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Abstract. In this paper, we propose an improved vehicle re-identification
method based on the combination between the AlignedReID and the
Stochastic Weight Averaging (SWA). AlignedReID extracts a global fea-
ture and local features of a vehicle’s image and performs joint learn-
ing. Local automatic alignment is achieved by computing the shortest
path between the two sets of local features, so that global feature learn-
ing can benefit from local feature learning. By running an optimizer
with a high constant learning rate, the SWA averages the weight of the
model to ensure that a better weight combination can be found. Our im-
proved method surpasses the most advanced methods on the VehicleID
dataset and VeRi-776 dataset. In order to better solve the task of vehi-
cle re-identification in residential area, we have made the Oeasy-Parking
dataset and experimented with our methods, and achieved good results.
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1 Introduction

Vehicle re-identification (ReID) is a technique that uses computer vision to de-
termine whether a particular vehicle is present in an image or video sequence
acquired by multiple cameras. Since there is very little difference in the camera
output between the same brand and style except the number plate, the specificity
of the results is far inferior to that of individual pedestrians. It is difficult to cap-
ture the clear details of the vehicle ID under the monitoring distance by multiple
traffic camera, particularly since local features are not easy to extract or express
clearly. Vehicle ReID research is relatively new and the accuracy of vehicle ReID
systems and methods are not as good as that of a human observer [13].
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According to a forecast by Gartner, Inc., there will be 20.4 billions connected
smart technology in the world by 2020. Since most of the world’s population is
concentrated in urban areas [1], data from traffic and surveillance cameras form
an important data component of connected technology. Therefore, data from
imaging systems can contain a large quantity of important information. Using
this large amount of information effectively can make cities safer and smarter.
Therefore, vehicle ReID plays an important role in this process.

Traditional vehicle ReID methods mostly focus on a vehicle’s low-dimensional
characteristics, such as a vehicle’s shape and color [17]. In recent years, with the
popularity of deep learning techniques, many researchers have focused on fine-
grained image-based vehicle classification and license-plate recognition. Unfor-
tunately, using global information about a vehicle cannot provide local differen-
tiation information. Therefore, a vehicle cannot be well recognized in heavy rain,
fog, night and in low-resolution video recordings. This means that vehicle ReID
in more challenging environments is nearly impossible, e.g., when a license plate
is partially or entirely hidden, when license plates change over a single trip, when
annual inspection stickers change, when camera blind spots obscure a vehicle or
when a vehicle has constant jitter. Thus, advanced vehicle ReID methods often
still requires additional supervision and needs to combine both global and local
image features.

In this paper, we use the AlignedReID [18] method, which is a method
for pedestrian recognition, as a baseline and introduce an integrated SWA [9]
method. In the learning stage, the AlignedReID network has two branches, global
branch and local branch, which are used to learn global feature and local features
simultaneously. We load two identical pre-loaded models based on AlignedReID,
the first one stores the SWA average, and the second one updates the current
weights of the running average model. In the local branch, AlignedReID intro-
duce a shortest path loss to align the vehicle images, then discard local branch
in the inference stage. The first model is used as the final model in the inference
stage. Like AlignedReID, the mutual learning approach [19] is still works in our
method.

Current vehicle ReID methods are mainly based on VeRi-776 dataset [13] and
VehicleID dataset [11]. We make the following two contributions in this work: (1)
We modify a pedestrian recognition model and apply it to vehicle recognition.
(2) We add a SWA model-based optimization algorithm to the AlignedReID
model and find that our improved method outperforms state-of-the-art methods
by a large margin on VehicleID and VeRi-776 datasets. (3) We propose a dataset
which servers as residential area for vehicle parking, named ”Oeasy-Parking”.
The dataset contains all the time periods of the day.

2 Related work

Vehicle ReID methods mainly rely on finding vehicle license plate information.
This is the most reliable method at present because a license plate has the most
accurate identification information about a vehicle under normal circumstances,
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just as the face is the most reliable identity information in pedestrian detection.
Finding vehicle license plate information is not always effective, particularly
when the license plate lose efficacy. For example, in due to lighting, shooting
angle, fouling and other factors, the vehicle license plate recognition is wrong
or unrecognizable. In some cases, the vehicle does not have a license plate or
a occlusion plate or only a side image of the vehicle and so on. In this case,
other identity information of the vehicle, such as appearance, color, special logo,
annual inspection mark, will be a new strategy for vehicle identification. The
research of vehicle ReID mainly focuses on how to extract more accurate vehi-
cle ID feature information at present. Vehicle ReID is of great significance for
solving the analysis and processing of surveillance video, especially for vehicle
retrieval across cameras. Vehicle ReID will undoubtedly play an important role
in intelligent management, security and automatic charging of parking lots.

