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Individualized manufacturing is becoming an important approach as a means to
fulfill increasingly diverse and specific consumer requirements and expectations.

While there are various solutions to the implementation of the manufacturing

process, such as additive manufacturing, the subsequent automated assembly
remains a challenging task. As an approach to this problem, we aim to teach a

collaborative robot to successfully perform pick and place tasks by implement-

ing reinforcement learning. For the assembly of an individualized product in a
constantly changing manufacturing environment, the simulated geometric and

dynamic parameters will be varied. Using reinforcement learning algorithms

capable of meta-learning, the tasks will first be trained in simulation. They
will then be performed in a real-world environment where new factors are in-

troduced that were not simulated in training to confirm the robustness of the
algorithms. The robot will gain its input data from tactile sensors, area scan

cameras, and 3D cameras used to generate heightmaps of the environment and
the objects. The selection of machine learning algorithms and hardware com-
ponents as well as further research questions to realize the outlined production

scenario are the results of the presented work.

Keywords: machine learning, reinforcement learning, meta-learning, individu-
alized manufacturing, collaborative robotics

1. Introduction

For decades, robots have been used to automate tasks in the industry sector.

Conventional industrial robots are taught to perform one task at a time,

are competent at executing this single task and can perform thousands of

repetitions accurately. While the automation of such tasks has led to an

†The Cologne Cobots Lab is an interdisciplinary research lab of the TH Köln – University

of Applied Sciences, with its main research focus on collaborative and social robotics.
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increase in efficiency and a decrease in manufacturing costs for mass pro-

duction, it is less applicable for the individualized consumer expectations of

today’s economy. Globalization, digitalization and the resulting growth of

markets have led to an increasing number of product variants and shorter

product life cycles1. Customers now demand highly individualized prod-

ucts that are designed specifically for them. This change is observable in a

wide range of industrial fields2.

The key challenge for individualized products is to avoid an increase in

costs compared to established manufacturing approaches like mass produc-

tion, even if factories are located in high-cost countries3. The advantages

of individualized production are higher flexibility, fast response rates to

customer decisions and a more efficient use of resources. An example is the

health-care sector, where personalized medicine is becoming increasingly

important, and additive manufacturing is being used for the production of

biomaterials, implants and prosthetics4. To enable individualized manu-

facturing, traditional programming of machines with repetitive tasks is no

longer applicable2. When environments and objects change, conventional

robots are unable to perform assembly tasks with similar success rates.

We therefore propose to use reinforcement learning (RL) algorithms ca-

pable of meta-learning (ML) to enable robots to accomplish highly individ-

ualized pick and place tasks as an important part of the product assembly

process.

2. State of the Art: Machine Learning and Robotics

Recently, RL has achieved great success in a wide range of different tasks

and complex games (e.g. the strategy board game Go5). The implemen-

tation of RL and ML seems promising to enable a robot to perform a pick

and place task for unknown objectives and destinations. In RL, an agent

interacts with the environment and receives its state. Based on this state,

the agent takes an action and receives a new state and reward for the cho-

sen action. Each RL algorithm is designed specifically for a certain task in

terms of its architecture and training. A major drawback of this approach

is the necessity to train the RL agent from scratch for each task.

ML is an approach to overcome this shortcoming by designing an al-

gorithm in such a way that the agent learns how to learn from a broad

distribution of similar tasks. Similar to human learning, an ML agent can

apply knowledge it has gained from previously solved corresponding tasks

to learn a new task with only a small amount of data.
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Recent ML algorithms suitable for RL can be divided into two categories

depending on their architecture and optimization goals:

(1) Model-based meta-learning approaches6,7 generalize to a wide range of

learning scenarios, seeking to recognize the task identity from a few

data samples and adapting to the tasks by adjusting a model’s state

(e.g. long short-term memory (LSTM) internal states)

(2) Model-Agnostic Meta-Learning (MAML)8 seeks an initialization of

model parameters such that a small number of gradient updates will

lead to fast learning on a new task, offering flexibility in the choice of

models

A promising approach in which machine learning without RL and ML is

used for pick and place tasks is described in 9: A six degrees of free-

dom (DoF) UR5e robot (Universal Robots, Odense, Denmark) with a suc-

tion module is used to perform the tasks, and a camera generates a 3D

heightmap as input data. Using convolutional neural networks (CNNs), a

correspondence between an object surface and the related placement loca-

tion is generated.

