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Abstract

Deep Q Network (DQN) firstly kicked the door of deep rein-
forcement learning (DRL) via combining deep learning (DL)
with reinforcement learning (RL), which has noticed that the
distribution of the acquired data would change during the
training process. DQN found this property might cause insta-
bility for training, so it proposed effective methods to handle
the downside of the property. Instead of focusing on the un-
favorable aspects, we find it critical for RL to ease the gap
between the estimated data distribution and the ground truth
data distribution while supervised learning (SL) fails to do so.
From this new perspective, we extend the basic paradigm of
RL called the Generalized Policy Iteration (GPI) into a more
generalized version, which is called the Generalized Data
Distribution Iteration (GDI). We see massive RL algorithms
and techniques can be unified into the GDI paradigm, which
can be considered as one of the special cases of GDI. We
provide theoretical proof of why GDI is better than GPI and
how it works. Several practical algorithms based on GDI have
been proposed to verify its effectiveness and extensiveness.
Empirical experiments prove our state-of-the-art (SOTA) per-
formance on Arcade Learning Environment (ALE), wherein
our algorithm has achieved 9620.98% mean human normal-
ized score (HNS), 1146.39% median HNS and 22 human
world record breakthroughs (HWRB) using only 200M train-
ing frames. Our work aims to lead the RL research to step into
the journey of conquering the human world records and seek
real superhuman agents on both performance and efficiency.

Introduction
Machine learning (ML) can be defined as improving some
measure performance P at some task T according to the ac-
quired data or experience E (Mitchell et al. 1997). As one of
the three main components of ML (Mitchell et al. 1997), the
training experiences matter in ML, which can be reflected
from many aspects. For example, three major ML paradigms
can be distinguished from the perspective of the different
training experiences. Supervised learning (SL) is learning
from a training set of labeled experiences provided by a
knowledgable external supervisor (Sutton and Barto 2018).
Unsupervised learning (UL) is typically about seeking struc-
ture hidden in collections of unlabeled experiences (Sutton
and Barto 2018). Unlike UL or SL, reinforcement learning
(RL) focuses on the problem that agents learn from expe-
riences gained through trial-and-error interactions with

a dynamic environment (Kaelbling, Littman, and Moore
1996). As (Mitchell et al. 1997) said, there is no free lunch in
the ML problem - no way to generalize beyond the specific
training examples. The performance can only be improved
through learning from the acquired experiences in ML prob-
lems (Mitchell et al. 1997). All of them have revealed the
importance of the training experiences and thus the selec-
tion of the training distribution appears to be a fundamental
problem in ML.

Recalling these three paradigms, SL and RL receive ex-
plicit learning signals from data. In SL, there is no way to
make up the gap between the distribution estimated by the col-
lected data and the ground truth without any domain knowl-
edge unless collecting more data. Researchers have found
RL explicitly and naturally transforming the training distri-
bution (Mnih et al. 2015), which makes RL distinguished
from SL. In the recent RL advances, many researchers (Mnih
et al. 2015) have realized that RL agents hold the property
of changing the data distribution and massive works have
revealed the unfavorable aspect of the property. Among those
algorithms, DQN (Mnih et al. 2015) firstly noticed the unique
property of RL and considered it as one of the reasons for
the training instability of DRL. After that, massive methods
like replay buffer (Mnih et al. 2015), periodically updated
target (Mnih et al. 2015) and importance sampling (Espe-
holt et al. 2018) have been proposed to mitigate the impact
of the data distribution shift. However, after rethinking this
property, we wonder whether changing the data distribution
always brings unfavorable nature. What if we can control it?
More precisely, what if we can control the ability to select
superior data distribution for training automatically? Prior
works in ML have revealed the great potential of this prop-
erty. As (Cohn, Ghahramani, and Jordan 1996) put it, when
training examples are appropriately selected, the data require-
ments for some problems decrease drastically, and some
NP-complete learning problems become polynomial in com-
putation time (Angluin 1988; Baum 1991), which means that
carefully selecting good training data benefits learning ef-
ficiency. Inspired by this perspective, instead of discussing
how to ease the disadvantages caused by the change of data
distribution like other prior works of RL, in this paper, we
rethink the property distinguishing RL from SL and explore
more effective aspects of it. One of the fundamental reasons
RL holds the ability to change the data distribution is the



change of behavior policies, which directly interact with the
dynamic environments to obtain training data (Mnih et al.
2015). Therefore, the training experiences can be controlled
by adjusting the behavior policies, which makes behavior se-
lection the bridge between RL agents and training examples.

In the RL problem, the agent has to exploit what it already
knows to obtain the reward, but it also has to explore to make
better action selections in the future, which is called the ex-
ploration and exploitation dilemma (Sutton and Barto 2018).
Therefore, diversity is one of the main factors that should
be considered while selecting the training examples. In the
recent advances of RL, some works have also noticed the
importance of the diversity of training experiences (Badia
et al. 2020a,b; Parker-Holder et al. 2020; Niu et al. 2011; Li
et al. 2019; Eysenbach et al. 2018), most of which have ob-
tained diverse data via enriching the policy diversity. Among
those algorithms, DIAYN (Eysenbach et al. 2018) focused
entirely on the diversity of policy via learning skills without
a reward function, which has revealed the effect of policy
diversity but ignored its relationship with the RL objective.
DvD (Parker-Holder et al. 2020) introduced a diversity-based
regularizer into the RL objective to obtain more diverse data,
which changed the optimal solution of the environment (Sut-
ton and Barto 2018). Besides, training a population of agents
to gather more diverse experiences seems to be a promising
approach. Agent57 (Badia et al. 2020a) and NGU (Badia et al.
2020b) trained a family of policies with different degrees of
exploratory behaviors using a shared network architecture.
Both of them have obtained SOTA performance at the cost of
increasing the uncertainty of environmental transition, which
leads to extremely low learning efficiency. Through those
successes, it is evident that the diversity of the training data
benefit the RL training. However, why does it perform better
and whether more diverse data always benefit RL training?
In other words, we have to explore the following question:

Does diverse data always benefit effective learning?

