
EasyChair Preprint

№ 1295

Lessons Learned From Deploying Autonomous

Vehicles at UC San Diego

David Paz, Po-Jung Lai, Sumukha Harish, Hengyuan Zhang,
Nathan Chan, Chun Hu, Sumit Binnani and Henrik Christensen

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

July 16, 2019



Lessons Learned From Deploying Autonomous
Vehicles at UC San Diego

David Paz, Po-Jung Lai, Sumukha Harish, Hengyuan Zhang, Nathan Chan, Chun
Hu, Sumit Binnani, Henrik I. Christensen

Abstract While most autonomous driving efforts reported are directed for general
driving and mainly on major roads, there are numerous applications for autonomous
vehicles for last mile mobility–from person mobility and mail delivery to flexible
recharging of cars in parking structures. Over the last year, we have designed ve-
hicles for the micro-mobility challenge. Our approach was based on adoption of
the open source Autoware system. The system was taken as a starting point for the
design of a robust solution. Proposed requirements include a robust control design,
a shift towards increased use of image data over LiDAR data, handling of a richer
set of vehicles / pedestrians in a last mile scenario, and overall system characteri-
zation and evaluation. We present an overview of the overall design and the design
decisions for construction of vehicles for last-mile delivery.

1.1 Introduction

The Autonomous Vehicle Laboratory (AVL) at UC San Diego’s Contextual Robotics
Institute has partnered with UC San Diego’s Logistics Unit, Police Department,
and Mail Delivery Center to develop and deploy self-driving carts on campus. At
the moment, two GEM e6 development platforms are being used to perform tests
around the campus. During the initial development stage, the vehicles are expected
to perform mail and package deliveries at different campus locations in a variety of
stochastic traffic and road conditions. In the second development stage, the team will
lead the effort on last-mile transportation for campus visitors, students, and faculty
by providing on demand mobility that can address heavy campus traffic during peak
hours, while reducing the amount of on-campus parking needed.

Over the course of seven months, AVL has implemented software modules for
sensing and estimation, planning, controls, and benchmarking. Additionally, state

UC San Diego - 9500 Gilman Dr, La Jolla, CA 92093
Email - (dpazruiz, polai, ssumuka, hyzhang, nchan, chh281, sbinnani, hichristensen)@ucsd.edu

1



2 D. Paz et. al.

of the art algorithms for localization, mapping and perception have been explored
and evaluated from multiple open source communities: Robot OS (ROS) [6] and
Autoware.AI. [2]. Although some of those software packages discussed in detail in
this paper are robust and work very well for certain applications, they do not gen-
eralize and scale, and often require extensive software-hardware integration. The
evaluation and development results during the testing phase of the project are pre-
sented with proposed modifications to improve performance, flexibility, reliability
and scalability in autonomous vehicle systems for micro-transit.

1.2 Technical Approach

Each of the two GEM e6 development platforms used for this study have been
retrofitted with a drive-by-wire system and a safety disengagement system1 that
provides an interface for controlling steering angle and angular velocity, brake pedal
position, acceleration, and gear shifts using ROS. Each of the units is equipped with
six Mako G319 cameras, one VLP-16 Velodyne LiDAR, 16 Bosch ultrasonic sen-
sors, and a Varience VMU931 Inertial Measurement Unit (IMU). Additionally, a
Watson DMS-SGP02 Inertial Navigation System (INS) is being tested on one of the
units. The development platforms are shown in Figure 1.1.

Initial system integration and development was performed using numerous tools,
including Docker containers for modularization, the open-source Autoware stack as
a development platform, alongside communication APIs for vehicle-to-system con-
trol. While a reasonable degree of autonomy was achieved during this development
stage, Autoware’s localization and planning pipeline heavily relies on dense point
cloud maps and LiDAR technology. As discussed in later sections, this technology
may be adequate for smaller scale environments but comes at a great cost as the
size of these maps drastically increase–computationally and maintenance wise. As
part of an ongoing process, AVL has started developing alternative methodologies
that provide equal or greater level of system robustness with the primarily goal of
improving scalability and integration as a whole. In this section, we introduce tools
and the current state of the system and propose alternatives for improvement.

