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Abstract—Sustainability is the essential part of smart grids and 

the ultimate future of energy systems. Providing a state-of-the-

art review on the progress of advanced learning systems which 

contribute to the sustainability of smart grid is essential. This 

paper reviews the applications of data-driven methods of 

machine learning in sustainable smart grid systems. The 

machine learning methods had been classified and reviewed in 

various groups based on the proposed taxonomy. The 

applications and methods had been identified and systematically 

reviewed based on the PRISMA guideline. 

Keywords— Sustainability, Smart Grid, Machine Learning 

Algorithms.        

I. INTRODUCTION  

AS per the European Technology platform, a smart grid (SG) 

is a kind of electricity network that provides intelligent 

integration of the actions and behavior of all the users 

associated with it. This provides a sustainable, secure, and 

economical power supply [1]. The SG needs continuous 

modernization of the distribution grid. This is the core 

objective of SG innovations. The automation in the 

distribution allows automation, control operation, and real-

time monitoring of the distributed network [2]. The demand 

response of the power system can be improved using the 

artificial neural network (ANN) and decision trees (DT) 

methods. This further helps in short and long term load and 

price forecasting, imperfect competition, and generation 

expansion [3]. SG also plays a significant role in the plug-in 

electric vehicle. ANN and DT help to optimize plug-in 

electric vehicle penetration level. It also helps to calculates 

the total sustainable performance of the power distribution 

system [4]. The importance of obtaining the sustainable SGin 

the power system includes the mapping of factors like 

decentralization and their interactions that can influence the 

load profile. This provides a methodology for modeling the 

behaviors of electricity prosumers [5]. The high number of 

system components makes SG highly complex, therefore, 

symbolic model reduction techniques help to analyze a set of 

equations and remove equations that don't influence the 

specified variables, and make the grid sustainable [6]. The 

future SG involves modernizing existing networks, 

facilitating changes in behaviors of energy consumers, and 

supporting the transition to a sustainable economy with low 

carbon [7]. 

Figure 1 represents the progress of SG in the past 10 years. 

The graph is plotted after observing the 50,000 articles 

published in the past decade. This shows that the 

development of SG is gaining more importance than the 

traditional power grid system.  

 

 
Fig. 1   Progress of smart grid within the past decade; over 50.000 articles 

had been published. 

The recent developments in data-driven materials 

engineering propose that machine learning (ML) algorithms 

improve the production and design of advanced energy 

materials which transform the SG in the customer domain of 

the maturity domain [8,9]. The sustainable smart energy 

industry distribution can be achieved using ML algorithms 

and helps to make SG resilient, high speed, and low-latency 

connectivity to achieve sustainable, affordable, and clean 

energy. This sustainable development has short-term and 

long-term contributions which is being predominant in 

developing countries due to the pre-existing infrastructures 

[8,9,10]. Blockchain technology helps to achieve sustainable 

development of the SG. This transforms the SG and how it 

can help the developed and developing countries to 

accomplish its sustainable development goals in the 

consumer domain of the maturity model [9,11]. There are 

several competitive strategies at a network level for 

sustainable development. Different companies' collaboration 

brings competition may bring benefits but they implement 

enablers to prevent upfront risks [9,12]. The net-zero energy 

building helps to produce independent energy which can be 

used by different companies to export to the central grid 

[12,13]. The sustainable development of SG innovates in 

regulating incumbents. It requires to provide sufficient 

regulatory incentives for advancing the SG developments in 

China. On the other hand, in India, the SG market contributes 

to improving equitable and just access to electricity services 

[14,15]. The demand response is the dominating factor in the 

energy market which relatively has four barriers like privacy, 

cyber security, costs, and regulatory aspects. Therefore, SG 

pilot projects are building a strong foundation for SG 

technology like advanced metering infrastructure [15,16,17]. 

The best long-term development strategy is implementing the 

set of workable development plans that have been made 
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available by SG. Dynamic management of systems 

development aids in managing the long-term process of the 

power system's sustainable development through the 

technical and economic appraisal of projects and the 

discovery of the best solution [18,19,20]. Figure 2 shows the 

development of sustainable SG in the past decade.   