To investigate this problem, we seek inspiration from the
natural biological processes. In nature, the population evolves
typically faster than individuals because the diversity of the
populations boosts more beneficial mutations which pro-
vide more possibility for acquiring more adaptive direction of
evolution (Pennisi 2016). Furthermore, beneficial mutations
rapidly spread among the population, thus enhancing popu-
lation adaptability (Pennisi 2016). Therefore, an appropriate
diversity brings high-value individuals, and active learning
among the population promotes its prosperity.1 From this per-
spective, the RL agents have to pay more attention to experi-
ences worthy of learning from. DisCor (Kumar, Gupta, and
Levine 2020), which re-weighted the existing data buffer
by the distribution that explicitly optimizes for corrective
feedback, has also noticed the fact that the choice of the
sampling distribution is of crucial importance for the sta-
bility and efficiency of approximation dynamic program-
ming algorithms. Unfortunately, DisCor only changes the

1According to (LaBar and Adami 2017), most mutations are
deleterious and cause a reduction in population fitness known as the
mutational load. Therefore, excessive and redundant diversity may
be harmful.

existing data distribution instead of directly controlling the
source of the training experiences, which may be more im-
portant and also more complex. In conclusion, it seems that
both expanding the capacity of policy space for behaviors
and selecting suitable behavior policies from a diverse be-
havior population matter for efficient learning. This new
perspective motivates us to investigate another critical prob-
lem:

How to select superior behaviors from the behavior policy
space?

To address those problems, we proposed a novel RL
paradigm called Generalized Data Distribution Iteration
(GDI), which consists of two major process, the policy itera-
tion operator T and the data distribution iteration operator E .
Specifically, behaviors will be sampled from a policy space
according to a selective distribution, which will be iteratively
optimized through the operator E . Simultaneously, elite train-
ing data will be used for policy iteration via the operator T .
More details about our methodology can see Sec. .

In conclusion, the main contributions of our work are:

• A Novel RL Paradigm: Rethinking the difference be-
tween RL and SL, we discover RL can ease the gap be-
tween the sampled data distribution and the ground truth
data distribution via adjusting the behavior policies. Based
on the perspective, we extend GPI into GDI, a more gen-
eral version containing a data optimization process. This
novel perspective allows us to unify massive RL algo-
rithms, and various improvements can be considered a
special case of data distribution optimization, detailed in
Sec. .

• Theoretical Proof of GDI: We provide sufficient theo-
retical proof of GDI. The effectiveness of the data dis-
tribution optimization of GDI has been proved on both
first-order optimization and second-order optimization,
and the guarantee of monotonic improvement induced by
the data distribution optimization operator E has also been
proved. More details can see Sec. .

• A General Practical Framework of GDI: Based on
GDI, we propose a general practical framework, wherein
behavior policy belongs to a soft ε-greedy space which
unifies ε-greedy policies (Watkins 1989) and Boltzmann
policies (Wiering 1999). As a practical framework of GDI,
a self-adaptable meta-controller is proposed to optimize
the distribution of the behavior policies. More implemen-
tation details can see the appendix of (Fan, Xiao, and
Huang 2021).

• The State-Of-The-Art Performance: From Figs. 1,
our approach has achieved 9620.98% mean HNS and
1146.39% median HNS, which achieves new SOTA. More
importantly, our learning efficiency has approached the
human level as achieving the SOTA performance within
less than 1.5 months of game time.

• Human World Records Breakthrough: As our algo-
rithms have achieved SOTA on mean HNS, median HNS
and learning efficiency, we aim to lead RL research on
ALE to step into a new era of conquering human world
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Figure 1: Performance of SOTA algorithms of Atari 57 games on mean HNS(%) with corresponding learning efficiency and
human world record breakthrough with corresponding game time. Details on those evaluation criteria can see the appendix of
(Fan, Xiao, and Huang 2021).

records and seeking the real superhuman agents. There-
fore, we propose several novel evaluation criteria and
an open challenge on the Atari benchmark based on the
human world records. From Figs. 1, our method has
surpassed 22 human world records, which has also sur-
passed all previous algorithms. The RL Benchmark on hu-
man world records normalized scores (HWRNS), SABER
(Toromanoff, Wirbel, and Moutarde 2019) and HWRB
can be found in the appendix of (Fan, Xiao, and Huang
2021), respectively. Relevant scores can see the appendix
of (Fan, Xiao, and Huang 2021).

Preliminaries
The RL problem can be formulated as a Markov Decision Pro-
cess (Howard 1960, MDP) defined by (S,A, p, r, γ, ρ0). Con-
sidering a discounted episodic MDP, the initial state s0 is sam-
pled from the initial distribution ρ0(s) : S → ∆(S), where
we use ∆ to represent the probability simplex. At each time
t, the agent chooses an action at ∈ A according to the policy
π(at|st) : S → ∆(A) at state st ∈ S. The environment
receives at, produces the reward rt ∼ r(s, a) : S ×A → R
and transfers to the next state st+1 according to the transition
distribution p (s′ | s, a) : S ×A → ∆(S). The process con-
tinues until the agent reaches a terminal state or a maximum
time step. Define the discounted state visitation distribution
as dπρ0

(s) = (1−γ)Es0∼ρ0 [
∑∞
t=0 γ

tP(st = s|s0)]. The goal
of reinforcement learning is to find the optimal policy π∗ that
maximizes the expected sum of discounted rewards, denoted
by J (Sutton and Barto 2018):

π∗ = argmax
π
Jπ

= argmax
π

Est∼dπρ0 Eπ [Gt|st]

= argmax
π

Est∼dπρ0 Eπ

[ ∞∑
k=0

γkrt+k|st

] (1)

where γ ∈ (0, 1) is the discount factor.
RL algorithms can be divided into off-policy manners

(Mnih et al. 2015, 2016; Haarnoja et al. 2018; Espeholt et al.