1.2.1 Containers

ROS is an ecosystem that provides a convenient communication interface for our
applications and modules. Although ROS offers this convenience, one drawback
lies on package interdependencies and libraries (i.e OpenCV) which often leads
to problems compiling source code due to incompatible versions. By isolating the

1 The disengagement system permits safety drivers to intervene at any time using the steering
wheel, pedals or emergency button. During field tests, steering wheel and pedal interventions
proved to be necessary due to the immediate response needed in many scenarios.



1 Lessons Learned From Deploying Autonomous Vehicles at UC San Diego 3

Fig. 1.1 AVL team members and GEM e6 Development platforms are shown on the left. Sensor
locations are shown on the right.

different modules into separate environments using Docker containers, this task be-
comes trivial and allows us to automate the module instantiation process during boot
time. UC San Diego’s AVs are among the first few platforms to make use of Docker
for robotics applications [10].

1.2.2 Autoware/ROS

Two of the most popular open-source autonomous driving stacks with ROS support
include Baidu’s Apollo and Tier IV’s Autoware.AI. Ultimately, Autoware.AI was
chosen as the foundation of AVL’s autonomous driving stack due to its open source
community support and flexibility for modifications and integration. Autoware pro-
vides algorithms and packages for perception, mapping, localization, and planning
algorithms required for navigation through specific environments. The modules are
relatively complete and work well for basic environments, despite some limitations
which will be discussed in the latter part of the paper. Several global and local
planning modules are also packaged with Autoware, including the A*, lattice, and
OpenPlanner, where each planning algorithm is optimized for different scenes.

Out of the different planners provided by Autoware, we chose OpenPlanner [4],
which serves as the path planner for autonomous navigation through an urban en-
vironent. OpenPlanner is comprised of two distinct modules: a global planner for
generating an initial reference path, and a local planner for controlling the behavior
of the vehicle. Since AVL’s focus is on last mile transportation, our efforts have cen-
tered around exploration and modification of the local planner. OpenPlanner sup-
ports local planning with a limited number of static road features, such as lanes,
stop signs, and dynamic features, such as traffic lights. As of Autoware version 1.8,
OpenPlanner lacks support for many interactive road features, such as crosswalks
and intersections, which are critical for autonomous navigation in areas with high
foot traffic–such as UC San Diego. This entails integration of perception modules



4 D. Paz et. al.

Fig. 1.2 Ground remove failure case along inclines: in the LiDAR scan image (left), yellow points
are classified as ground and turquoise points are classified as obstacles. The vehicle is turning left
in a three-way intersection and part of the ground is classified as obstacle. The image on the right
shows the intersection.

into OpenPlanner and addition of the appropriate behavior logic to the local planner.
In addition to missing local planner logic for certain road features, modifications to
the perception modules are required to generalize the detection and tracking algo-
rithms for a wider variety of scenes. In the following sections, we will discuss the
specifics of the necessary changes.

1.2.3 Perception and Tracking

1.2.3.1 Ground Removal

In the LiDAR detection pipeline, point clouds are projected onto a 2D plane for
segmentation and point cloud ground removal to avoid obstacle misclassifications,
such as classifying ground points as an obstacle. One proposed implementation is to
remove the points that fall below a threshold, or better, to use the Random Sample
Consensus (RANSAC) algorithm to fit a plane on the ground. Although these two
methods work reasonably well to a certain extent, a failure case is encountered along
roads with high degree of inclination as represented in Figure 1.2.

To address ground removal along dynamic road conditions, a simple, but effec-
tive technique is to partition the point cloud based on the longitudinal distance to the
car and fit a plane in each partition. These planes can provide better plane approxi-
mations for curved roads and remove the ground points effectively, as demonstrated
in Figure 1.3. The RANSAC plane fitting implementation in the Point Cloud Library
(PCL) [9] is initialised with a direction that is approximately normal to the plane in
question and generates a normal vector that best characterizes and fits the data, i.e.
an angle within a threshold. Using this method, an iterative approach is applied to
specify the direction of the planes. First, we assume that the plane that is closest to
the vehicle is nearly perpendicular to the z-axis in the LiDAR frame and use this di-
rection as input to determine the actual parameters of the plane by RANSAC. Based



1 Lessons Learned From Deploying Autonomous Vehicles at UC San Diego 5

Fig. 1.3 The direction of dashed arrows indicate the RANSAC initializations and the solid line
arrows correspond to the normal vectors of the estimated plane.