In recent years, researchers have explored many aspects of vehicle ReID.
Hongye Liu et al. [11] proposed a depth relative distance learning model, a
new loss function Coupled Cluster Loss was put forward by improving Triplet
Loss function. Zhongdao Wang et al. [16] proposed a vehicle ReID framework,
including a feature embedding model with attitude invariance and a space-time
regularization model. Yi Zhou et al. proposed a visual Angle perception targeting
multi-view reasoning (VAMI) model [21], which only needs visual information to
solve the problem of multi-view vehicle weight recognition. Ratnesh Kumar et
al. [10] tackle the problem of vehicle ReID in a camera network utilizing triplet
embeddings. They conducted extensive evaluations of the losses used for vehicle
ReID (including comparisons or triad losses), demonstrating that best practices
using learning embedding are superior to most previous methods proposed in
the vehicle ReID literature. These methods almost utilize the global appearance
features of vehicle images and ignore local discriminative regions.

With the re-emergence of deep learning, the Convolutional Neural Network
(CNN) uses metric learning methods such as triplet loss, impoved triplet loss,
and triplet hard loss to learn features in an end-to-end format. Many CNN-based
methods focus on the global features of the vehicle while ignoring the spatial lo-
cal information of the picture. This will cause some problems: (1) Errors appear
in the vehicle detection frame, thus affecting the learning of features. (2) CNN
may learn irrelevant features when vehicles are covered by external objects. (3)
For two models of the same brand, or similar models of different brands, there
is almost no difference except the number of the license plate. Vehicle recogni-
tion tasks are mostly carried out when license plate recognition fails. Therefore,
distinguishing between two vehicles in such cases is nearly impossible by only re-
lying on global features. Reference [12] and reference [3] combine global features
and local features, but the local information is not aligned, feature learning will
be affected by wrong calibration frame and external object occlusion. Although
reference [16] performed local alignment by extracting key points, they failed to
learn from each other with global features and could not represent local features
with global features, which affected the convergence rate.
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The AlignedReID method uses TriHard loss [6], a learning algorithm where
a baseline input is compared to a positive and negative input, with batch hard
mining as the metric loss. Then, softmax loss and metric learning loss is combined
to accelerate convergence. Finally, the dynamic programming method is used to
automatically align local information and use mutual learning strategies to learn
global features and local features. Therefore, this method effectively solves the
shortcomings of previous research.

The Nadam optimization algorithm combines two optimization methods, one
by Nesterov and the other by Adam, to develop a method that has a stronger
constraint on the learning rate and a more direct impact on the gradient update
step [4]. By estimating the marginalized effect of label-dropout, a mechanism
called the Label-Smoothing Regularization (LSR) for regularizing the classifier
layer is proposed by IncentionV3 [15], which can reduce the risk of model overfit-
ting and improve the adaptability and mathematical rigor of the models. Zhong
Z et al. [20] proposed a reordering method (Re-ranking) that can further im-
prove the accuracy of this method. Therefore, we apply Nadam optimization,
LSR and Re-ranking to AlignedReID to further improve the performance of the
model. We promote the benchmark model by combining the SWA method, which
improves the performance and generalization ability of the model.

3 Our Approach

3.1 Benchmark model

AlignedReID uses Densenet121 (a Convolutional Neural Network) [8] to extract
the feature map of the input vehicle images. The output of the last convolution
layer is the feature map (C ×H ×W , where C is the number of channels and
H ×W is the spatial size). And the global feature is a C -dimension vector, which
is extracted on the feature map by adopting global pooling. The local feature
for each row can be extracted by applying a global pooling in the horizontal
direction, and then a 1× 1 convolution is applied to reduce the number of chan-
nels (from C to c). Each local feature is a c-dimension vector representing the
horizontal portion of the vehicle image. Therefore, AlignedReID can represent a
vehicle image with a global feature and H local features.