 
Fig. 2   Sustainable smart grid: over 2200 documents on the sustainable smart 
grid had been published within the past decade 

The modified grey wolf optimizer approach can be used for 

hybrid renewable microgrid development. The integration of 

the solar system and wind system with the meta-heuristic 

optimization system dispatches the optimal energy in a grid-

connected hybrid microgrid system [21]. To perfectly model 

the dynamic behaviors of contemporary power grids 

influenced by RES or system reconfiguration, a long short-

term memory (LSTM) recurrent neural network can be 

designed. This can be embedded by the dynamically time-

evolving power system's characteristics. This helps in 

distinguishing real-time attacks and natural changes to the SG 

[22]. The data mining techniques perform time-series 

analysis which helps in extracting and analyzing underlying 

patterns which help in energy trading [23]. The big data 

obtained from the SG provides information that benefits 

demand response and load profiling [24]. The emerging 

artificial intelligence is a powerful technique that reduces the 

complexity of the energy management model by developing 

a single trained model based on a multi-agent and multi-

criteria negotiation protocol that supports the generation of 

power from efficient energy distribution, a wide range of 

sources, and sustainable consumption [25-28]. Renewable 

energy resource biofuels can be also useful for several types 

of energy production and by using the 6-Shin network the 

entry of renewable energy resources shows a reduction in 

energy costs. However, due to uncertainty the cost of the 

reserve market increases [29,31]. For the voltage regulation 

and power control of the doubly-fed induction generator wind 

turbine, a neural fuzzy showed pmising results in controling 

the converter [30]. Extreme gradient boosting estimates the 

solubility of hydrogen in hydrocarbons and the LSTM 

method is the best suitable for predicting the parameters of 

vortex bladeless wind turbine and wave energy converter 

modeling [32-35]. The stochastic fractal search paradigm and 

ANN can be used to predict the cooling load in residential 

buildings that helps in modeling the renewable energy 

systems for power prediction using a self-evolving nonlinear 

consequent part recurrent type-2 fuzzy system [36,37]. 

Residential buildings are the key element for sustainable 

development, heating load in residential buildings can be 

predicted using the ant lion Based dragonfly algorithm, 

league champion optimization hybrid algorithms, and 

double-target-based neural networks [38,39]. Solar and wind 

energy are the eminent source of renewable energy, 

electromagnetic field optimization can be used to optimize 

neural networks for solar energy [40]. The interval type-3 

fuzzy logic system can be used in designing the photovoltaic 

system's power management and battery charging strategies 

[42]. ANN predictive algorithms, like satin bowerbird 

searching Optimizers, genetic algorithms, multi-layer 

perceptron algorithm, and whale optimization algorithms are 

used for electrical power prediction, generation expansion 

planning, and wind speed prediction in the presence of wind 

power plants, respectively [41,43-45]. The ANN helps in 

voltage regulation of the photovoltaic-battery fuel system 

together with least squares support vector machines. The 

neuro-fuzzy can boost forecast models of a photovoltaic 

collector [46,48]. The committee machine intelligent systems 

are used to improve the accuracy of sustainable SG whereas 

using weather data, ANN, and support vector machines are 

used for accurate short-term prediction of electric energy 

usage [47,49]. Figure 3 shows the development of sustainable 

SG in the past decade. 

 
Fig. 3   Over 700 documents published on the applications of machine 

learning in the sustainable smart grid which indicates the essential role of 

machine learning 

II. MATERIALS AND METHODS  

The methodology is based on the inquiries in the Scopus 

integrated with the PRISMA to systematically review the 

documents. The method of review is adapted from the former 

review methods used for developing the state of the review 

on machine learning in various applications [50-62]. 

III. STATE-OF-THE-ART REVIEW 

Review shows that artificial neural networks and decision 
trees are the essential machine learning applied in sustainable 
SG. In the following, these two essential methods are 
reviewed. 

1) Artificial neural networks 
ANN is a computational model that working principle is 
similar to the nerve cells of the human brain. It is the 
foundation of manu neural networks and deep learning 
methods, e.g., CNN, MLP. A ANN model includes one or 
multiple input layer, hidden layer, and one more more output 
layers. The output variable is designated as y, whereas the 
input data, which contain the independent variables, also 
known as features or attributes, are denoted as x1, x2, and xn. 
The weights that connect the input and hidden nodes are 
identified by the letters w1, w2, and wn. By using a cost 
function, the ANN seeks to reduce the error, which is the 
discrepancy between the correct and anticipated values for y. 



This error is computed by the cost function, where "cost" is a 
colloquial name for the error [64,65].