Fig. 1.4 Successful ground classification along an inclined road from multiple perspectives. The
yellow scans are classified as ground and are removed. Turquoise scans are considered as potential
obstacles.

on the assumption that the slope of the road changes slowly among adjacent parti-
tions, we use the direction of the normal vector of the last estimated plane as the
input of the estimation of the next plane.

In Figure 1.3, we separate the road into three segments and estimate from right
(the closest partition to the vehicle) to left. This approach works effectively even
when the road is curved as shown in Figure 1.4, but the assumption that each parti-
tion can be approximated by a plane might not always hold when the change in slope
varies significantly within short distances. A similar approach for iterative elevation
calculation is considered in [8].



6 D. Paz et. al.

Fig. 1.5 16-channel LiDAR scans re-
flecting on a single side of a vehicle.

Fig. 1.6 Bounding Box generated us-
ing LiDAR based classification.

1.2.4 Detection and Pose Estimation of Vehicles

For obstacle detection and avoidance, it is essential to know the size, shape, and
ultimately the centroid and classification of a detected object with a high degree of
reliability. While LiDAR data provides estimates with centimeter level accuracy, it
can be challenging to estimate the pose of an object out of a single point cloud. For
vehicles, laser scans may reflect off a single side of the vehicles making it challeng-
ing to estimate their true width, as shown in Figure 1.5. Additionally, the LiDAR
vertical field of view and resolution can deteriorate significantly for objects that are
further away depending on the number of LiDAR channels.

In the ideal case in which LiDAR data is provided for two adjacent sides of a
vehicle, we can extract an L-shaped point cloud when it is projected onto the XY
plane. Thus we can estimate the pose based on this information. Bounding box and
orientation fitting methods [14] have been explored, but in this section, we describe
an alternative RANSAC based line fitting method that can also be applied for this
application.

Based on the assumption that most extracted points define two nearly-orthogonal
intersecting planes, we first project our data on a plane and find the first best-fit
orthogonal line using a RANSAC approach and remove all the points that are rela-
tively close to this line. The second line is estimated with the remaining points while
enforcing the constraint that it should be perpendicular to the first line. Based on the
two lines and prior knowledge of vehicle sizes, we approximate and fit a bounding
box for the corresponding point cloud, as shown in Figure 1.6.

In realistic scenarios, these ideal cases are seldom encountered. During the tests
performed, vehicles that are located along the XY axis, with respect to the LiDAR
coordinate frame, project a single side and do not provide enough information to
estimate width. Integration of relative position, lane information and even tracking
information is needed for a more robust vehicle classification and tracking system.
On the other hand, for obstacle detection and avoidance, it is sufficient to cluster
points together to represent an unlabeled obstacle.



1 Lessons Learned From Deploying Autonomous Vehicles at UC San Diego 7

Fig. 1.7 UC San Diego: Voigt Drive hill shown on the left with the associated point cloud map
shown on the right.

1.2.5 Vehicle Control and Path Tracking

The trajectory tracking algorithm used in Autoware is the geometric Pure Pursuit al-
gorithm, which considers the upcoming waypoint as the desired pose and computes
the required linear and angular velocities based on a geometric curve fit. Keeping
in mind the environment and the low speeds (a maximum of 25 mph) at which we
operate our system inside the university campus, once the reference trajectory and
its curvature is considered, we employ a PID strategy for the longitudinal control
and a bicycle model of the car for the steering control with an angular velocity that
is directly proportional to the current speed of the vehicle. Given that the acceler-
ation and braking capabilities of the car are different due to inherent mechanical
constraints, it is also necessary to have different PID controllers for acceleration
and braking. Extensive testing was done in this regard to achieve the appropriate
constants for acceleration and braking that suited varied road inclines present on
campus as shown in Figure 1.7.

When coupled with a purely geometric path tracking algorithm, the cornering
abilities of the driving are questionable at higher speeds. Cases where the vehicle
shot off the path while driving at relatively higher speeds around sharp corners were
experienced, which led us to explore other strategies to help tackle this issue. In view
of that, the kinematic model for path following [11] was studied and researched upon
for the current application. However, after careful analysis of the advantages of the
pure kinematic model, it was found to be comparable at lower speeds to that of our
current version and without any additional benefits.