The difference between the images of two vehicles is the summation of the
global distance and the local distance. The global distance is the L2 Euclidean
distance of the global feature vector. Two images of the same vehicle share sim-
ilar local features than their semantic counterparts. For local distances between
feature vectors, the local components of the vector are dynamically matched
element-wise, from top to bottom, to find the alignment geometry with the
smallest total distance. Therefore, given local feature vectors of two images,
F={f1, f2, ...fh}, G={g1, g2, ...gh}, we can use an element-wise transformation
to regularize the distance to [0, 1). Therefore, the distance is:

di,j =
e‖fi−gj‖2 − 1

e‖fi−gj‖2 + 1
i, j ∈ 1, 2, 3, . . . ,H (1)
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where di,j represents the distance between the i -th vertical bar of the first
picture and the j -th vertical bar of the second picture. A distance matrix D
consists of all pairwise distances, where each element (i, j) is labeled di,j .

The local distance between two images is the shortest path of the total dis-
tance between the (1, 1) coordinate to (H, H) coordinate in the matrix D. This
distance is calculated using dynamic programming:

Si,j =


di,j i = 1, j = 1

Si−1,j + di,j i 6= 1, j = 1

Si,j−1 + di,j i = 1, j 6= 1

min(Si−1,j , Si,j−1) + di,j i 6= 1, j 6= 1

(2)

where Si,j is the total distance between the shortest path between the (1, 1)
and (i, j) coordinates in matrix D, and SH,H is the total distance of the final
shortest path (i.e. local distance) between the two images.

3.2 Improved method

AlignedReID is similar to many CNN models in that it is easy to get trapped
in some a local optimal solutions during the learning phase in such a way that
the loss function does not continue to decline. However, an integrated approach
based on deep learning can help the model to jump out of such local optimal
solutions more easily. The Snapshot Ensembling method [7] proposed by Gao
Huang et al. and the Fast Geometric Ensembling (FGE) method [5] posed by
Timur Garipov are the most advanced integration methods.

To benefit from Snapshot Ensembling or FGE, multiple models must be
stored in a library to obtain accurate predictions based on these models. The
predictions are averaged to determine the final prediction. Therefore, to improve
the performance of a collection, more computation is required.

To determine the computational cost of the integration method used, and to
get similar or better performance, Izmailov et al. proposed the SWA method [9].
SWA is similar to FGE method, but its calculation loss is very small. SWA
defeats the current most advanced Snapshot Ensembling method, and its per-
formance is similar to that of FGE. SWA achieves an excellent balance between
performance and cost. So, we try to improve performance of our technique by
introducing SWA into our benchmark model.

SWA is to begin with a pre-training solution, then run an optimization
method with a constant learning rate, and finally average the weights of the
model. The high constant learning rate plan ensures that optimization methods
compares a set of possible solutions rather than simply converge to a certain
weights combination. Izmailov et al. believe that the local minimum generated
at the end of each learning rate cycle tends to accumulate in the marginal region,
which has a low loss value. By averaging several such local minimum points, we
can determine the global optimal solution with lower loss values, generalization,
and versatility.
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Unlike Snapshot Ensembling and FGE, there is no need to integrate over
many models, but only to integrate over two distinct models and determine the
SWA to update the equation:

WSWA ←
WSWA × nSWA + W

nSWA + 1
(3)

The first model stores the SWA average (WSWA), which is used as the final
model after the end of the training step for prediction. At the end of each learning
rate cycle, the current weight of the second model is used to update the weights
of the running average model, i.e., the weighted average of the existing average
weight and the new weight generated by the second model (W in the formula).
The nSWA is the number of updates for the first model. Therefore, only one
model needs to be trained for every two models that are stored during training.
In the forecasting phase, only the model with the average weight is needed. Using
this single model is much faster than using integration methods that require
multiple models for prediction.

4 Experiments

4.1 Datasets

Our research is mainly based on VeRi-776 and VehicleID datasets. In this paper,
we also propose a dataset which servers as residential area for vehicle parking,
named ”Oeasy-Parking”.

