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Abstract. Inspired by novel applications of radio-frequency sensing
in healthcare, smart homes, rehabilitation, and augmented reality, we
present an FMCW radar-based passive step counter. If a person walks
or performs other activities, the individual body segments, such as head,
torso, legs, arms, and feet, move at different radial speeds. Owing to the
Doppler effect, the individual body segments in motion cause distinct
Doppler shifts that can be used to recognize and analyze the performed
activities. We compute the time-variant Doppler spectrogram of a walking
activity of a person and extract the high energy Doppler components
that mainly describe the torso movements during walking. From the
computed Doppler spectrogram, we then compute the mean Doppler shift.
To detect and count steps, we apply the peak detection algorithm to the
mean Doppler shift. Our approach is evaluated using a walking activity
data set. We have used a ground truth and a commercially available
wrist-worn human activity tracker to validate the results of our approach.
Our results show that our system is capable of passively counting the
number of steps with an overall accuracy of 98.51% within a 12 m range.
Therefore, our proposed system can be used as a passive step counter in
indoor environments. Besides, it can also contribute to indoor localization
and human tracking applications.

Keywords: FMCW radar · Mean Doppler shift · Peak detection · Spec-
trogram · Step counting.

1 Introduction

The World Health Organization (WHO) statistics1 on obesity and overweight
reveal that 1.9 billion individuals, 18 years and above, were overweight in 2016.
Out of these, 34.2% were obese. Research has shown that the obese people are
at higher risk for various diseases and health conditions including hypertension,
type 2 diabetes, coronary heart disease, mental illness, sleep disorders, and low
quality of life [19]. Regular physical exercise, especially walking, and a healthy

1 https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
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diet are among the best ways to treat obesity. Walking is one of the simplest
forms of physical activity that can easily be carried out in indoor and outdoor
settings. Long term studies have found evidence that regular counselling, step
goals, and pedometer-based interventions are useful to increase and maintain
walking levels among low active Scottish individuals [10]. Another study [5]
reports that pedometer users tend to walk approximately one mile (or 2000
steps) more compared to people who do not use pedometers. According to [22],
in WHO European region, people spend just about 90% of their time in indoor
environments. Out of which approximately 60% time is spent at home. The widely
available and commonly used pedometers are body-worn and consist of sensors
such as accelerometers and gyroscopes. These sensors record the acceleration and
variation in orientation due to the walking activity and process the recorded data
to count the steps of the user. Moreover, many people use their smartphones with
built-in pedometers to count their steps. People need to wear these pedometers
all the time for continuously counting their steps, which may be uncomfortable
for some people in in-home settings. As studies have shown [10, 5] the pedometers
act as a motivational tool for increasing physical activity. Therefore, there is a
need to develop a user-friendly step counter that can unobtrusively count steps
of users in in-home settings. In addition to that a passive step counter can also
contribute in developing more robust indoor human tracking and localization
solutions.

In recent years, the frequency modulated continuous wave (FMCW) radar has
emerged as an attractive radio-frequency (RF) sensing modality in a lot of human-
centric applications, such as human activity recognition (HAR) [11, 9], gesture
recognition [20], vital signs monitoring [21], and security and surveillance [12]. The
RF-sensing modality offers several advantages over vision and wearable sensing
modalities. For instance, RF sensing can operate in poor lighting conditions
and see-through obstacles; its performance is not affected by anthropocentric
variations and changes in the environment; and its truly unobtrusive nature
does not require from users to wear or carry sensors. Besides, FMCW radars are
capable of identifying the range and speed (or Doppler frequencies) of the target.
These properties are the key enablers that have lead to a wide spread acceptance
of FMCW radars for the aforementioned applications compared to continuous
wave and ultra-wide-band pulse radars. The electromagnetic waves emitted
by the FMCW radar reflect off both static and moving objects present in the
environment. Owing to the Doppler effect, different movements of a moving object
result in distinct Doppler shift patterns [8]. Various studies have demonstrated
that these distinct Doppler shift patterns can effectively be exploited to not only
discern humans [18, 7], animals [3], and vehicles [13, 15] but also to recognize
different human activities [9, 11, 16, 17], such as walking, sitting, standing, running,
jumping, etc.

To accurately count the number steps, it is crucial to know when a person
is walking. This information can be obtained using a HAR recognition system
developed in our previous works [16, 17], which is able of recognizing the walking
activity with almost 100% precision. In this paper, we investigate the novel
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idea of using Doppler shifts caused by a walking person to count the number of
steps. This will enable us to combine HAR and passive step counter to develop a
solution that is not only able to recognize human activities but also capable of
implicitly counting the steps.

