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Abstract— In this paper, vehicle’s suspension dynamics 

modeling is presented using a nonlinear one quarter car model 

to optimize ride & handling criteria. Experimental tests have 

been performed in order to achieve the characteristic damping 

curve (Force-Velocity) of the shock absorber. An asymmetric 

two-stage damper model of the shock absorber is incorporated 

in suspension dynamics model and is compared to that of 

dynamic simulation software, MD ADAMS. Results of the 

model, subjected to a half-sine road profile input, have been 

investigated and a good agreement between the two models has 

been shown. In the next step, an optimization process is 

performed on the vibration response of the suspension model in 

order to obtain the optimized damping characteristic curve. The 

target of the optimization consists in minimizing the 

acceleration of the vehicle body as well as the displacement of 

the vehicle related to the tire. The results show an improvement 

in the optimized shock absorber’s performance in compare to 

the ordinary shock absorber. Finally, due to the long time of the 

optimization process, a neural network is employed in order to 

represent the optimization. This network’s input is the 

experimental suspension system’s coefficient and its output is 

the optimized values. This neural network shows to be a good 

replace for the lengthy traditional optimization. The application 

of this neural network can contribute to the process of design of 

a shock absorber in industry.  

Keywords—suspension mechanism, shock absorber, 

optimizing vibration modeling, neural network, machine learning 

I. INTRODUCTION  

Shock absorbers are one of the vehicle’s parts which bear 

consistent static or dynamic loads. At the same time, they 

need to hold their performance as time passes by under 

various loads. They support the weight of the body of the 

vehicle, engine section as well as the passengers and at the 

same time absorb the road excitation. They are directly and 

crucially connected to the vehicle’s stability, handling and 

passenger comfort. A shock absorber consists of different 

parts such as outer tube, piston rod, piston valve, foot valve, 

seal, rod guide, rod, body, cylinder, washers etc. These parts 

and the shock absorber’s damping mechanism are designed 

by taking into account the required performance requested by 

the OE customer for vehicles ranging from passenger cars to 

heavy duty vehicles like buses and trucks.  

Different researchers have investigated the modeling of 

shock absorbers. Improving comfort for passengers is a 

constant challenge for the automotive industry. Fernandes et 

al. [1] have researched the cost effective asymmetric shock 

absorbers in order to improve the comfort for this widely used 

type of shock absorbers. Chen et al. [2] have examined half 

and full vehicle models in order to apply different dynamic 

inputs to the models and verify their results. Calvo et al. [4] 

studied three mathematical models and concluded that in 

order to get accurate results the models do not need to rely be 

complicated shock absorber models.  Bamankar et al. [3] 

have reviewed the researches in mathematical and vibration 

analysis of suspension systems. Cui et al. [5] tested a Mazda 

CX-7 and extracted three shock absorber model and validated 

them with experimental data. Sadeghi Reineh [6] has 

investigated the physical response of an advanced automotive 

racing shock absorber and modeled its shock absorber in a 

simulation software called AMESim. In the foregoing study, 

the mechanical and hydraulic library of this simulator is used 

in order to model the shock absorber. Sharma et al. [7] have 

obtained a quarter car model in order to improve the 

overshoot and the settling time of the response. 

Agostinacchio et al. [8] have presented a quarter car model 

for a car, bus and truck in response to stochastic surface 

irregularities in road pavements based on ISO standards.  

Various works have researched the effects of optimization 

on the performance of the shock absorber. Lajqi and Pehan 

[9] have modeled a quarter of the car’s model with 

MATLAB/Simulink and then optimized the model. They 

have reached an improved performance by increasing driving 

comfort and safety. In another work, Pable and Seshu [10] 

proposed and approach to find the best parameters to make a 

passive system response close to an active system. Jamali et 

al.  [11] have investigated a half vehicle model by taking  into 

account the conflicting performance in the design of a 

suspension system . In the latter study by  recruiting multi-

objective optimization a framework is established in order to 



optimize a passive vehicle shock absorber where the under 

study model is excited on a random road.  