2018) and on-policy manners (Schulman et al. 2017). Off-
policy algorithms select actions according to a behavior pol-
icy µ that can be different from the learning policy π. On-
policy algorithms evaluate and improve the learning policy
through data sampled from the same policy. RL algorithms
can also be divided into value-based methods (Mnih et al.
2015; Van Hasselt, Guez, and Silver 2016; Wang et al. 2016;
Hessel et al. 2017; Horgan et al. 2018) and policy-based meth-
ods (Schulman et al. 2017; Mnih et al. 2016; Espeholt et al.
2018; Schmitt, Hessel, and Simonyan 2020). In the value-
based methods, agents learn the policy indirectly, where the
policy is defined by consulting the learned value function,
like ε-greedy, and the value function is learned by a typical
GPI. In the policy-based methods, agents learn the policy
directly, where the correctness of the gradient direction is
guaranteed by the policy gradient theorem (Sutton and Barto
2018), and the convergence of the policy gradient methods is
also guaranteed (Agarwal et al. 2019).

Methodology
Generalized Data Distribution Iteration
Let’s abstract our notations first.

Define Λ to be an index set, Λ ⊆ Rk. λ ∈ Λ is an index in
Λ. (Λ,B|Λ,PΛ) is a probability space, where B|Λ is a Borel
σ-algebra restricted to Λ. Under the setting of meta-RL, Λ
can be regarded as the set of all possible meta information.
Under the setting of population-based training (PBT) (Jader-
berg et al. 2017), Λ can be regarded as the set of the whole
population.

Define Θ to be a set of all possible values of parameters.
θ ∈ Θ is some specific value of parameters. For each index
λ, there exists a specific mapping between each parameter
of θ and λ, denoted as θλ, to indicate the parameters in θ
corresponding to λ. Under the setting of linear regression
y = w · x, Θ = {w ∈ Rn} and θ = w. If λ represents
using only the first half features to make regression, assume
w = (w1, w2), then θλ = w1. Under the setting of RL, θλ
defines a parameterized policy indexed by λ, denoted as πθλ .

Define D def
= {dπρ0

| π ∈ ∆(A)
S
, ρ0 ∈ ∆(S)} to be the



set of all states visitation distributions. For the parameterized

policies, denote DΛ,Θ,ρ0

def
= {dπθλρ0 | θ ∈ Θ, λ ∈ Λ}. Note

that (Λ,B|Λ,PΛ) is a probability space on Λ, which induces
a probability space on DΘ,Λ,ρ0 , with the probability measure
given by PD(DΛ0,Θ,ρ0) = PΛ(Λ0), ∀Λ0 ∈ B|Λ.

We use x to represent one sample, which
contains all necessary information for learning.
For DQN, x = (st, at, rt, st+1). For R2D2,
x = (st, at, rt, . . . , st+N , at+N , rt+N , st+N+1). For
IMPALA, x also contains the distribution of the behavior
policy. The content of x depends on the algorithm, but
it’s sufficient for learning. We use X to represent the
set of samples. At training stage t, given the parameter
θ = θ(t), the distribution of the index set PΛ = P(t)

Λ and
the distribution of the initial state ρ0, we denote the set of
samples as

X (t)
ρ0

def
=

⋃
dπρ0
∼P(t)

D

{x|x ∼ dπρ0
}

=
⋃

λ∼P(t)
Λ

{x|x ∼ dπθρ0
, θ = θ

(t)
λ } ,

⋃
λ∼P(t)

Λ

X (t)
ρ0,λ

.

Now we introduce our main algorithm:

Algorithm 1: Generalized Data Distribu-
tion Iteration (GDI).

Initialize Λ, Θ, P(0)
Λ , θ(0).

for t = 0, 1, 2, . . . do
Sample {X (t)

ρ0,λ
}
λ∼P(t)

Λ

.

θ(t+1) = T (θ(t), {X (t)
ρ0,λ
}
λ∼P(t)

Λ

).

P(t+1)
Λ = E(P(t)

Λ , {X (t)
ρ0,λ
}
λ∼P(t)

Λ

).
end for

T defined as θ(t+1) = T (θ(t), {X (t)
ρ0,λ
}
λ∼P(t)

Λ

) is a typical
optimization operator of RL algorithms, which utilizes the
collected samples to update the parameters for maximizing
some function LT . For instance, LT may contain the policy
gradient and the state value evaluation for the policy-based
methods, may contain generalized policy iteration for the
value-based methods, may also contain some auxiliary tasks
or intrinsic rewards for special designed methods.
E defined as P(t+1)

Λ = E(P(t)
Λ , {X (t)

ρ0,λ
}
λ∼P(t)

Λ

) is a
data distribution optimization operator. It uses the samples
{X (t)

ρ0,λ
}
λ∼P(t)

Λ

to maximize some function LE , namely,

P(t+1)
Λ = arg max

PΛ

LE({X (t)
ρ0,λ
}λ∼PΛ

).

When PΛ is parameterized, we abuse the notation and use
PΛ to represent the parameter of PΛ. If E is a first order
optimization operator, then we can write E explicitly as

P(t+1)
Λ = P(t)

Λ + η∇P(t)
Λ

LE({X (t)
ρ0,λ
}
λ∼P(t)

Λ

).

If E is a second order optimization operator, like natural
gradient, we can write E formally as

P(t+1)
Λ = P(t)

Λ + ηF(P(t)
Λ )†∇P(t)

Λ

LE({X (t)
ρ0,λ
}
λ∼P(t)

Λ

),

F(P(t)
Λ ) =

[
∇P(t)

Λ

logP(t)
Λ

]
·
[
∇P(t)

Λ

logP(t)
Λ

]>
,

where † denotes the Moore-Penrose pseudoinverse of the
matrix.

Systematization of GDI
We can further divide all algorithms into two categories,
GDI-In and GDI-Hn. n represents the degree of freedom
of Λ. I represents Isomorphism. We say one algorithm be-
longs to GDI-In, if θ = θλ, ∀λ ∈ Λ. H represents Het-
erogeneous. We say one algorithm belongs to GDI-Hn, if
θλ1 6= θλ2 , ∃λ1, λ2 ∈ Λ. We say one algorithm is "w/o E"
if it doesn’t have the operator E , in another word, its E is an
identical mapping.