As we know, the human walk is cyclic in nature and during each step-to-step
transition, the moving body segments exhibit repetitive cycles of movements.
Thus, a cyclic gait pattern will manifest itself in velocities (or cyclic Doppler
variations) of the body segments. We first process the recorded RF sensing data
of a walking activity to reduce the noise impact, and then we compute the
spectrogram of the data. The spectrogram shows the time-variant micro-Doppler
patterns associated with movements of different human body segments, such
as torso and legs. Next, we compute the time-variant mean Doppler shift from
the spectrogram. Finally, we apply a peak (or valley) detection algorithm to
detect and count the number of steps. We use a human walking activity data set
to evaluate our approach. We use ground truths to validate the results of our
approach. Besides, we also use an accelerometer-based wrist-worn step counter
to compare the performance of our radar-based step counter with an existing
off-the-shelf step-counter. Our results show that the proposed step-counter can
count steps with an accuracy of 98.51% in a 12 m range.

The rest of the paper is organized as follows. In Section 2, we describe
the principle of FMCW radar systems, explain the various steps of radar signal
processing, and present expressions for computing spectrogram and mean Doppler
shift. The details of our experimental setup and data collection process are given
in Section 3. The results of our approach are presented in Section 4. Finally, in
Section 5, we conclude this work and present its future outlook.

2 System Description and Radar Signal Processing

In this work, we have used an FMCW radar system as an RF sensor to capture
the micro-Doppler effects caused by a walking person. The FMCW radar uses
a synthesizer to generate a frequency modulated (FM) electromagnetic wave
(known as chirp), which is transmitted in the environment via a transmit antenna
Tx [21]. The instantaneous frequency of the chirp changes linearly over a fixed
time period (know as sweep time Tsw) by a modulating signal [6]. The transmitted
signal sTx

(t′) can be expressed as [1]

sTx(t′) = exp[j2π(f0t
′ +

α

2
t′2)] (1)

where f0 indicates the start frequency, α is the chirp rate, and t′ denotes the
fast-time. The chirp rate is expressed as α = (f1 − f0)/Tsw, where f1 stands for
the stop frequency. The bandwidth B of the radar is the difference between the
stop frequency f1 and the start frequency f0, i.e., B = f1 − f0. The transmitted
wave reflects from different static and moving scatterers that are present in the
environment, as shown in Fig. 1. The reflected electromagnetic wave is received
by the receive antenna Rx with a time delay τ = 2R/c, where R is the distance
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Fig. 1. A block diagram of an FMCW radar system.

of the scatterer from the radar and c is the speed of light [21]. The received
electromagnetic wave sRx

(t′) that is reflected from a single scatterer is a τ delayed
version of the transmitted signal [1]

sRx(t′) = a exp[j2π(f0(t′ − τ) +
α

2
(t′ − τ)2)] (2)

where symbol a in (2) represents the amplitude, which depends on the physical
properties of the system, such as the transmission losses and the radar cross-
section of the scatterer. As per the principle of the FMCW radar, the transmitted
signal sTx

(t′) and the received sRx
(t′) signal are mixed together and passed

through a low pass filter to obtain the so-called beat (or intermediate frequency)
signal which can expressed as [1, 21]

sb(t
′) = a exp[j(2πατt′ + 2πf0τ)] = a exp[j(2πf ′bt

′ + ψ)] (3)

where f ′b is the beat frequency and ψ is the phase of the beat signal. The beat
signal is then sampled by an analog to digital converter (ADC). The output of
ADC is stored in an n×m matrix sb, where n denotes the number of samples per
sweep (or fast-time data) and m represents the number of transmitted sweeps (or
chirps). For the following discussion, we consider the beat signal sb as a function
of fast-time t′ and slow-time t, such as sb(t

′, t). As shown in (3), the fundamental
frequency of a single point moving scatterer is present at f ′b = ατ . Therefore, we
can obtain the range information of a scatterer by computing the fast Fourier
transform (FFT) of the beat sb(t

′, t) with respect to fast-time data, i.e.,

Sb(fb, t) =

Tsw∫
0

sb(t
′, t)exp[−j2πfbt′]dt′. (4)

The Doppler frequency of the moving scatterer is estimated over a series of
continuously transmitted sweeps (or chirps). The result obtained after applying
the FFT according to (4), undergoes an additional FFT (known as the Doppler
FFT), which is applied on the windowed range profile along the slow-time, i.e.,

X(fb, f, t) =

∞∫
−∞

Sb(fb, t)Wr(x− t)exp[−j2πfx]dx (5)
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where Wr(·) indicates the rectangular window function, x is the running time,
and f denotes the Doppler frequency. The short-time Fourier transform (STFT)
of the range profile provides us with the range and Doppler information of the
moving scatterer. To obtain the time-variant Doppler frequencies, we agglomerate
the range information as follows