As part of an ongoing research, we seek inspiration from one of the major areas
of current research in autonomous driving, Lane Keeping Assists Systems (LKAS).
A Vision-Based Lane Assist System using deep learning models like DeepLanes
[5] and SCNN [13] to estimate the vehicles position and heading in the lane, and
thereby obtain the cross track error and desired orientation of the vehicle, is being
explored. On the desired trajectory obtained, a Model Predictive Control (MPC)
approach is followed as the control strategy. With the reference trajectory coming in



8 D. Paz et. al.

from vision-based lane detection, the MPC controller seeks to minimize the cross-
track error and the errors in heading direction and velocity of the car. (1) represents
the cost the MPC controller is trying to minimize. The constraints that are derived
from the kinematic model and those that govern the optimization are shown in (2).

J = (
t=N−2

∑
t=0

K1 e2
cte,t +K2 e2

ψ,t +K3 (vt − vre f )
2 )

+(
t=N−2

∑
t=0

K4 a2
t +K5 δ

2
t +K6 (at −at−1)

2 +K7 (δt −δt−1)
2 ) (1)

xt + vt cos(ψt)dt − xt+1 = 0 yt + vt sin(ψt)dt − yt+1 = 0
vt +atdt − vt+1 = 0 ψt + vt

δt
L f

dt −ψt+1 = 0 (2)

f (xt)− yt + vt sin(eψ,t)− ecte,t = 0 ψt −ψre f + vt
δt
L f

dt − eψ, t+1 = 0

xt ,yt ,ψt : pose at time t f (xt) : re f erence tra jectory
vt : velocity at time t vre f : re f erence velocity
at ,δt : acceleration and steer at time t ψre f : desired heading
ecte,t : cross track error at time t K1:5 : weighting constants
eψ,t : error in heading at time t L f : wheelbase o f the car

1.2.6 AVL Logger

As of January 2019, the California Department of Motor Vehicles has issued 62 Au-
tonomous Vehicle Testing permits to large vehicle manufacturer corporations and
start-ups to perform field tests with a safety driver. As part of the California Au-
tonomous Vehicle Testing Regulations, every manufacturer is required to submit
an annual report with a summary of system disengagements. Although most pub-
licly available reports include a summary with the number of disengagements over
a period of time, there are many important aspects that are missing. Some of these
aspects that are not evaluated include Mean Time Between Interventions (MTBI),
Mean Distance Between Interventions (MDBI), comparisons between autonomous
vs. manual driving, AV impact on power consumption, and long-term implications
such as maintenance and overall cost of ownership. These metrics require a more
comprehensive methodology for benchmarking a self-driving vehicle and the impli-
cations of long-term autonomy.

As part of an ongoing research effort, AVL has developed a system for standard-
izing these metrics. The logging system shown in Figure 1.8. was designed to log
various signals for performance and disengagement analysis in a non-intrusive iso-
lated environment. The logging system is based on Flask and the RESTful API on
a Raspberry Pi. The signals collected from the autonomous vehicle computing plat-
forms are transferred through HTTP(S) protocol via ethernet and stored in SQLite
databases for future offline analysis (Figure 1.9). This vehicle API is a lightweight



1 Lessons Learned From Deploying Autonomous Vehicles at UC San Diego 9

Fig. 1.8 Raspberry Pi Logging Module mounted on a development platform

Fig. 1.9 Logging System Architecture

software package (ROS node) which serializes all of the logging information and
encapsulates it using JSON objects.

This external logging mechanism is designed to be used continuously without
interfering with the main system and can be beneficial for third-party verification by
public-key encryption. Some of the metrics defined for the vehicles being tested at
UC San Diego are listed on Table 1.1.

1.3 Experimental Results

Live tests and data collection are actively performed at UC San Diego for devel-
opment under different terrain conditions. As seen in Figure 1.10, the topological
conditions and geometry of the university provide testing grounds in terms of eval-
uating the robustness of mapping and localization, perception and tracking, motion
planning, and logic.