Now we discuss the connections between GDI and some
algorithms.

For DQN, RAINBOW, PPO and IMPALA, they are in
GDI-I0 w/o E . Let |Λ| = 1, WLOG, assume Λ = {λ0}.
The probability measure PΛ collapses to PΛ(λ0) = 1. Θ =

{θλ0
}. E is an identical mapping of P(t)

Λ . T is the first order
operator that optimizes the loss functions, respectively.

For Ape-X and R2D2, they are in GDI-I1 w/o E . Let
Λ = {εl| l = 1, . . . , 256}. PΛ is uniform, PΛ(εl) = |Λ|−1.
Since all actors and the learner share parameters, we have
θε1 = θε2 for ∀ε1, ε2 ∈ Λ, hence Θ =

⋃
ε∈Λ{θε} =

{θεl}, ∀ l = 1, . . . , 256. E is an identical mapping, because
P(t)

Λ is always a uniform distribution. T is the first order
operator that optimizes the loss functions.

For LASER, it’s in GDI-H1 w/o E . Let Λ = {i| i =
1, . . . ,K} to be the number of learners. PΛ is uniform,
PΛ(i) = |Λ|−1. Since different learners don’t share param-
eters, θi1 ∩ θi2 = ∅ for ∀i1, i2 ∈ Λ, hence Θ =

⋃
i∈Λ{θi}.

E is an identical mapping. T can be formulated as a union
of θ(t+1)

i = Ti(θ(t)
i , {X (t)

ρ0,λ
}
λ∼P(t)

Λ

), which represents op-
timizing θi of ith learner with shared samples from other
learners.

For PBT, it’s in GDI-Hn+1, where n is the num-
ber of searched hyperparameters. Let Λ = {h} ×
{i|i = 1, . . . ,K}, where h represents the hyperparame-
ters being searched and K is the population size. Θ =⋃
i=1,...,K{θi,h}, where θi,h1 = θi,h2 for ∀(h1, i), (h2, i) ∈

Λ. E is the meta-controller that adjusts h for each
i, which can be formally written as P(t+1)

Λ (·, i) =

Ei(P(t)
Λ (·, i), {X (t)

ρ0,(h,i)
}
h∼P(t)

Λ (·,i)), which optimizes PΛ ac-
cording to the performance of all agents in the popula-
tion. T can also be formulated as a union of Ti, but is
θ

(t+1)
i = Ti(θ(t)

i , {X (t)
ρ0,(h,i)

}
h∼P(t)

Λ (·,i)), which represents
optimizing the ith agent with only samples from the ith agent.

For NGU and Agent57, it’s in GDI-I2. Let Λ = {βi|i =
1, . . . ,m} × {γj |j = 1, . . . , n}, where β is the weight



of the intrinsic value function and γ is the discount fac-
tor. Since all actors and the learner share variables, Θ =⋃

(β,γ)∈Λ{θ(β,γ)} = {θ(β,γ)} for ∀(β, γ) ∈ Λ. E is an opti-
mization operator of a multi-arm bandit controller with UCB,
which aims to maximize the expected cumulative rewards
by adjusting PΛ. Different from above, T is identical to our
general definition θ(t+1) = T (θ(t), {X (t)

ρ0,λ
}
λ∼P(t)

Λ

), which
utilizes samples from different λs to update the shared θ.

For Go-Explore, it’s in GDI-H1. Let Λ = {τ}, where τ
represents the stopping time of switching between robusti-
fication and exploration. Θ = {θr} ∪ {θe}, where θr is the
robustification model and θe is the exploration model. E is
a search-based controller, which defines the next PΛ for a
better exploration. T can be decomposed into (Tr, Te).

Monotonic Data Distribution Optimization
We see massive algorithms can be formulated as a special
case of GDI. For the algorithms without a meta-controller,
whose data distribution optimization operator E is trivially an
identical mapping, the guarantee that the learned policy could
converge to the optimal policy has been wildly studied, for
instance, GPI in (Sutton and Barto 2018) and policy gradient
in (Agarwal et al. 2019). But for the algorithms with a meta-
controller, whose data distribution optimization operator E
is non-identical, though most algorithms in this class show
superior performance, it still lacks a general study on why
the data distribution optimization operator E helps. In this
section, with a few assumptions, we show that given the
same optimization operator T , a GDI with a non-identical
data distribution optimization operator E is always superior
to a GDI w/o E .

For brevity, we denote the expectation of LE , LT for each
λ ∈ Λ as LE(λ, θλ) = Ex∼πθλ [LE({Xρ0,λ})], LT (λ, θλ) =

Ex∼πθλ [LT ({Xρ0,λ})], and denote the expecta-
tion of LE , LT for any PΛ as LE(PΛ, θ) =
Eλ∼PΛ

[LE(λ, θλ)], LT (PΛ, θ) = Eλ∼PΛ
[LT (λ, θλ)].

Assumption 1 (Uniform Continuous Assumption). For
∀ε > 0, ∀s ∈ S, ∃ δ > 0, s.t.|V π1(s) − V π2(s)| <
ε, ∀ dπ(π1, π2) < δ, where dπ is a metric on ∆(A)

S . If
π is parameterized by θ, then for ∀ε > 0, ∀s ∈ S, ∃ δ >
0, s.t.|V πθ1 (s)− V πθ2 (s)| < ε, ∀ ||θ1 − θ2|| < δ.

Remark. (Dadashi et al. 2019) shows V π is infinitely differ-
entiable everywhere on ∆(A)S if |S| <∞, |A| <∞. (Agar-
wal et al. 2019) shows V π is β-smooth, namely bounded sec-
ond order derivative, for direct parameterization. If ∆(A)S

is compact, continuity implies uniform continuity.