Typically, previous datasets were collected by road surveillance cameras, and
their datasets were mostly for the daytime scenarios. Differently, Oeasy-Parking
dataset is a large-scale which contains 48,206 images with about 1/4 of the data
in this dataset is in the darkness of the night. It contains all the time periods
of the day. And the dataset also including a lot of glare, rainy days, foggy days
conditions which obtained from the real sample of the community vehicle. Our
dataset is taken from the vehicle entrance and exit of seven communities in
Shenzhen, Guangdong Province, China, which is captured by 20 non-overlapping
surveillance cameras. The time span is nearly nine months. We have preprocessed
the image for data cleaning. In order to avoid the privacy of the owner and the
neural network to learn the extra license plate information during the deep
learning process, we have use Gaussian blurring on the license plates.

The data split statistics of VeRi-776, VehicleID and Oeasy-Parking datasets
are summarised in Table 1.

4.2 Implementation details

We performed experiments on VeRi, VehicleID and Oeasy-Parking datasets using
baseline and improved methods, and briefly analyzed the experimental results
of the VeRi, VehicleID (small) and Oeasy-Parking datasets.
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Table 1. Data split of vehicle ReID datasets evaluated in our experiments.

Dataset Training IDs / Images Query IDs / Images Gallery IDs / Images

VeRi-776 576 / 37778 200 / 1678 200 / 11579
VehicleID(samll) 4416 / 37245 739 / 1678 739 / 4693

VehicleID(medium) 13164 / 113346 1464 / 3433 1464 / 9672
VehicleID(large) 13164 / 113346 2213 / 5108 2213 / 14295
Oeasy-Parking 4369 / 33360 1660 / 3007 1660 / 11839

(a) The mAP curve (b) The rank curve

Fig. 1. mAP and rank curves for baseline on VeRi-776.

Benchmark model experiments and results. In the benchmark model,
we use techniques such as LSR [15] and Re-ranking [20]. We processed the images
in the datasets into 256× 256 to adapt to the task of vehicle ReID.

On the VeRi-776 dataset, we achieve a 67.6% mAP and an 88.3% rank-1
accuracy on the benchmark model. On the VehicleID (small) dataset, we achieve
an 82.4% mAP and a 93.5% rank-1 accuracy on the benchmark model. The
detailed results of baseline for the two VeRi-776, VehicleID and Oeasy-Parking
datasets are shown in Table 2.

The mAP curve and the rank curve of the benchmark model are shown in
Fig. 1. We can see the accuracy of the mAP and rank tend to level off when
the epoch exceed 100. It indicates that the learning of benchmark model meets
a bottleneck at this time, that is, the performance of the benchmark model
approaches or reaches the limit.

The results of improved method. To further improve accuracy, we in-
tegrate using the SWA method for optimization, based on a benchmark model.
We set SWA to start at an epoch to 161. The initial learning rate of the SWA
is 0.0001. We use the learning rate change schedule in SWA. It can be seen that
when epoch reaches 300, mAP still has an upward trend, so we increase the
maximum value of epoch to 2000. In the VeRi-776 dataset, the mAP reaches
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Table 2. Performance of baseline on VeRi-776, VehicleID and Oeasy-Parking

Models VeRi-776 VehicleID(small) VehicleID(medium) VehicleID(large) Oeasy-Parking

Baseline
mAP 0.676 0.824 0.801 0.775 0.966
rank1 0.883 0.935 0.940 0.941 0.967
rank5 0.906 0.973 0.965 0.967 0.991

77.1%, which is 9.5% higher than the highest value in the benchmark model;
rank-1 accuracy reaches 94.4%, which is 6.1% higher than the baseline model.
The results of the VehicleID (small) dataset obtains an 84.0% mAP, which is
1.6% higher than the highest mAP of the benchmark model; rank-1 accuracy
reaches 95.1%, which is 1.6% higher than the highest rank-1 accuracy of the
benchmark model. The results of the improved method on VeRi-776, VehicleID
and Oeasy-Parking are shown in Table 3.

In the benchmark model and the improved method, our Oeasy-Parking dataset
has achieved experimental results far superior to the VeRi and VehicleID datasets.
The main reasons of our analysis are as follows: (1) The images in the dataset
are all cropped in high-definition images, and the features are relatively clear. (2)
The images of the dataset are basically the front and side images of the vehicle
due to the surveillance cameras collected from the community, whose features
are relatively simpler.