X(f, t) =

fb,max∫
0

X(fb, f, t)dfb (6)

where fb,max denotes the maximum beat frequency that an FMCW radar can
resolve [14]. In the next step, we compute the spectrogram S(f, t), which is
defined in [4] as the absolute square of X(f, t), i.e.,

S(f, t) = |X(f, t)|2. (7)

The spectrogram presents the time-varying micro-Doppler signature of the moving
scatterer. Finally, the time-variant mean Doppler shift Bf (t) is computed as

Bf (t) =

∞∫
−∞

fS(f, t)df

∞∫
−∞

S(f, t)df

. (8)

3 Experimental Setup and Data Collection

In this work, we considered an indoor environment, where we used the Ancortek
SDR-KIT2400T2R4 [2] (SDR-KIT) as shown in Fig. 2 to collect RF sensing data.
The SDR-KIT is a software-defined FMCW radar that operates in the K-band
within 24–26 GHz. The SDR-KIT consists of two transmit and four receive units
where two Tx and four Rx antennas can be connected.

Within the scope of this work, we only used a single transmit and a single
receive unit. The Tx and Rx antennas were connected to the SDR-KIT using
1 m RF cables. We attached the Tx and Rx antennas to two separate tripods
and set the height of both antennas to 110 cm from the floor. The SDR-KIT
is connected to a laptop using a universal serial bus cable. The laptop runs a
program that provides a graphical user interface (GUI) to interact with the
SDR-KIT. Using the GUI, the users can set different parameters of the radar
and issue commands to start and stop recording the data. The recorded data are
in the form of ADC samples and stored on the laptop. We placed our hardware
setup in a corridor as shown in Fig. 3.

We used the co-located2 antenna configuration, and set the bandwidth B,
centre carrier frequency f0, and sweep time Tsw to 250 MHz, 24.125 GHz, 1 ms,
respectively. We recorded the walking activity data in two sessions. In the first

2 By co-located antenna configuration, we mean that the Tx and Rx antennas were
placed close to each other, as can be seen in Fig. 3.
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Ancortek SDR-KIT2400T2R4

ANC-W42-10 Horn Antenna 

Fig. 2. Hardware setup for collecting radar-sensing data in the presence of a walking
person.

session, we asked a participant to walk in front of the Tx and Rx antennas from
Point A to Point B, as shown in Figs. 3. The distance from Point A to Point
B was 8 m, where the participant needed to take exactly 10 steps at a normal
walk pace to cover this distance. The participant walked in total 150 times from
Point A to Point B and 150 times back from Point B to Point A. This actually
provides us the ground truth, as we know, the participant took 3000 steps while
walking back and forth between points A and B.

For the second session, we kept the parameters of the SRD-KIT the same
as the first session but asked the participant to walk from Point A to Point C,
which are shown in Fig. 3(a). The distance from Point A to Point C was 12 m. To
walk 12 m distance, the participant needed to take exactly 15 steps at a normal
walking speed. In the second session, the participant again walked 3000 steps,
by walking 100 times in each direction. In each session, the data corresponding
to each walk were stored in a separate file to keep the size of each data file
manageable. This means, we stored the walking RF data in 300 files in the first
session and in 200 files in the second session.

To compare the results of our approach with commercially available activity
trackers, we asked the participant to wear a Garmin Forerunner 935 activity
tracker on the non-dominant wrist to register the steps taken during both data
recording sessions.



Title Suppressed Due to Excessive Length 7

A

B

C

8
 m

1
2

m

(a) (b)

Fig. 3. Indoor radar sensing of a person walking along a floor: (a) antenna configuration
and (b) walking activity.

4 Step Detection and Step Counting Results

We processed each recorded walking activity data file. At first, we removed the
impact of ambient noise by subtracting the sample mean from the raw radar data.
Besides, the mean subtraction also removes the contributions of fixed scatterers
to a certain extent. Moreover, we applied a high-pass filter to fully remove the
contributions of fixed scatterers, such as walls, ceiling, and furniture. Thereafter,
we estimated the range of the moving scatterers by computing the range-FFT
as presented in (4). From the range-profile (see Fig. 4), we can observe that the
person was first standing still for the first three seconds at a distance of 2.4 m
distance from the radar, and then the person started walking away from the
radar’s Tx and Rx antennas. The person walked for 6.5 seconds and covered a
distance of approximately 8 m. The last five seconds of the range-profile plot
show that the person stood still at a distance of 10.24 m.