Assumption 2 (Formulation of E Assumption). As-
sume P(t+1)

Λ = E(P(t)
Λ , {X (t)

ρ0,λ
}
λ∼P(t)

Λ

) can be writ-

ten as P(t+1)
Λ (λ) = P(t)

Λ (λ)
exp(ηLE(λ,θ

(t)
λ ))

Z(t+1) , Z(t+1) =

E
λ∼P(t)

Λ

[exp(ηLE(λ, θ(t)
λ ))].

Remark. The assumption is actually general. Regarding
Λ as an action space and rλ = LE(λ, θ(t)

λ ), when solving
arg maxPΛ

Eλ∼PΛ
[LE(λ, θ(t)

λ )] = arg maxPΛ
Eλ∼PΛ

[rλ],

the data distribution optimization operator E is equiva-
lent to solving a multi-arm bandit (MAB) problem. For
the first order optimization, (Schulman, Chen, and Abbeel
2017) shows that the solution of a KL-regularized version,
arg maxPΛ

Eλ∼PΛ
[rλ]− ηKL(PΛ||P(t)

Λ ), is exactly the as-
sumption. For the second order optimization, let PΛ =
softmax({rλ}), (Agarwal et al. 2019) shows that the nat-
ural policy gradient of a softmax parameterization also in-
duces exactly the assumption.

Assumption 3 (First Order Optimization Co-Monotonic As-
sumption). For ∀λ1, λ2 ∈ Λ, we have [LE(λ1, θλ1

) −
LE(λ2, θλ2

)] · [LT (λ1, θλ1
)− LT (λ2, θλ2

)] ≥ 0.

Assumption 4 (Second Order Optimization Co-Monotonic
Assumption). For ∀λ1, λ2 ∈ Λ, ∃ η0 > 0, s.t. ∀ 0 < η < η0,
we have [LE(λ1, θλ1) − LE(λ2, θλ2)] · [GηLT (λ1, θλ1) −
GηLT (λ2, θλ2)] ≥ 0, where θηλ = θλ+η∇θλLT (λ, θλ) and
GηLT (λ, θλ) = 1

η [LT (λ, θηλ)− LT (λ, θλ)].

Under Assumption (1) (2) (3), if T is a first order operator,
namely a gradient accent operator, to maximize LT , GDI can
be guaranteed to be superior to that w/o E . Under Assump-
tion (1) (2) (4), if T is a second order operator, namely a
natural gradient operator, to maximize LT , GDI can also be
guaranteed to be superior to that w/o E .

Theorem 1 (Upper Triangular Transport Inequality for Co–
Monotonic Functions in Rp). Assume µ is a continuous

probability measure supported on [0, 1]p. Denote x def
=

(x1, . . . , xp). Let f, g : [0, 1]p → R to be two co-monotonic
functions that satisfy

(f(x)− f(y)) · (g(x)− g(y)) ≥ 0, ∀ x, y ∈ [0, 1]p.

f is continuous. Define

β(x) = µ(x) exp(g(x))/Z, Z =

∫
[0,1]p

µ(x) exp(g(x)).

Let f, g : [0, 1]p → R to be two co-monotonic functions that
satisfy

(f(x)− f(y)) · (g(x)− g(y)) ≥ 0, ∀ x, y ∈ [0, 1]p.

Then we have
Eµ[f ] ≤ Eβ [f ].

Theorem 2 (First Order Optimization with Superior
Target). Under Assumption (1) (2) (3), we have
LT (P(t+1)

Λ , θ(t+1)) = E
λ∼P(t+1)

Λ

[LT (λ, θ
(t+1)
λ )] ≥

E
λ∼P(t)

Λ

[LT (λ, θ
(t+1)
λ )] = LT (P(t)

Λ , θ(t+1)).

Proof. By Theorem 1 (see the appendix of (Fan, Xiao, and
Huang 2021)), the upper triangular transport inequality, let
f(λ) = LT (λ, θλ) and g(λ) = LE(λ, θλ), the proof is done.

Remark (Why Superior Target). In Algorithm 1, if E up-
dates P(t)

Λ at time t, then the operator T at time t+ 1 can be
written as θ(t+2) = θ(t+1) + η∇θ(t+1)LT (P(t+1)

Λ , θ(t+1)).
If P(t)

Λ hasn’t been updated at time t, then the operator



T at time t + 1 can be written as θ(t+2) = θ(t+1) +
η∇θ(t+1)LT (P(t)

Λ , θ(t+1)). Theorem 2 shows that the target
of T at time t+ 1 becomes higher if P(t)

Λ is updated by E at
time t.
Remark (Practical Implementation). We provide one pos-
sible practical setting of GDI. Let LE(λ, θλ) = Jπθλ and
LT (λ, θλ) = Jπθλ . E can update PΛ by the Monte-Carlo
estimation of Jπθλ . T is to maximize Jπθλ , which can be any
RL algorithms.
Theorem 3 (Second Order Optimization with
Superior Improvement). Under Assumption (1)
(2) (4), we have E

λ∼P(t+1)
Λ

[GηLT (λ, θ
(t+1)
λ )] ≥

E
λ∼P(t)

Λ

[GηLT (λ, θ
(t+1)
λ )], more specifically,

E
λ∼P(t+1)

Λ

[LT (λ, θ
(t+1),η
λ ) − LT (λ, θ

(t+1)
λ )] ≥

E
λ∼P(t)

Λ

[LT (λ, θ
(t+1),η
λ )− LT (λ, θ

(t+1)
λ )].

Proof. By Theorem 1 (see the appendix of (Fan, Xiao, and
Huang 2021)), the upper triangular transport inequality, let
f(λ) = GηLT (λ, θλ) and g(λ) = LE(λ, θλ), the proof is
done.
Remark (Why Superior Improvement). Theorem 3 shows
that, if PΛ is updated by E , the expected improvement of T
is higher.
Lemma 1 (Performance Difference Lemma). For any poli-
cies π, π′ and any state s0, we have

V π(s0)− V π
′
(s0) =

1

1− γ
Es∼dπs0 Ea∼π(·|s)

[
Aπ

′
(s, a)

]
.