10 D. Paz et. al.

Trigger Metric Type

Intervention Mean Distance Between Intervention (MDBI) Event Driven
Intervention Mean Time Between Intervention (MTBI) Event Driven

Energy Miles per Gallon (MPG) or Charge (mAh) Continuous
Maintenance Cost Brakes and Tire Wear Event Driven

Up-time Time Elapsed Per Trip Continuous
Control Speed, Acceleration, Steer Angle Continuous
Location GPS / Map Coordinates Continuous

Table 1.1 Metrics defined for bench marking and evaluation of autonomous vehicles. Typical
values for MDBI and MTBI during initial autonomous tests were 0.53 km/intervention and 2.6
min/intervention, respectively. An ongoing study is being conducted to analyze long term auton-
omy using these as primary metrics.

1.3.1 Localization and Mapping

Extensive localization and mapping tests have been performed at UC San Diego
using Normal Distributions Transform (NDT) [1]. The Point Cloud Library (PCL)
implementation provides a library for mapping and localization and involves a three-
step process: data collection, mapping, and post-processing. In the data collection
step, a development platform with a sixteen channel LiDAR fixed on the roof of
the vehicle was used to collect data by driving along multiple parts of campus.
Depending on the size of the data, mapping was performed on a CPU or a GPU.
The use of a graphics card can significantly accelerate the process of generating
point cloud maps; however, as maps grow large in size, graphics cards begin to
run out of internal memory causing the mapping algorithms to crash. This process
was tested on a variety of CPUs and GPUs including the Intel Xeon E3-1275, Intel
i7-6700, Intel i9-7900, Nvidia Quadro M1000M, Nvidia GTx 1080Ti, and Nvidia
Titan Xp.

Figure 1.10 is an example of a map that is actively used to perform tests on
campus. The generation of this map required the use of CPU with a computation
time of approximately 28 hours; the total distance along the trajectory is 3.9 miles.
In the post-processing step, the map was down sampled using a Voxel Grid Filter
approach with 30cm3 3D grids. [9].

The size of the original map generated was 2.8GB and was reduced to 530MB af-
ter downsampling. During exhaustive testing, it was determined that as point cloud
maps exceed 500GB in size, localization and system performance begins to be im-
pacted significantly and in the worst case (1GB and above) cause the algorithm to
crash or lag long enough to lose the localization prediction. This poses a major chal-
lenge in scalability for self-driving stacks that are highly dependent on dense point
clouds and LiDAR based mapping and localization.

Given that NDT employs a stochastic approach, it is robust to certain discrepan-
cies between the original map and changes to the environment but at the same time
becomes more complicated to estimate future system failures. Although immediate
system failures are detectable by measuring the NDT matching error score, addi-



1 Lessons Learned From Deploying Autonomous Vehicles at UC San Diego 11

Fig. 1.10 3D Point cloud map corresponding to mail delivery routes at UC San Diego. The distance
of the trajectory is approximately 3.9 miles.

tional sensor data fusion is essential for addressing potential risks that may originate
from unexpected behavior - ultimately improving robustness.

1.3.2 Motion Planning and Logic

The California Department of Motor Vehicles defines an intersection to be a place
in which one roadway meets another roadway including cross streets, side streets,
alleys, freeway entrances and any other location where roads join each other that
can include unmarked crosswalks [3]. The anticipated mail delivery route at UC
San Diego contains 22 crosswalks, some of which are protected by stop signs, and
others that require drivers judgement to slow down or stop.

Our crosswalk state implementation is an extension of the OpenPlanner behavior
state machine, and contains two additional states: crosswalk approach and cross-
walk stop. In the crosswalk approach state, the ego vehicle will reduce its velocity
as it becomes within a certain distance the crosswalk. The vehicle will maintain a
reduced velocity until it passes the crosswalk and return to its target speed. How-
ever, if pedestrians appear on the crosswalk, the vehicle will enter the crosswalk stop
state, stop before the crosswalk, and wait for all pedestrians to clear before moving
again. A diagram detailing the crosswalk states is shown in Figure 1.11.