TABLE I.  Artificial neural networks for sustainable smart grid 

 
 
The Genetic Algorithm based method can be used to optimize 
the dispatch schedule of the demand-side storage which 
improves the operational lifetime of the variable frequency 
drive-driven motor-pump set [63]. An ant colony optimization 
algorithm helps to model an efficient energy management 
system for the microgrid. This systematical schedules load 
and EVs charging/discharging and predicts solar irradiation 
and wind speed to ensure efficient energy optimization [66]. 
ANN is the most preferred and most powerful technique over 
ML as of its generalization capabilities for modeling in energy 
systems. This will guarantee a steady flow of electricity to 
customers while maximizing the use of renewable energy. 
[67,68]. The bi-directional LSTM assists in handling data with 
significant stochastic behavior and abrupt fluctuations [69]. 
The particle swarm optimization combined with the NN can 
predict a model to predict a day-ahead wind-flow and solar 
irradiance [70]. The integration of sparse mean confusion  

 

matrices CNN-based model helps in quantifying the network 
flexibility potential. This can be used for the safe integration 
of sustainable development and renewable energy resources 
[71].  The hybrid genetic ant colony optimization algorithm 
helps in modeling the demand side management in terms of 
user discomfort minimization, energy cost minimization, 
carbon emission control, and management of peak load [72]. 
ANN helps to improve the voltage profile in the hybrid SG 
[73]. A multi-objective grasshopper optimization algorithm, 
Kalman filtering, and wavelet neural network optimize the 
ANN parameters that help in short-term forecasting [74, 75]. 
The mixed-integer linear programming helps in scheduling 
smart appliances and electric vehicles to develop an efficient 
energy management scheme [76]. The optimal power 
allocation algorithm exploits a NN to sheathed the uneven 
relationship between the export price of power by an SG and 
the user demands [77]. L-ARX regression, N-ARX 
regression, N-ARX NN, and fog-based computing models 
help electrical energy storage and smart heating, ventilation, 

References  Application Year Source Modeling domain 

[63] 

Operational 

lifetime 
maximization of 

the pumps in the 

water storage plant 2022 Journal of Energy Storage Storage dispatch  

[64] 

 Energy demand-

supply prediction 2022 

Sustainability 

(Switzerland) Energy Demand-Supply Prediction  

[65] 
 Energy output 
prediction  2021 Energy Reports PV–wind renewable energy  

[66] 
 Day-ahead energy 
forecasting 2021 

Sustainability 
(Switzerland) Energy forecasting  

[67]  Energy storage 2021 
Chemical Engineering 
Research and Design Sustainable energy 

[68] 
 Continuous 
electricity supply.  2021 

International Journal of 
Power Electronics and 
Drive Systems Multi-source energy management 

[69]  Forecasting  2021 
IEEE Transactions on 
Industrial Electronics Power   

[70] 

Day-ahead 
dynamic optimal 
power flow.  2021 

Frontiers in Energy 
Research Day-Ahead Dynamic Optimal Power Flow  

[71] 

 Electricity grid 
flexibility 
assessment 2021 

Sustainability 
(Switzerland) Node characterization  

[72] 

 Electricity 
demand 
management 2021 IEEE Access Efficient Demand-Side Management  

[73] 
 Voltage 
regulation 2021 

Energy Sources, Part A: 
Recovery, Utilization and 
Environmental Effects Reactive power management  

[74]  Load forecasting 2020 Applied Energy Load forecasting  

[75] 
 Short-term 
forecasting 2020 

Electric Power Systems 
Research Load forecasting  

[76] 

 Energy 
management and 
forecasting 2020 

Electric Power Systems 
Research Efficient energy management  

[77]  Cost management  2020 

IEEE Transactions on 
Systems, Man, and 
Cybernetics: Systems Dynamic Pricing  

[78]  Cost leverage 2019 Processes Energy storage  

[79] 
 Energy 
management  2018 Energies Energy management  

[80] 
 Reverse power 
flow protection  2018 

Sustainability 
(Switzerland) Reverse power flow  

[81] 
 Energy flow 
management  2017 Proceedings of the IEEE Renewable Energy  

[82]  Prediction  2015 Neurocomputing Price Prediction  

[83] 
 Forecasitng wind 
power 2014 

Renewable Energy and 
Power Quality Journal Wind estimation  

[84] 
 Prediction and 
monitoring 2013 Information (Japan) Electric vehicle  



and air conditioning to leverage. This regulates the operation 
of the SG and avoids its complications [78,79]. ZigBee 
technology helps in complying with the IEEE 802.15.4 
standard. This helps to reduce the rate of data, and lower the 
power consumption, and costs [80]. Experts' systems, fuzzy 
logic, and ANN  help to design the fault pattern identification 
of an SG system that controls on a real-time simulator [81]. In 
forecasting, electricity price forecasting is a big problem. 
Kalman filters and Echo state networks help in solving this 
problem [82]. However, a nonlinear autoregressive network 
with exogenous inputs and focused time-delay NN is used to 
forecast and estimate daily wind speed to calculate energy 
management for planning the SG. This helps in dispatching 
the schedule of the demand-side storage,  [83,84]. 