Remark (Practical Implementation). Let LE(λ, θλ) =
Es∼dπρ0 Ea∼π(·|s) exp(εAπ(s,·))/Z [Aπ(s, a)], where π = πθλ .
Let LT (λ, θλ) = Jπθλ . If we optimize LT (λ, θλ) by natural
gradient, (Agarwal et al. 2019) shows that, for direct pa-
rameterization, the natural policy gradient gives π(t+1) ∝
π(t) exp(εAπ

(t)

), by Lemma 1 (see the appendix of (Fan,
Xiao, and Huang 2021)), the performance difference lemma,
V π(s0)−V π′

(s0) = 1
1−γEs∼dπs0 Ea∼π(·|s)[A

π′
(s, a)], hence

if we ignore the gap between the states visitation distributions
of π(t) and π(t+1), LE(λ, θ(t)

λ ) ≈ 1
1−γEs∼dπρ0 [V π

(t+1)

(s)−
V π

(t)

(s)], where π(t) = π
θ
(t)
λ

. Hence, E is actually putting
more measure on λ that can achieve more improvement.

Experiment
We begin this section by describing our experimental setup.
Then we report and analyze our SOTA results on ALE, specif-
ically, 57 games, which are summarized and illustrated in
the appendix of (Fan, Xiao, and Huang 2021). To further
investigate the mechanism of our algorithm, we study the
effect of several major components.

Experimental Setup
The overall training architecture is on the top of the Learner-
Actor framework (Espeholt et al. 2018), which supports large-
scale training. Additionally, the recurrent encoder with LSTM

(Schmidhuber 1997) is used to handle the partially observ-
able MDP problem (Bellemare et al. 2013). burn-in tech-
nique is adopted to deal with the representational drift as
(Kapturowski et al. 2018), and we train each sample twice.
A complete description of the hyperparameters can be found
in the appendix of (Fan, Xiao, and Huang 2021). We em-
ploy additional environments to evaluate the scores during
training, and the undiscounted episode returns averaged over
32 environments with different seeds have been recorded.
Details on ALE and relevant evaluation criteria can be found
in the appendix of (Fan, Xiao, and Huang 2021).

To illustrate the generality and efficiency of GDI, we pro-
pose one implementation of GDI-I3 and GDI-H3, respectively.
Let Λ = {λ|λ = (τ1, τ2, ε)}. The behavior policy belongs to
a soft ε-greedy policy space, which contains ε-greedy policy
and Boltzmann policy. We define the behavior policy πθλ as

λ = (τ1, τ2, ε), πθλ = ε·Softmax

(
A1

τ1

)
+(1−ε)·Softmax

(
A2

τ2

)
(2)

For GDI-I3, A1 and A2 are identical, so it is estimated by an
isomorphic family of trainable variables. The learning policy
is also πθλ . For GDI-H3, A1 and A2 are different, and they
are estimated by two different families of trainable variables.
Since GDI needn’t assume A1 and A2 are learned from the
same MDP, so we use two kinds of reward shaping to learn
A1 and A2 respectively, which can be found in the appendix
of (Fan, Xiao, and Huang 2021). Full algorithm can be found
in the appendix of (Fan, Xiao, and Huang 2021).

The operator T is achieved by policy gradient, V-Trace
and ReTrace (Espeholt et al. 2018; Munos et al. 2016), which
meets Theorem 2 by first order optimization.

The operator E , which optimizes PΛ, is achieved by a
variant of Multi-Arm Bandits (Sutton and Barto 2018, MAB),
where Assumption 2 holds naturally. More details can be
found in the appendix of (Fan, Xiao, and Huang 2021).

Summary of Results
We construct a multivariate evaluation system to emphasize
the superiority of our algorithm in all aspects, and more
discussions on those evaluation criteria are in the appendix of
(Fan, Xiao, and Huang 2021) and details are in the appendix
of (Fan, Xiao, and Huang 2021). Furthermore, to avoid any
issues that aggregated metrics may have, the appendix of
(Fan, Xiao, and Huang 2021) provides full learning curves
for all games, as well as detailed comparison tables of raw
and normalized scores.

The aggregated results across games are reported in Tab.
1. Our agents obtain the highest mean HNS with an extraor-
dinary learning efficiency from this table. Furthermore, our
agents have achieved 22 human world record breakthroughs
and more than 90 times the average human score of Atari
games via playing from scratch for less than 1.5 months. Al-
though Agent57 obtains the highest median HNS, it costs
each of the agents more than 57 years to obtain such per-
formance, revealing its low learning efficiency. It is obvious
that there is no such world record achieved by a human
who played for over 57 years. This is due to the fact that
Agent57 fails to handle the balance between exploration and



GDI-H3 GDI-I3 Muesli RAINBOW LASER R2D2 NGU Agent57

Num. Frames 2E+8 2E+8 2E+8 2E+8 2E+8 1E+10 3.5E+10 1E+11
Game Time (year) 0.114 0.114 0.114 0.114 0.114 5.7 19.9 57

HWRB 22 17 5 4 7 15 8 18
Mean HNS(%) 9620.98 7810.6 2538.66 873.97 1741.36 3374.31 3169.90 4763.69

Median HNS(%) 1146.39 832.5 1077.47 230.99 454.91 1342.27 1208.11 1933.49
Mean HWRNS(%) 154.27 117.99 75.52 28.39 45.39 98.78 76.00 125.92

Median HWRNS(%) 50.63 35.78 24.86 4.92 8.08 33.62 21.19 43.62
Mean SABER(%) 71.26 61.66 48.74 28.39 36.78 60.43 50.47 76.26

Median SABER(%) 50.63 35.78 24.68 4.92 8.08 33.62 21.19 43.62

Table 1: Experiment results of Atari. Muesli’s scores are from (Hessel et al. 2021). RAINBOW’s scores are from (Espeholt
et al. 2018). LASER’s scores are from (Schmitt, Hessel, and Simonyan 2020), no sweep at 200M. R2D2’s scores are from
(Kapturowski et al. 2018). NGU’s scores are from (Badia et al. 2020b). Agent57’s scores are from (Badia et al. 2020a). Full
comparison among all algorithms can see the appendix of (Fan, Xiao, and Huang 2021).

exploitation, thus collecting a large number of inferior sam-
ples, which further hinders the efficient-learning and makes it
harder for policy improvement. Other algorithms gain higher
learning efficiency than Agent57 but relatively lower final
performance, such as NGU and R2D2, which acquire over
10B frames. Except for median HNS, our performance is
better on all criteria than NGU and R2D2. In addition, other
algorithms with 200M training frames are struggling to match
our performance.