In recent years, artificial neural networks have 

experienced a boom in their applications and has stimulated 

the interest of many researchers . Different types of these 

networks such as Convolutional Neural Network(CNN), Deep 

Convolutional Neural Network, Recurrent Neural Network 

and some other types of networks like image classification 

[12], object recognition [13], intelligent health services, etc 

have played a significant role. The main idea in neural 

networks consists in the connection between data to predict 

the relevant output in relation to a specific input. If the output 

continuously and in an inseparable way is categorized into 

separated groups a regression problem could be formed.  In 

regression, the goal is to find the connection between one or 

several inputs with outputs in such way later on by having this 

connection and feeding the network with each input an 

appropriate output can be presented [14].  

This paper aims at modeling and optimization of shock 

absorber of a passenger car. A neural network is trained in the 

paper in order to quickly reach an output for the optimization 

of the shock absorber’s vibration equation. This neural 

network can offer optimized shock absorber’s coefficients in 

less than a minute in compare to hours of calculation for the 

traditional optimization approaches. To the best knowledge of 

the authors this type of offline optimization with the use of 

neural network has not been carried out. 

The remainder of this paper is organized as follows. In the 

next section, an analytical model of a simplified shock 

absorber is derived. The model includes two masses, two 

springs for the tire and the shock absorber and a shock 

absorber. Then an experimental test in the laboratory is 

performed in order to extract the force-velocity response of a 

passenger car rear shock absorber. These data will be used in 

the vibrational model in order to model the behavior of the 

shock absorber. In the next step, a dynamic simulation 

software, MD ADAMS, is recruited in order to simulate the 

shock absorber’s behaviors. The same experimental data are 

implemented in the software to define the response of the 

damper. In section V, the results from these two models in 

response to a half-sine road excitation are compared. An 

optimization is performed on the analytical model and an 

improvement on the shock absorber’s response is achieved 

and the optimized values are presented. In the final part of this 

paper, a neural network is employed in order to replace the 

time consuming procedure of  traditional optimization. 

Results support a good accuracy in case of objective function 

between the neural network predictions  and those of 

traditional approach of optimization.  

II. ANALYTICAL MODELING AND EQUATIONS 

 There are different approaches when it comes to 

modeling a suspension system. The most common method is 

a quarter car suspension. In this method the shock absorber 

in addition to the tire is modeled. Fig. 1 depicts 

schematically a quarter car suspension which is the subject 

of this paper. The tire of a car can be made equivalent to a 

spring with a higher coefficient relative to the shock absorber 

which is assumed as a spring installed in parallel to a damper. 

By recruiting Newton laws, the following two equations are 

derived in order to model the above system’s behavior:  

Table I. Constant coefficients of dynamic equation.  

Constant Coefficients of 

Dynamic Equations 
Value 

Vehicle’s Mass (kg) 328 

Tire’s Mass (kg) 15 

Shock Absorber’s Spring 

Coefficient (N/m) 
15000 

Tire’s Spring 

Coefficient(N/m) 
190000 

 

 

Figure 1. A schematic view of the one quarter car suspension model 

 

 
{

𝑚1𝑦1
" + 𝑐2(𝑣)(𝑦1

′(𝑡) − 𝑦2
′ (𝑡)) + 𝑘2(𝑦1(𝑡) − 𝑦2(𝑡)). . .

. . . +𝑘1𝑦1(𝑡) − 𝑘1𝑦0(𝑡) = 0

𝑚2𝑦2
" − 𝑐2(𝑣)(𝑦1

′(𝑡) − 𝑦2
′ (𝑡)) − 𝑘2(𝑦1(𝑡) − 𝑦2(𝑡)) = 0

  () 

 

In the above, )(2 vc is the damping ratio which is a function 

of velocity. This dependency can be measured with the 

laboratory’s equipment, depicted in Fig. 2 and the Force-

Velocity curve is illustrated in Fig. 3 which will be discussed 

in the following section. Table 1 shows the values of 

constant coefficients in (1). These two second-order 

equations can be converted into an equivalent four equations 

of first-order with the following assumption: 

 

𝑦𝑛 = [𝑦1
𝑜𝑙𝑑 𝑦2

𝑜𝑙𝑑 𝑦1
′𝑜𝑙𝑑 𝑦2

′𝑜𝑙𝑑]𝑇                             (2)  
 

which leads to: 