Addition of the crosswalk class entailed modifications in the OpenPlanner road
network class, along with all its supporting functions. However, we note that chal-
lenges were encountered during implementation of behavior states in Autoware,



12 D. Paz et. al.

Fig. 1.11 Introduced Crosswalk State in Finite State Machine.

primarily due to the proprietary AISAN vector map format. One issue encountered
was that crosswalks could only be detected when driving on a single lane, but not
along the opposite direction. This stemmed from the fact that each encoded cross-
walk feature was linked with a single waypoint, which in turn is part of a single lane.
In order to link to all the lanes that the crosswalk intersects, we linked the crosswalk
to all lanes that were within a certain radius.

By a similar approach, the foundation for intersection logic is based on the loca-
tion of all of the stoplines at an intersection; these are encoded in the vector map to
determine if a vehicle is waiting at the stop sign or not.

Once the ego vehicle comes to a stop and enters the three second rule required
by law, the ego vehicle enters a wait state until an intersection-clear signal is trans-
mitted that allows it to resume its intended trajectory as shown in Figure 1.12. To
determine if the ego vehicle is clear to cross an intersection, a vehicle-to-stop sign
association must be performed to determine the order in which the other vehicles
arrived, if any. Presently, the intersection module is under constant development as
perception and tracking is completed. Using a distance metric and camera informa-
tion, one approach being explored involves a simple plane-to-plane mapping using
homographies [12] and real-time vehicle classification data obtained from our four
front cameras with a horizontal field of view of approximately 180◦.

The current crosswalk and intersection state implementations have been verified
via simulation with the modified version of OpenPlanner. The integration of pedes-
trian detection and intersection logic is ongoing and is expected to be completed in
the near future.

1.4 Conclusion

Numerous lessons were learned during the process of enabling last mile transporta-
tion where both pedestrian and automotive traffic are present. The first and foremost
concern in last mile transportation is safety, which hinges on accurate vehicle con-
trol, LiDAR detection, localization and trained safety drivers.

We surveyed several control algorithms, including PID kinematic control and
regular kinematic control. Despite efforts to fine tune the models, both displayed
characteristics of overshooting lane boundaries and other hazardous behavior when
tested with our development platforms at high speeds. To guarantee safe behavior



1 Lessons Learned From Deploying Autonomous Vehicles at UC San Diego 13

Fig. 1.12 Simulated ego vehicle reaches a stop line and awaits for intersection-clear signal. Center
stop lines are shown by white markers and are used for finding stop lines within a 30m search
radius (shown in blue) from an intersection.

of autonomous vehicles, an MPC approach, in combination with vision based lane
detection can potentially minimize the caveats we faced with simpler models. We
look forward to evaluating this model with our platforms in the future.

While evaluating LiDAR vehicle detection, the assumption of flat ground is in-
sufficient for the hilly terrains encountered at UC San Diego. Since the ground could
take up varying portions of the LiDAR points, a ground removal step is necessary for
reducing false positives and increasing the accuracy of vehicle detections in a scene.
One alternative being explored involves multi-camera and LiDAR fusion with deep
neural networks using YOLO3 [7].

LiDAR based localization and mapping is currently a critical component of au-
tonomous navigation in our implementation of last mile transportation. While the
implementation of this technology is feasible, as determined in the course of this
study, there are caveats that follow. For micro-transit and smaller scale transporta-
tion systems specifically, this technology proposes robust and adequate results given
that the maps and vector maps are constantly maintained and updated. On the other
hand, as the scale of the environment drastically increases in size and complexity (i.e
small cities or towns), performance is hindered and can result in detrimental errors
without additional safeguards in place and extensions that incorporate the notion of
context switching between smaller maps. This is an area of research that needs to
be addressed for larger scale systems. To address this challenge, AVL is developing
a software stack that eliminates the notion of dense point clouds and LiDAR based
localization by introducing a planner that performs under a nominal set of high level
instructions. This approach is intended to handle planning and localization in a sim-
ilar fashion that human drivers operate with the benefits of 3D situation awareness
and dynamic obstacle avoidance.



14 D. Paz et. al.

During this process, we have gained a deeper understanding of open-source state
of the art architectures, strengths, and shortcomings for last mile transportation.
With our continued focus and efforts to enable autonomous vehicles at UC San
Diego, we expect to create a safer environment and more efficient campus trans-
portation.