These results come from the following aspects:
1. Several games have been solved completely, achieving the

historically highest score, such as RoadRunner, Seaquest,
Jamesbond.

2. Massive games show enormous potentialities for improve-
ment but fail to converge for lack of training, such as
BeamRider, BattleZone, SpaceInvaders.

3. This paper aims to illustrate that GDI is general for seek-
ing a suitable balance between exploration and exploita-
tion, so we refuse to adopt any handcrafted and domain-
specific tricks such as the intrinsic reward. Therefore, we
suffer from the hard exploration problem, such as Private-
Eye, Surround, Amidar.

Therefore, there are several aspects of potential improvement.
For example, a more extensive training scale may benefit
higher performance. More exploration techniques can be
incorporated into GDI to handle those hard-exploration prob-
lems through guiding the direction of the acquired samples.

Ablation Study
In the ablation study, we further investigate the effects of
several properties of GDI. We set GDI-I3 and GDI-H3 as
our baseline control group. To prove the effects of the data
distribution optimization operator E , we set two ablation
groups, which are Fixed Selection from GDI-I0 w/o E and
Random Selection from GDI-I3 w/o E . To prove the capacity
of the behavior policy space matters in GDI, we set two
ablation groups, which are ε-greedy Selection Λ = {λ|λ =
(ε)} and Boltzmann Selection Λ = {λ|λ = (τ)}. Both ε-
greedy Selection and Boltzmann Selection implement E by
the same MAB as our baselines’. More details on ablation
study can see the appendix of (Fan, Xiao, and Huang 2021).

From results in the appendix of (Fan, Xiao, and Huang
2021), it is evident that both the data distribution optimization
operator E and the capacity of the behavior policy space are
critical. This is since if they lack the cognition to identify
suitable experiences from various data, high variance and
massive poor experiences will hinder the policy improvement,
and if the RL agents lack the vision to find more examples to
learn, they may ignore some shortcuts. To further prove the
capacity of the policy space does bring more diverse data, we
draw the t-SNE of GDI-I3, GDI-H3 and Boltzmann Selection
in the appendix of (Fan, Xiao, and Huang 2021), from which
we see GDI-I3 and GDI-H3 can explore more high-value
states that Boltzmann selection has less chance to find. We
also evaluate Fixed Selection and Boltzmann Selection in all
57 Atari games, and recorded the comparison tables of raw
and normalized scores in the appendix of (Fan, Xiao, and
Huang 2021).

Conclusion
This paper proposes a novel RL paradigm to effectively and
adaptively trade-off the exploration and exploitation, integrat-
ing the data distribution optimization into the generalized
policy iteration paradigm. Under this paradigm, we propose
feasible implementations, which both have achieved new
SOTA among all 200M scale algorithms on all evaluation
criteria and obtained the best mean final performance and
learning efficiency compared with all 10B+ scale algorithms.
Furthermore, we have achieved 22 human world record break-
throughs within less than 1.5 months of game time. It implies
that our algorithm obtains both superhuman learning perfor-
mance and human-level learning efficiency. In the experiment,
we discuss the potential improvement of our method in future
work.

References
Agarwal, A.; Kakade, S. M.; Lee, J. D.; and Mahajan, G.
2019. On the theory of policy gradient methods: Optimal-
ity, approximation, and distribution shift. arXiv preprint
arXiv:1908.00261.
Angluin, D. 1988. Queries and concept learning. Machine
learning, 2(4): 319–342.