 

𝑦𝑛 =

[
 
 
 
 

(𝑐2(𝑣)𝑦2(𝑡) − 𝑐2(𝑣)𝑦4(𝑡) + 𝑘2𝑦1(𝑡) − 𝑘1𝑦3(𝑡)…

… − 𝑘2𝑦3(𝑡) + 𝑘1𝑦0(𝑡))
1

−(𝑐2(𝑣)𝑦2(𝑡) − 𝑐2(𝑣)𝑦4(𝑡) + 𝑘2𝑦1(𝑡) − 𝑘2𝑦3(𝑡))𝑚2

𝑦3(𝑡)

𝑦4(𝑡) ]
 
 
 
 

 (3)       

 

These equations require the tire and shock absorber’s 

coefficients in order to be dealt with. In the next section, 

experimental tests will be investigated in order to find 

damping coefficients. These equations will be solved  

 



 

Figure 2. The experimental test equipment to measure Force-Velocity 
behavior 

 

 

Figure 3. Shock absorber’s force-velocity behavior and damping 
coefficients. 

 

numerically and results will be presented and compared with 

simulation software in the result section. 

III. EXPERIMENTAL TESTS 

The force applied by shock absorber’s damper is a 

function of its velocity. This has been examined in the 

laboratory  with the device illustrated in Fig. 2   and the 

extracted data points are used in order to obtain a curve with 

four different damping coefficients. The damping force 

characteristic curve is obtained by Dynamometer apparatus. 

The Sinusoidal displacement base excitation of the shock 

absorber is applied by a crack mechanism.  The damping 

force is measured by a S-type loadcell connecting the piston 

rod to the apparatus frame. The damping ratio can be 

calculated form  the measured force. The input displacement 

(x), the corresponding velocity (v) and the force (F) can be 

expressed as : 

 

{

𝑥 = 𝐴 sin(𝜔𝑡)

𝑣 = 𝐴𝜔 cos(𝜔𝑡) = 𝑉𝑚 cos(𝜔𝑡)

𝐹 = 𝐴𝐶(𝑣)𝜔 cos(𝜔𝑡) = 𝐹𝑚 cos(𝜔𝑡)
                                       (3) 

 

The F-V curve obtained using the above mentioned 

procedure is considered as damping force characteristic 

curve, as shown in Fig. 4. The curve plays an important role 

in dynamic response of shock absorber as a part vehicle 

suspension which should satisfy ride and handling 

requirements. The results are illustrated in Fig. 3. Shock 

absorber’s responses can be categorized into two areas. The 

first area in which the length of the shock absorber is 

increasing is called rebound. In contrary, when the length of 

the shock absorber is decreasing it is referred to as 

compression 

The shock absorber’s damping coefficient in both rebound 

and compression can be divided into two areas named as low 

and high velocities parts. In lower velocities the damping 

coefficient is higher than those of higher velocities. By 

having this definition in mind, the area is categorized as 

rebound’s low velocities, rebound’s high velocities, 

compression’s low velocities and compression’s high velocities, 

respectively.  

Based on obtained experimental tests, the shock 

absorber’s behavior is extracted. These four coefficients are 

1rc , 2rc , 1cc   and 2cc   which stand for the damping coefficients 

in rebound’s low velocities, rebound’s high velocities, 

compression’s low velocities and compression’s high velocities, 

respectively. The area shown by 1rc  and 1cc  happens when a 

smooth transition happens such as a lane change, while 2rc  

and 2cc  occurs while rough surface of the road affects the 

shock absorber. Fig. 3  shows the shock absorber’s velocity 

in different external stimulations.  

IV. NUMERICAL SIMULATION WITH MD-ADAMS 

SOFTWARE                                                                              

MD-Adams is a powerful simulation software widely 

used for kinematic and dynamic modeling of mechanical 

systems. The behavior of the vehicle’s suspension is defined 

for MD-Adams as already discussed in Section II. Three 

translational joints limit the motion of the base and two other 

masses, which represent the tire and a quarter vehicle body, 

to a motion as the road excitation. A half-sine motion is 

applied as the road profile. The shock absorber’s damping 

coefficient is defined as a curve using a point to point 

definition approach. The coefficients of springs are assumed 

to be a constant with different values for each spring. The 

results will be compared to analytical model in the following 

section.  