Another relevant RL approach is introduced by OpenAI, who have

trained a robotic hand to solve a Rubik’s Cube despite external pertur-

bations10. The main points of this approach are:

• An actor-critic consisting of an artificial neural network (ANN)

equipped with LSTM cells to install internal memory

• Automatic domain randomization (ADR) to generate diverse environ-

ments with randomized physics and dynamics (e.g. weight and size of

the manipulated object)

This results in a system with high robustness and high success rates in the

transfer from simulation to testing in the real-world environment. Due to

the combination of internal memory and ADR, this approach also shows

signs of emerging ML.

In RL, it is necessary to provide the learning agent with an extrinsic

reward signal. This enables the agent to determine if the actions applied

to the environment have a positive effect in the long run. Extrinsic reward

signals are called sparse if the reward for a certain action is temporally dis-

entangled from the reward, e.g. only a positive reward is given after every

successful task. To tackle this problem of sparse extrinsic rewards, we can

divide the approaches in literature into two classes. First, by changing the

reward function, e.g. using curiosity-driven exploration11, which introduces
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an intrinsic reward function. This function encourages the agent to experi-

ence novel states. Second, hierarchical RL methods which try to divide the

main task into a sequence of sub-goals can be used. While the main goal is

to successfully perform the task, the agent first learns to find a policy for

the sub-goals. One popular candidate for this are FeUdal Networks12, in

which the agent is split into two parts. The manager learns to formulate

goals and the worker is intrinsically rewarded to follow the goal. A similar

approach is Hierarchical Actor-Critic13, in which the agent learns to set

sub-goals to reach the main goal. This is achieved by extending the idea

of Hindsight Experience Replay14 to the hierarchical setting by establish-

ing goals a fixed number of low-level actions away from the previous state.

Multiple policies can be learned independently. On a sub-goal level, the

focus is learning the sequences of sub-goal states which can reach the main

goal state. To achieve these sub-goal states, the lower-level policies learn

the low-level action sequences.

3. Concept for Manufacturing Scenario

The development of intelligent pick and place tasks for the assembly of

products using RL is an integral part of the manufacturing scenario we

are setting up in the Cologne Cobots Lab. It combines individualized pro-

duction using additive manufacturing, autonomous mobile systems that

transport components, as well as collaborative and social robotics. The

complete scenario is shown in Fig. 1.

As described in section 2, we aim to perform object manipulation tasks

using RL in a real-world scenario, in which a specific and useful product is

manufactured and assembled. Our goal is to assemble individualized sensor

cases for different health care sensors (e.g. to measure body temperature,

heart rate or blood oxygen saturation), as shown in Fig. 2. These cases

will be used in our research concerned with social robots conducting health

assessments15. This is a practical product for research in highly flexible

areas, such as the manufacturing and health care sectors. It is also a well-

suited demonstrator for the application of RL algorithms. The assembly of

individualized products is desirable, as different users with different health

conditions require different kinds of information. Therefore, the combina-

tion of sensors can be adapted for each individual user and the assembly

process will differ for each new product. The long-term goal regarding these

sensors is to create individualized wearable devices with different kinds and

numbers of health care sensors. These parameters offer a promising ap-
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A Ordering System
splits orders

Customer
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Places order

Presentation/hand-over

Transfer to collaborative

assembly cell

C Two-arm-robot on
mobile platform

Pick-up,
hand-over

B 3D printing of
individual components

D Collaborative assembly

of ordered product

E Social robot

Fig. 1. A customer places an order for an individualized product using the ordering

system (A). This system splits the order into the individual components, which are

then manufactured using additive manufacturing (B). Once the manufacturing process is
completed, a two-arm-robot, mounted on an AGV (C), removes the components from the

3D printers and transports them to the collaborative assembly cell (D). This assembly

cell consists of one or more cobots and one or more human workers, collaboratively
assembling the individual components into the final product. The number of cobots and

human workers can be adjusted based on need for the specific task. Once the assembly

process is completed, the two-arm-robot transports the finished product and hands it
over to a social robot (E), which presents and hands over the product to the customer.

proach to a hybrid job shop scheduling or action planning system in which

human and robot actions are combined in an optimized way.