2) Decision trees 

A distribution-free supervised learning technique that can be 

used for classification and regression is known as a DT. The 

objective of DT is to learn straightforward decision rules 

derived from the data features to build a model that predicts 

the value of a target variable. DecisionTreeClassifier may do 

multi-class classification on a dataset. A well-known decision 

tree approach called random forest regression creates 

numerous decision trees from an input dataset [88,89]. Table  

II surveys the nobel application of DT in attaining sustainable  

SG  in the past decade. This shows that DT has wide 

applications and advantages in SG. 

TABLE II.     Decision trees in sustainable smart grids 

 
The precise location of the power availability can be identified 
using a random forest-based identification technique. This 
requires less time-interval and provides speedy responses to 
the demand end requestor [85]. The Gray wolf algorithm can 
reduce the running costs of the entire microgrid to the greatest 
possible option of electric vehicle-based reconfigurable SG 
[86]. The k-nearest neighbor algorithm allows the utilities of 
SG to cost-effectively balance and manage the renewable 
energy production and daily, monthly, seasonally, and yearly 
load of the power system [87]. The gradient boosting 
regression-based ensemble algorithm forecasts the wind 
power with the best accuracy as compared with RF, k-NN, 
DT, and ET alalgorithms [89]. Random Forest Manta-Ray 
Foraging algorithm is the best model for renewable energy 
sources and should be operated as efficiently as possible to 
reduce the cost of power generation, including real-time 
scheduling [90]. Despite its conceptual simplicity, LSTM-
based sequence-to-sequence networks can anticipate power 
demand and price for time-series data from smart cities with 
good accuracy [91]. The DT-based embedded system can help 
to design a low-cost approach to electrical and electronic 
device networking, guided by perceptive Internet of Things 
(IoT) concepts [92]. The bagged trees regression approach  
 

estimates the wind power requires in the sustainable SG. This 
approach can be preferred over principal component 
regression, multivariate linear regression, support vector 
regression, and partial least squares regression [93]. An almost 
zero cooperative probabilistic scenario analysis and DT model 
can be used to solve the gap of enormous predictive error 
experienced by the state-of-the-art models [94]. In this work 
the advanced variation of decision tree and ANN provided a 
reliable model for electricity consumption [95]. Sustainable 
SG model based on abstract metrics reduces residual errors 
between the observed and anticipated values as estimated by 
abstract metrics [96]. A DT assesses the relative merits of the 
various simulation platforms in use and offers instructions on 
how to transform the current power grid into the SG using the 
available machine learning techniques [97]. 

 

CONCLUSION 

Future SGs will be supported by an effective and dependable 

communication infrastructure that enables a two-way 

information exchange channel between consumers and 

utilities. This study gives a general review of the theoretical 

application of ANN and DT in achieving sustainable SG. 

Different ANN and DT algorithms are used for different 

purposes. Scale independence ensures that accuracy, 

sustainability and performance can be compared across 

References Application Year Source Modeling domain 

[85]  Optimization 2022 
Production Engineering 

Archives Cost optimization in smart grid 

[86] 

 Electric-
vehicle 

management 2022 
Sustainable Cities and 

Society Smart grid management  

[87]  Forecasting 2021 
Sustainable Cities and 

Society Solar and wind  

[88]  Forecasting 2021 Energies Wind power production  

[89] 
 Power 

management 2021 IETE Journal of Research Wind Power Flow Management  

[90] 

 Demand and 
price 

forecasting 2021 
International Journal of 
Sustainable Engineering Electricity and solar power 

[91] 
 Load 

forecasting 2020 
Sustainable Computing: 
Informatics and Systems Lightweight sustainable intelligent load  

[92] 
 Power 

integration 2019 
Energy Conversion and 

Management Wind power  

[93] 
 Load 

forecasting 2017 Sustainability (Switzerland) Electric energy loads  

[94] 
 Hybrid 

classification 2017 
Intelligent Decision 

Technologies Intelligent data analysis  

[95]  Prediction 2015 

IEEE Transactions on 
Knowledge and Data 

Engineering Holistic measures  

[96] 
 Intelligent 

communication 2014 
IEEE Transactions on 
Industrial Informatics Solar simulation  



models. ANN and DT indicated fundamental application in 

sustainable smart grid. The hybrid and ensemble models of 

these two machine learning methods have showen to be 

fundamental and expand in the future. The accuracy and the 

cost had been shown to be be essential factors considering the 

sustainability in SG. For the future work considering other 

ML methods for SG is recoemnded.   

ACRONYMS 

SG Smart Grid 

ML Machine Learning 

DT Decision Tree 

RF Random Forest 

ET Extra Tree 

ANN Artificial Neural Network 
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