V. MODELING’S RESULTS AND VERIFICATION 

In order to check the validity of analytical and MD Adams 

models, a bump profile input is discussed in this section. A road 

bump is considered as half-sine function and defined as: 

 

𝑦0 = {
0.05 sin(4𝜋𝑡)         𝑡 ≤ 0.25
0                                𝑡 > 0.25

(𝑚)                     (4) 

 

The results for this input are shown in Figure . The results are 



 
Figure 4. Displacement of tire and vehicle for a half-Sine input 

 

 
Figure 5. Velocity of tire and vehicle for a half-sine input 

 

 

Figure 6. Acceleration of tire and vehicle for a half-sine input. 

 

in a very good accordance which confirm the correctness of both 

MATLAB and MD-Adams simulation. Figure 4 shows the 

displacement of the tire and the vehicle body while Figs. 5 and 6 

illustrate the velocity of two masses and the acceleration of them, 

respectively. This will make it possible to investigate the 

optimization  problem of the model in order to find a better 

performance for the shock absorber which is the subject of the 

upcoming section. 

VI. OPTIMIZATION AND RESULT COMPARISON 

In this section, optimizing the coefficients of shock absorber 

regarding the ride and handling criteria of vehicle suspension’s 

response will be addressed. In order to solve this multi-objective 

optimization problem, a linear combination of mentioned criteria 

is utilized to end of extracting optimum values of nonlinear 
damping model coefficients. The values which have been targeted 

to become minimum are the acceleration of the vehicle 

 
Figure 7. Relative displacement before and after optimization. 

 

 
Figure 8. The acceleration of the vehicle before and after optimization. 

 

body, 2a , as well as the displacement of the vehicle body relative 

to the displacement of the tire, )( 12 yy − , with the following 

weighted equation: 

 

𝑓 = 0.7 𝑎2 + 0.3(𝑦2 − 𝑦1)                                                  (5) 

 

The above equation describes that the importance of 

minimizing the acceleration is %70 and the relative displacement 

is improved by %30. The damping coefficients 1rc , 2rc , 1cc   

and 2cc  of the shock absorber as well as the velocities in which 

slope of the shock absorber’s characteristic curve changes in 

rebound, rv , and in compression, cv , are the subjects of 

optimization. These parameters are depicted as follow:  

 

𝑋 = [𝑉𝑟,  𝑉𝑐 , 𝑐1𝑟, 𝑐2𝑟, 𝑐1𝑐, 𝑐2𝑐 ]                                      (6) 

 

Figure  depicts the difference between the vehicle’s 

acceleration and Figure  shows relative displacement between the 

vehicle body and the tire before and after optimization. The 

improvement in performance after 5 second are about %45.    



Table II. Damping coefficients and handling to ride velocities 

Shock Absorber 

Coefficients Values 

Experimental 

Values 

Optimized 

Values 

1rc )
m

N.s
(  285 328 

2rc )
m

N.s
(  83 58 

1cc )
m

N.s
(  259 334 

2cc )
m

N.s
(  57 39 

rv )
s

m
(  0.3 0.26 

cv )
s

m
(  -0.1 -0.07 

RMS Acceleration )
s

m
(

2
 0.55 0.50 

RMS Relative 

Displacement (m)  0.27 0.25 

 

 

Table II illustrates the suspension system’s coefficients before 

and after optimization. This table shows an improvement of 

approximately %10 and %5 in the Root Mean Square (RMS) of 

the acceleration and the relative displacement, respectively. The 

settling time is also reduced from 12 (s) to 9 (s). 

VII. OPTIMIZATION OF COEFFICIENT WITH NEURAL 

NETWORK 

Since the above optimization procedure is relatively time-

consuming and by taking the concept of regression into 

account, the optimization of 𝑉𝑟 ,  𝑉𝑐, 𝑐1𝑟, 𝑐2𝑟, 𝑐1𝑐 and 𝑐2𝑐 can 

be undergone by a neural network. By having enough sets of 

data form the results of the optimization problem, the 

connection between initial coefficients and optimized values 

is extracted and the trained network is employed for 

optimization. 