Table 3. Performance of improved method on VeRi-776, VehicleID and Oeasy-Parking

Models VeRi-776 VehicleID(small) VehicleID(medium) VehicleID(large) Oeasy-Parking

Baseline+SWA
mAP 0.771 0.840 0.812 0.791 0.969
rank1 0.944 0.951 0.947 0.945 0.990
rank5 0.963 0.977 0.970 0.971 0.999

Table 4. Comparison with recent works on VeRi-776

Methods mAP rank1 rank5

RAM [12] 0.615 0.886 0.940

Wang et al. [16] 0.514 0.894 -

AFL [17] 0.534 0.821 0.923

Siamese-CNN+Path-LSTM [14] 0.583 0.835 0.900

VAMI [21] 0.501 0.770 0.908

MoV1+BS [10] 0.676 0.902 0.929

Baseline+SWA (ours) 0.771 0.944 0.963

The mAP curves and the rank curves of improved method are shown in Fig.
2. It can be seen that when epoch reaches maximum, mAP still has an upward
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(a) The mAP curve (b) The rank curve

(c) The SWA-stage mAP curve (d) The SWA-stage rank curve

Fig. 2. The mAP and rank curves for improved method on VeRi-776.

trend. Comparing with Fig. 1, we can see that Fig. 2 has a performance curve
better than the benchmark model. Therefore, SWA does improve the perfor-
mance of the benchmark model and get better results.

Comparison results of the open source datasets. We studied the re-
search results of vehicle ReID based on VeRi-776 and VehicleID in recent years.
We then compared those results to our experimental results. The results are
shown in Table 4 and Table 5. The MoV1+BS method of [10] obtained a 67.6%
mAP on the VeRi-776 dataset with a 90.2% rank-1 accuracy. An 86.2% mAP
and a 78.8% rank-1 accuracy was obtained for the VehicleID (small) dataset.
Their research results, at the time, were the highest precision results based on
two datasets. This result is comparable to our research results.

As shown in Table 4, on the VeRi-776 dataset, our improved method has
a mAP that is 9.5% higher than MoV1+BS, and our rank-1 accuracy is 4.2%
higher than MoV1+BS on the VeRi-776 dataset. As we can see from Table 5,
our mAP is 2.2% lower than MoV1+BS on the VehicleID (small) dataset; our
rank-1 accuracy is significantly better than that of MoV1+BS, which is greater
than 16.3%. Our mAP value is lower than the mAP value for MoV1+BS on the
VehicleID (small) dataset.
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Fig. 3. Top-10 of the search results. The blue box indicates query images, the green
boxes are correct hits, and the red boxes are incorrect hits.

Table 5. Comparison with recent works on VehicleID

Methods
VehicleID(small) VehicleID(meduim) VehicleID(large)

mAP rank1 rank5 mAP rank1 rank5 mAP rank1 rank5

RAM [12] - 0.752 0.915 - 0.723 0.870 - 0.677 0.845

GSTE [2] 0.754 0.759 0.842 0.743 0.748 0.836 0.724 0.740 0.827

Wang et al. [16] - 0.677 0.829 - - - - 0.670 0.829

VAMI [21] 0.631 0.833 0.924 - 0.529 0.751 - 0.473 0.703

MoV1+BS [10] 0.862 0.788 0.962 0.817 0.734 0.926 0.782 0.693 0.895

Baseline+SWA (ours) 0.840 0.951 0.977 0.812 0.947 0.970 0.791 0.945 0.971

In order to observe the performance of the improved method visually, we
show the search results of some vehicle pictures, as shown in Fig. 3. We select
the picture of 10 vehicles from the query on VeRi-776. For each of the 10 vehicles,
we retrieve 10 different images of the same vehicle from gallery, and rank the
search results of each vehicle in query according to confidence.

These examples show that the overall performance of the improved method
is good. However, in a few cases, such as the vehicle is severely occluded, the
difference between the vehicles is too small, the image of the vehicle is blurred,
our method still needs to be further improved.

5 Conclusion

Experiments show that AlignedReID is also well suited for vehicle ReID prob-
lems. SWA can obtain global optimal solutions with lower loss values, generaliza-
tion and versatility. The improved method of combining a SWA method with the
AlignedReID method achieves state-of-the-art results on VeRi-776 dataset and
VehicleID dataset. Despite this, the accuracy of vehicle ReID is relatively low
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compared to pedestrian ReID, and there is still a long distance from large-scale
commercial use. At the same time, the real scene is more complicated. Therefore,
solving the vehicle ReID is still a heavy task.
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