Badia, A. P.; Piot, B.; Kapturowski, S.; Sprechmann, P.;
Vitvitskyi, A.; Guo, D.; and Blundell, C. 2020a. Agent57:
Outperforming the atari human benchmark. arXiv preprint
arXiv:2003.13350.
Badia, A. P.; Sprechmann, P.; Vitvitskyi, A.; Guo, D.; Piot,
B.; Kapturowski, S.; Tieleman, O.; Arjovsky, M.; Pritzel, A.;
Bolt, A.; et al. 2020b. Never Give Up: Learning Directed
Exploration Strategies. arXiv preprint arXiv:2002.06038.
Baum, E. B. 1991. Neural net algorithms that learn in poly-
nomial time from examples and queries. IEEE Transactions
on Neural Networks, 2(1): 5–19.
Bellemare, M. G.; Naddaf, Y.; Veness, J.; and Bowling, M.
2013. The Arcade Learning Environment: An Evaluation
Platform for General Agents. Journal of Artificial Intelli-
gence Research, 47: 253–279.
Cohn, D. A.; Ghahramani, Z.; and Jordan, M. I. 1996. Ac-
tive learning with statistical models. Journal of artificial
intelligence research, 4: 129–145.
Dadashi, R.; Taiga, A. A.; Le Roux, N.; Schuurmans, D.;
and Bellemare, M. G. 2019. The value function polytope
in reinforcement learning. In International Conference on
Machine Learning, 1486–1495. PMLR.
Espeholt, L.; Soyer, H.; Munos, R.; Simonyan, K.; Mnih,
V.; Ward, T.; Doron, Y.; Firoiu, V.; Harley, T.; Dunning, I.;
et al. 2018. Impala: Scalable distributed deep-rl with impor-
tance weighted actor-learner architectures. arXiv preprint
arXiv:1802.01561.
Eysenbach, B.; Gupta, A.; Ibarz, J.; and Levine, S. 2018.
Diversity is all you need: Learning skills without a reward
function. arXiv preprint arXiv:1802.06070.
Fan, J.; Xiao, C.; and Huang, Y. 2021. GDI: Rethinking What
Makes Reinforcement Learning Different From Supervised
Learning. arXiv preprint arXiv:2106.06232.
Haarnoja, T.; Zhou, A.; Abbeel, P.; and Levine, S. 2018.
Soft actor-critic: Off-policy maximum entropy deep rein-
forcement learning with a stochastic actor. arXiv preprint
arXiv:1801.01290.
Hessel, M.; Danihelka, I.; Viola, F.; Guez, A.; Schmitt, S.;
Sifre, L.; Weber, T.; Silver, D.; and van Hasselt, H. 2021.
Muesli: Combining Improvements in Policy Optimization.
arXiv preprint arXiv:2104.06159.
Hessel, M.; Modayil, J.; Van Hasselt, H.; Schaul, T.; Ostro-
vski, G.; Dabney, W.; Horgan, D.; Piot, B.; Azar, M.; and
Silver, D. 2017. Rainbow: Combining improvements in deep
reinforcement learning. arXiv preprint arXiv:1710.02298.
Horgan, D.; Quan, J.; Budden, D.; Barth-Maron, G.; Hessel,
M.; van Hasselt, H.; and Silver, D. 2018. Distributed Prior-
itized Experience Replay. In International Conference on
Learning Representations.
Howard, R. A. 1960. Dynamic programming and markov
processes. John Wiley.
Jaderberg, M.; Dalibard, V.; Osindero, S.; Czarnecki, W. M.;
Donahue, J.; Razavi, A.; Vinyals, O.; Green, T.; Dunning,
I.; Simonyan, K.; et al. 2017. Population based training of
neural networks. arXiv preprint arXiv:1711.09846.

Kaelbling, L. P.; Littman, M. L.; and Moore, A. W. 1996.
Reinforcement learning: A survey. Journal of artificial intel-
ligence research, 4: 237–285.
Kapturowski, S.; Ostrovski, G.; Quan, J.; Munos, R.; and
Dabney, W. 2018. Recurrent experience replay in distributed
reinforcement learning. In International conference on learn-
ing representations.
Kumar, A.; Gupta, A.; and Levine, S. 2020. Discor: Cor-
rective feedback in reinforcement learning via distribution
correction. arXiv preprint arXiv:2003.07305.
LaBar, T.; and Adami, C. 2017. Evolution of drift robustness
in small populations. Nature Communications, 8(1): 1–12.
Li, A.; Spyra, O.; Perel, S.; Dalibard, V.; Jaderberg, M.; Gu,
C.; Budden, D.; Harley, T.; and Gupta, P. 2019. A generalized
framework for population based training. In Proceedings of
the 25th ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, 1791–1799.
Mitchell, T. M.; et al. 1997. Machine learning. McGraw-hill
New York.
Mnih, V.; Badia, A. P.; Mirza, M.; Graves, A.; Lillicrap, T.;
Harley, T.; Silver, D.; and Kavukcuoglu, K. 2016. Asyn-
chronous methods for deep reinforcement learning. In In-
ternational conference on machine learning, 1928–1937.
PMLR.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness,
J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidjeland,
A. K.; Ostrovski, G.; et al. 2015. Human-level control through
deep reinforcement learning. nature, 518(7540): 529–533.
Munos, R.; Stepleton, T.; Harutyunyan, A.; and Bellemare, M.
2016. Safe and Efficient Off-Policy Reinforcement Learning.
In Lee, D. D.; Sugiyama, M.; Luxburg, U. V.; Guyon, I.; and
Garnett, R., eds., Advances in Neural Information Processing
Systems 29, 1054–1062. Curran Associates, Inc.
Niu, F.; Recht, B.; Ré, C.; and Wright, S. J. 2011. Hogwild!:
A lock-free approach to parallelizing stochastic gradient de-
scent. arXiv preprint arXiv:1106.5730.
Parker-Holder, J.; Pacchiano, A.; Choromanski, K.; and
Roberts, S. 2020. Effective diversity in population-based
reinforcement learning. arXiv preprint arXiv:2002.00632.
Pennisi, E. 2016. Tracking how humans evolve in real time.
Science, 352(6288): 876–877.
Schmidhuber, S. H. J. 1997. Long short-term memory. Neural
Computation.
Schmitt, S.; Hessel, M.; and Simonyan, K. 2020. Off-policy
actor-critic with shared experience replay. In International
Conference on Machine Learning, 8545–8554. PMLR.
Schulman, J.; Chen, X.; and Abbeel, P. 2017. Equivalence
between policy gradients and soft q-learning. arXiv preprint
arXiv:1704.06440.
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347.
Sutton, R. S.; and Barto, A. G. 2018. Reinforcement learning:
An introduction. MIT press.



Toromanoff, M.; Wirbel, E.; and Moutarde, F. 2019. Is deep
reinforcement learning really superhuman on atari? leveling
the playing field. arXiv preprint arXiv:1908.04683.
Van Hasselt, H.; Guez, A.; and Silver, D. 2016. Deep rein-
forcement learning with double q-learning. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 30.
Wang, Z.; Schaul, T.; Hessel, M.; Hasselt, H.; Lanctot, M.;
and Freitas, N. 2016. Dueling network architectures for
deep reinforcement learning. In International conference on
machine learning, 1995–2003.
Watkins, C. J. C. H. 1989. Learning from delayed rewards.
King’s College, Cambridge United Kingdom.
Wiering, M. A. 1999. Explorations in efficient reinforcement
learning. Ph.D. thesis, University of Amsterdam.


	Introduction
	Preliminaries
	Methodology
	Generalized Data Distribution Iteration
	Systematization of GDI
	Monotonic Data Distribution Optimization

	Experiment
	Experimental Setup
	Summary of Results
	Ablation Study

	Conclusion