In order to use a neural network for optimizing the 

coefficient, a group of data is required which includes the 

initial value for each coefficient and the optimized value. 

Using a neural network instead of the traditional 

optimization method in MATAB reduce the processing time 

considerably and at the same time does not lead to a big 

difference in the value of objective function. The time for 

training the network is 20 seconds in compare to more than 2 

hours for the traditional optimization method while the final 

error of the network stays less than %0.01. 

 

A. Collecting & Preprocessing of Data 

Training data are calculated by solving the dynamic 

model and optimization in MATLAB. The data’s structure is 

a vector of 6 elements as the network’s input. A vector with 

6 elements, which are the optimized values, is introduced to 

the network as the appropriate output. 

During the training, the weights of network, will be 

updated to learn the connection between input and output. In  

Figure 9. Distribution of the data set. 

 

Fig. 9, the distribution of collected data is depicted. As 

illustrated in Fig. 9, the data is optimized in a linear form. 

 

B. Training the Network for Optimizing the Coefficient 

For solving the regression problem, structures such as 

linear regression, multivariant regression and neural network 

is employed. About 300 training sets are calculated using the 

traditional optimization method. Each of them includes 6 

variables as unoptimized input and 6 variables as the 

optimized output. The unoptimized values are fed to the 

neural network in order to train and set the neurons values in 

the network. 

 

C. Results and Verifying Network’s Performance 

In Fig. 10, the lost function of the network during the 

training is depicted. The selected lost function is a function 

of mean absolute error which is calculated as: 

 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦predicted − 𝑦actual|

𝑁
𝑖=1                         (6) 

 

The trend of lost function during training is continuously 

reducing and the trend for training data and verifying data are 

converging in an acceptable way. Considering Fig. 10,  it can 

be concluded that the network is well trained and learning is 

completed. 

The criteria for evaluating the correctness of the 

network’s performance is the mean square error function 

which is employed in the network’s training process and is 

calculated from the following equation: 

 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦predicted − 𝑦actual)

2𝑁
𝑖=1                        (7) 

 

The trend of (7) is illustrated for evaluating the network 

performance is shown in Fig. 11. The criteria’s trend depict 

the network’s learning correctness and its reduced error.  

The value of objective function is also compared. By 

comparing the results of (5) from traditional optimization  

with  the results of the neural network it can be inferred that  

they are in good coherence and in average the difference 

between them is less than %1. The final neural network is 

constructed of two layers, in which the first layer has 120 

neurons and the second layer has 6 neurons. All the  



 
Figure 10. Lost function of the neural network. 

 

 
Figure 11. Evaluation function of network’s performance. 

 

parameters of this network, which needs to be updated are 

1500 parameters. 

VIII. CONCLUSIONS 

A neural network was trained to replace the time 

consuming traditional optimization process of a shock 

absorber. This network was trained by more than 300 

optimization results and its output can used to predict an 

optimized value for shock absorbers coefficients. The 

outcome of the network was proven to be very similar to that 

of the traditional optimization when compared about the 

objective function introduced in this paper. With the latter 

goal, a nonlinear mathematical model and a simulation in 

MD-ADAMS were presented in this paper using 

experimental measurements from tests in the laboratory. 

Results depicted a good accordance between two models 

which is certified by experimental tests. The mathematical 

model in the next step was then employed in order to optimize 

the experimental coefficients of the shock absorber and 

minimize the vehicle’s acceleration as well as the 

displacement of the tire and the vehicle. The neural network 

is then trained using a large data set of this traditional 

optimization.  

In future researches, the network’s optimized results 

which has shown a better performance than the basic shock 

absorber in simulation can be used in further researches in 

order to design and select its parts (such as rod, body, rod 

guide, seal, washers, foot valve, etc.) with the goal of 

improving the performance. Moreover, the neural network’s 

accuracy can be improved in further works by defining the 

the importance of the objective function for the neural 

network. 
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