client and server are synchronized in µs level of accuracy, 

b. packet and its acknowledgement travel the end-to-end 

path in equal time, 

c. each packet can come from any of the four traffic classes 

namely, conversation, streaming, interactive and 

background, 
d. each training data sample is of equal importance in the 

estimation of the new parameters, 

e. model is unaware of the network being used for 

measurement, and 

f. all the states are of equal importance. 

 

For prediction, we have used a one-step prediction 

recursively to obtain the subsequent values. The data set used 

as the training part to model the traffic is obtained from the 

testbed set-up discussed in Section II. From the same 

sequence, ten percentage data is kept aside as the test set. In 
our prediction methodology, we set our forecast step to one. 

Based on the parameters estimated from the time series using 

the HMM model and, on the information, obtained from the 

last time instant of the time series data, we proceed to forecast 

the traffic for the next time instant. We update the traffic data 

each time the actual traffic is available to us; and this process 
is recursively performed. The prediction methodology used is 

also simple to be performed in real time. 

The prediction process is carried out in the training phase. 

The parameters of the HMM are updated and the Viterbi 

algorithm is executed to find the most reliable mixtures 

associated with the most probable state. The weighted average 

of the mean of the Gaussian mixture is taken as the prediction 

for next sample. 

The training set can be of any size, however as most 

Internet based applications run for a session, a set equivalent 

of a session is desirable. There is a balance between the size of 

the training set and the complexity of the model. The bigger 
the training set, the more accurate the model in terms of 

finding long term prediction values; but at the same time, the 

algorithm complexity increases significantly. 

In a real scenario where an adaptive mechanism has to be 

considered, the model parameters have to be relearned 

periodically as the network environment can change 

dramatically. It is evident that reducing the length of the 

training sequence reduces the complexity of the training 

algorithm, but it also results in a stationarity (practically no 

prediction) which means that the training step has to be 

executed more frequently. In this work, we used a training set 
of 1000 samples and prediction of 10 percent sample is done. 

Since we already have the actual data set (collected using 

testbed set-up), we use it for comparison with our predicted 

values.  

IV. RESULTS AND DISCUSSION 

 

 
Figure  6.  Probability Density Function of E2ED 

The trace collected by the measurement set-up as discussed 

in the Section II are used to forecast the QoS parameters like, 

End-to-end delay (E2ED) and Inter-Packet Delay Variance 

(IPDV). The Inter Packet Delay Variation (IPDV) of a pair of 

packets within a stream of packets is defined for a selected 

pair of packets in the stream going from a measurement point 

Measurement Point 1 (MP1) to another measurement point 

MP2 [18]. We have illustrated all the results using the packet 

 

 



 

size of 1200 bytes. Fig. 6 and 7 show the probability density 

function of E2ED and IPDV respectively.  

 

 
 

Figure 7. Probability Density Function of IPDV 

 

      Given a real stochastic process X(t), the auto-covariance is 

the covariance of the variable with itself, i.e. the variance of 

the variable against a time-shifted version of itself. If the 
process has the mean E[Xt] = μt, then the auto-covariance is 

given by equation (1) as follows: 

CXX(t, s) = E[(Xt – µt ) (Xs – µs] =E(Xt Xs) – µt µs           (1)  

 

where, E is the expectation operator. 

 

      The term cross-covariance is used to refer to 

the covariance cov(X, Y) between two random vectors X and Y 

and is given by equation (2) as follows: 

cov(X, Y) = E[(X – µX ) (Y – µY)’]            (2) 

    
      The cross-covariance function of two jointly stationary 

processes {Xt} and {Yt} is given by equation (3) as follows: 

γxy(h) = E[(Xt+h − μx)(Yt − μy)]            (3) 

where, μx and μy are means of the stationary processes and h 

is  

the lag between the processes. 

 

      We have calculated the auto- and cross-covariances up to 

the lag of ten to see the correlations between the actual and 

predicted data sets. Fig. 9 and 10 shows the auto-covariance of 

E2ED and IPDV respectively up to a lag of ten. Fig. 11 shows 

the cross-covariance of E2ED and IPDV for a lag up to ten. 

We define tolerance as the percentage of error a predicted 

value can have with respect to the actual value. Range is 

defined as the difference between the maximum and the 

minimum values a data set can take (equations 4–6). 

Range is given by: 

Range = (maximum value in actual data set - minimum value 
in actual data set)              (4) 

Tolerance is given by: 

Tolerance = (actual value – predicted value / Range)          (5) 

Percentage tolerance is given by: 

Percentage tolerance = Tolerance * 100           (6) 

 

 
Figure 8. E2ED auto-covariance 

 
Figure 9.  IPDV auto-covariance 

Fig. 8 shows the percentage tolerance with percentage 

prediction for the packet size of 1200 bytes. It can be seen that 

for a tolerance limit of 5%, E2ED prediction is around 84% 

and IPDV prediction 82%. 

V. CONCLUSION 

      Traffic measurement, analysis, and modeling play a vital 

role in determining network performance. The lack of a real-

time measurement set-up leads to an unrealistic traffic model. 

The ability to accurately measure and characterize the network 

traffic associated with different applications is fundamental to 

numerous network related activities like network performance 
management, security monitoring, traffic modelling, network 

planning and QoS provisioning. Although the collection and 

analysis of traffic traces from various networks has become 

simple with the advent of fast and accurate sniffers, Wireless 

Internet still poses some of the challenges in measurement like 

mobility, limited device capability, heterogeneity etc. The lack 

of real-time traces to model traffic gives a solution applicable 

to certain scenarios only. With the advancement of 

technology, the model is required to evolve to meet the 

 

  



 

demands, not only of the present networks, but also of the 

Next Generation Networks (NGN) which include wired as 

well as wireless Networks. Traffic forecasting is one major 

research interest for many network engineers. To accurately 

forecast the traffic, a good model that can represent the 
inherent traffic characteristics is required. With a good traffic 

model and an accurate forecast technique, better traffic 

management system can be designed. Based on the traffic 

forecast methodology, network engineers can envision traffic 

engineering tools which can adapt to any future conditions. A 

forecast algorithm can play a very important role in this. 

 

 
Figure 10. E2ED and IPDV auto-covariance 

     

 
Figure 11. Sample Viterbi Path for 100 Packets 

      In this paper, we report our measurements carried out over 
LTE using a remote access at Verizon 4G network. A simple 

ping batch file is developed and deployed at the remote client 

to collect the parameters such as RTT, packet loss and packet 

size. Also, it is proposed to use HMM based traffic forecasting 

algorithm for joint E2ED and IPDV predictions. Results are 

shown to be within a tolerance limit of 5% while prediction 

around 82% of QoS parameters for incoming packets.  
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