4. Approach: Hardware and Machine Learning

In our manufacturing scenario, we will be using various hardware and soft-

ware/machine learning components, described in the following.

The individual sensor cases will be manufactured using fused deposition

modeling (FDM)/fused filament fabrication (FFM). For the assembly, we

will use a collaborative robotic arm that meets safety standards defined

in ISO/TS 15066:201616. The arm also has a high pose repeatability, at

least six DoF, and a payload of ≥0.5 kg for fine and ≥3 kg for gross manip-

ulation tasks. To receive additional feedback during object manipulation

tasks, its gripper will be outfitted with tactile sensors. This will improve

the efficiency and robustness of the grasping task. The sensor provides feed-

back regarding the grip quality confidence and enables slip detection of the
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Fig. 2. The goal of the assembly task is to pick individual health care sensors, (e.g.

heart rate (HR), body temperature (T), blood oxygen saturation (SpO2)), place them
into their cases, then place the sensor cases in a health care sensor station for the

monitoring of health conditions. As the sensor combination changes with each user, RL

will be used to successfully train an agent to perform each individual assembly task.

grasped object, which can then be counteracted by improving the applied

force of the gripper on the object. For the object detection, we will use a

3D scanner to create heightmaps of the objects. Several area scan cameras

will be implemented for vision-based information from various angles and

to determine the orientation of the objects.

In order to successfully teach the robot to perform the pick and place

task, the trained machine learning algorithm needs to recognize which pro-

duced element belongs to the corresponding case. To accomplish this,

the tools presented in section 2 will be implemented and combined. The

heightmaps applied by Google9 will be used as input for the RL agent. By

implementing ADR10, the agent will be trained to realize a robust system

with a high success rate in the transfer from simulation to the real world.

Additionally, due to the implementation of ML and solutions for sparse

reward, the learning time of the agent will be decreased.

5. Conclusion and Outlook

In this paper, we propose an approach to successfully perform intelligent

pick and place tasks for the assembly of individualized products using RL

algorithms capable of ML. A combination of the algorithms presented in

this work will be implemented to develop an autonomous robotic system

capable of performing these tasks. With a combination of RL, ML, ADR

and other machine learning tools, problems like sparse reward or transfer
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learning can be solved. The pick and place tasks are first performed in

simulation, then in a real-world environment using a collaborative robot,

equipped with tactile sensors, area scan cameras and 3D cameras. This

demonstrator will then be used to study and answer the following research

questions, which are both of technical and socio-technical nature:

• How can we apply (a combination of) machine learning algorithms to

generalize pick and place assembly tasks (i.e. various weights, sizes,

geometries, quantities) for individualized products?

• Which algorithms have which impact on the robustness of the system?

How can we assure that the robustness reached in simulation can be

transferred to the real world environment?

• How can we implement a dynamic work space for the robot when work-

ing collaboratively with a human? How can a human be integrated into

the collaborative assembly process in a way that is both sensible and

effective?

In the future, we plan on fully implementing the developed assembly process

into our manufacturing scenario described in section 3. The manufacturing

scenario includes the transportation of individual parts using AGVs and

presenting the final product to the customer. A further goal is to study

the collaborative assembly process between humans and robots. This is the

focus of another research project in our lab, which aims to achieve adaptive

human-robot collaboration through the implementation of sensors to detect

the user’s status (e.g. focus, stress). The combined results of these projects

will contribute to an optimal collaborative working process.
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