The range-profile is useful for determining how the distance of a walking person
changes over time. However, the number of steps cannot directly be counted from
the range profile. We use the spectrogram method to extract the micro-Doppler
signature of the walking activity from the range profile, as presented in (5)—(7).
The spectrogram of the walking activity is shown in Fig. 5, which gives an
impression of the micro-Doppler signatures associated with different limbs in
motion during the walking activity. The negative frequencies in the micro-Doppler
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Fig. 4. The measured range profile of a human walking activity.
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Fig. 5. The spectrogram of a human walking activity.

signatures are due to the fact that the person is walking away from the Tx and Rx

antennas of the radar. The high energy component of the spectrogram (see Fig. 5)
can be associated with the micro-Doppler signature of the repetitive movement
of the torso. Whereas, the low energy components are due to the movements
of the feet, legs, and arms. We threshold the spectrogram to remove these low
energy components and then compute the time-variant mean Doppler shift (see
Fig. 6) by using (8). The minima of the time-variant mean Doppler shift coincides
with the steps of the person. If the person is walking towards the Tx and Rx
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Fig. 6. The time-variant mean Doppler shift of a person walking away from the co-
located Tx and Rx antennas.

antennas of the radar, the Doppler shift will be positive and each peak of the
mean Doppler shift will indicate a step of the person. We apply the Matlab’s
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Fig. 7. The steps identified by the peak detection algorithm for the case that the person
walks towards the co-located Tx and Rx antennas. Each identified step is marked by
the symbol.

“findpeaks” algorithm to detect the peaks of the time-variant mean Doppler
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Table 1. A comparison of the step-count results of the Garmin Forerunner 935 step
counter and our FMCW radar-based approach.

Session
Walking
distance

True step
count

Steps counted
by the Garmin
Forerunner 935

Steps counted
using the proposed

approach

1 8 m 3000 2880 (96.00%) 2948 (98.27%)
2 12 m 3000 2975 (99.17%) 2955 (98.51%)

shifts that correspond to the steps. By default, the “findpeaks” peak detection
algorithm will detect all peaks of the mean Doppler shift. Therefore, to prune
peaks that do not correspond to the true steps, we set the four parameters of the
“findpeaks” algorithm, i.e., minimum peak height, minimum peak separation,
minimum peak prominence, and minimum peak height difference to 20, 0.005,
15, 0.001, respectively. We use the exhaustive grid search approach to optimize
the aforementioned parameters of the peak detection algorithm. As shown in
Fig. 7, the peak detection algorithm is able to correctly identify steps in the
time-variant mean Doppler shift. We iterate over all recorded walking activity
data files and accumulate the identified steps in each file. The results of our
approach are presented in Table. 1.

For the 8 m walking scenario, both the Garmin Forerunner 935 activity
tracker and the FMCW radar were not able to count all steps. In this case, our
FMCW-radar-based approach registered a total of 2948 steps out of the 3000
steps, which are 2.27% more compared to the Garmin 935 activity tracker. For
the 8 m walks, our FMCW-radar-based approach and the Garmin 935 activity
tracker under-reported 1.73% and 4.0% steps, respectively. For the 12 m walking
scenario, the step count accuracy of the Garmin 935 activity tracker is 99.17%,
whereas the accuracy of our FMCW-radar-based system is 98.51%. We can
observe a 3.17% improvement in the accuracy of the Garmin 935 activity tracker
for 12 m walks compared to 8 m walks. Whereas, we do not notice a significant
change in the performance of our FMCW-radar-based step counter. The radar-
based-system performs slightly (0.24%) better for 12 m walks compared to 8 m
walks. This is due to the reason that a very slowly taken step does not result
in a significant-peak of the time-variant mean Doppler shift. Thus, it cannot be
detected as a step by the peak detection algorithm. Such extremely slow steps
may occur either at the beginning or at the end of a walk. As, there are fewer
start and stop steps in the 12 m walks compared to the 8 m walks, it is therefore
plausible that the peak detection algorithm made slightly fewer errors for 12 m
walks.

5 Conclusion and Future Work

In this paper, we proposed an RF-based system to passively count human steps.
Our system uses an FMCW radar for its capability to estimate the range and
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Doppler information of a moving person. We used the spectrogram approach to
compute the time-variant mean Doppler shift and then applied a peak detection
algorithm to detect and count the steps taken by a person. To evaluate our
approach, we used a 24 GHz FMCW radar to record the measurements while a
person was walking in front of the Tx and Rx antennas of the radar. We used
ground-truths to validate the results of our system. Besides, as a reference, we
also used an accelerometer-based wrist-worn physical step counter to compare the
performance of our system with one off-the-shelf step counters. The experimental
results show that the overall step counting accuracy of our system is 98.51% if the
walking activity is performed within a range of 12 m. The comparative analysis of
the results of our system and the wrist-worn activity tracker (used in this work)
demonstrates the reliability of our RF-sensing system. Therefore, our system can
potentially be used as an in-home passive step counter and for indoor localization.
In future, we will further analyze the Doppler shifts to determine gait stability
of walking persons. Besides, we will integrate the step counter developed in this
work with our previously developed human activity recognition system, such that
our indoor human activity recognition system can implicitly count human steps.
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