Acknowledgements We acknowledge the support provided by UC San Diego Logistics Unit,
Fleet Services, Police Department, and Mail Delivery Center. We would like to thank Dr. Hen-
rik I. Christensen and Dr. Todd Hylton for making this partnership and project possible, as well
Shengye Wang, Dominique Meyer, Eric Lo, Sayan Mondal, Shawn Winston, Francis Joseph, and
Ploy Temiyasathit for contributing on different aspects of the project.

References

1. Almqvist, H, Magnusson, M, Kucner, TP, Lilienthal, AJ. (2018) Learning to detect misaligned
point clouds. J Field Robotics. 2018; 35: 662 677

2. Autoware: Open-source software for urban autonomous driving. https://github.com/
CPFL/Autoware/ Accessed: Accessed 10 Apr 2019

3. California Department of Motor Vehicles (2019) California Driver Handbook - Laws
and Rules of the Road. https://www.dmv.ca.gov/portal/dmv/detail/pubs/
hdbk/right_of_way/. Accessed 10 Apr 2019

4. Darweesh H, Takeuchi E, Takeda K, Ninomiya Y, Sijiwo A, Morales Y, Akai N,
Tomizawa T, Kato S (2017) Open Source Integrated Planner for Autonomous Navigation
in Highly Dynamic Environments. Journal of Robotics and Mechatronics 29(4):668-684. doi:
10.20965/jrm.2017.p0668

5. Gurghian A, Koduri T., Bailur SV, Carey KJ, Murali VN (2016). DeepLanes: End-To-End
Lane Position Estimation Using Deep Neural Networks. 2016 IEEE Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW), 38-45 June 2016

6. Quigley M et al (2009) ROS: an open-source Robot Operating System. Paper presented at
ICRA Workshop on Open Source Software, Kobe, 12-17 May 2009

7. Redmon J, Farhadi A (2018) YOLOv3: An Incremental Improvement. CoRR
8. Romanoni A, Matteucci M (2016) Robust moving objects detection in lidar data exploiting

visual cues. Paper presented at IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Daejeon, 9-14 October 2016

9. Rusu RB, Cousins S (2018) 3D is here: Point cloud library (PCL). Paper presented at IEEE
International Conference on Robotics and Automation, Shanghai, 9-13 May 2011

10. Shengye W, Christensen HI (2018) TritonBot: First Lessons Learned from Deployment of A
Long-term Autonomy Tour Guide Robot. Paper presented at 2018 27th IEEE International
Symposium on Robot and Human Interactive Communication (RO-MAN), Nanjing, August
2018

11. Snider JM (2009) Automatic Steering Methods for Autonomous Automobile Path Tracking.
Dissertation, Carnegie Mellon University

12. Torr PHS, Zisserman A (1999) Feature Based Methods for Structure and Motion Estimation.
In: Proceedings of the International Workshop on Vision Algorithms: Theory and Practice,
London, 21-22 September 1999

13. Xingang P et al (2018) Spatial as deep: Spatial cnn for traffic scene understanding. In: Thirty-
Second Association for the Advancement of Artificial Intelligence Conference, New Orleans,
2-7 February 2018

14. Zhang X, Xu W, Dong C, Dolan JM (2017) Efficient L-Shape Fitting for Vehicle Detection
Using Laser Scanners. Paper presented at IEEE Intelligent Vehicles Symposium, Redondo
Beach, 11-14 June 2017

https://github.com/CPFL/Autoware/
https://github.com/CPFL/Autoware/
https://www.dmv.ca.gov/portal/dmv/detail/pubs/hdbk/right_of_way/
https://www.dmv.ca.gov/portal/dmv/detail/pubs/hdbk/right_of_way/

	Lessons Learned From Deploying Autonomous Vehicles at UC San Diego
	David Paz, Po-Jung Lai, Sumukha Harish, Hengyuan Zhang, Nathan Chan, Chun Hu, Sumit Binnani, Henrik I. Christensen
	Introduction
	Technical Approach
	Containers
	Autoware/ROS
	Perception and Tracking
	Detection and Pose Estimation of Vehicles
	Vehicle Control and Path Tracking
	AVL Logger

	Experimental Results
	Localization and Mapping
	Motion Planning and Logic

	Conclusion
	References



