
EasyChair Preprint
№ 2992

Cross-project Reopened Pull Request Prediction in
GitHub

Abdillah Mohamed, Li Zhang and Jing Jiang

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

March 19, 2020



Cross-project Reopened Pull Request Prediction in
GitHub

Abdillah Mohamed, Li Zhang, Jing Jiang∗

State Key Laboratory of Software Development Environment, Beihang University, Beijing, China
Email:{abdillah,lily,jiangjing}@buaa.edu.cn

Abstract—In GitHub, pull requests may get reopened again for
further modification and code review. Prediction of within-project
reopened pull requests work well if there is enough amount of training
data to build the training model. However, for new projects that have
a limited amount of pull requests, using training data from other
projects can help to predict the reopened pull requests. Therefore, it
is important to study cross-project reopened pull request prediction
and help integrators in new projects.

In this paper, we propose a cross-project approach that consists of
building a decision tree training model based on an external project
as a source project to predict the reopened pull requests in another
project. We evaluate the effectiveness of cross-project prediction on
7 open source projects containing 100,622 pull requests. Experiment
results show that the cross-project prediction achieves accuracy from
78.76% to 96.52%, and F1-measure from 53.34% to 90.58% across 7
projects. We examine the feature importance using the decision tree
predictor and find that the number of commits is the most important
feature in the majority of projects.

Keywords—Reopened pull request prediction, Cross project,
GitHub.

I. INTRODUCTION

GitHub1 is popular among a large number of software
developers around the word [1]. GitHub provides support
for pull-based development, and allows developers to make
contributions flexibly and efficiently [2]. Fig. 1 shows the life
cycle of pull requests in GitHub: When a set of changes is
ready, contributors create and submit pull requests to the main
repository in GitHub. Second, integrators inspect the submitted
code changes, identify issues, and make accept or reject
decisions. Third, integrators close pull requests. Fourth, some
pull requests may be opened again for further modification
and code review, and these pull requests are called reopened
pull requests.

To identify whether or not a pull request will be reopened,
we proposed in our prior work a within-project predictor
that consists of splitting the entire dataset of a project into
a training set and a testing set to predict whether or not
a closed pull request would be reopened [3]. Prediction of
within-project reopened pull requests works well if there is
enough amount of training data to build the training model.

However, for new projects that have a limited amount of
pull requests, using training data from other projects can
help to predict the reopened pull requests. It is important
to study cross-project reopened pull request prediction, and

∗Corresponding author
1http://github.com

1 Created

3 Closed

4 Reopened

2 Reviewed

Fig. 1. Reopened pull request evaluation process

help integrators in new projects. If pull requests are reopened
a long time after their close, they may cause conflicts with
new submitted pull requests, add software maintenance cost,
and increase burden for already busy developers. Several
researchers studied the cross-project defect prediction [4]–
[11]. To the best of our knowledge, the cross-project reopened
pull request prediction has not been explored yet.

In this paper, we proposes a cross-project approach that
consists of building a decision tree training model based on
an external project as source project to predict the reopened
pull requests in another project. This approach first extracts
code features of modified changes, review features during
evaluation, and developer feature of contributors from a source
project. Then it uses decision tree classifier to make prediction
for pull requests in a target project.

In order to explore the performances of this approach,
we collect datasets of 7 open-source projects and 100,622
pull requests. Results show that the cross-project reopened
pull request prediction achieves accuracy of 78.76%, 95.11%,
94.12%, 89.95%, 93.06%, 96.52%, 94.87%, and F1-measure
of 53.34%, 86.52%, 83.72%, 73.54%, 81.54%, 90.58%,
85.72% for the target projects bootstrap, cocos2d-x, symfony,
homebrew-cask, zendframework, rails, and angular.js respec-
tively. We explore feature importance, and find that in the
majority of projects, number of commits is the most important
in the prediction of reopened pull requests.



The main contributions of this paper are as follow:
• We build a cross-project approach based on a source

project to predict the reopened pull requests in a target
project. Results that cross-project approach performs well
in predicting reopened pull requests.

• We find that the number of commits is the most important
feature in the cross-project reopened pull request predic-
tion in most of the projects.

The remainder of the work is structured as follows. Section
II presents the background and data collection. In Section
III, we present the approach of the cross-project reopened
pull requests. Section IV presents the experimental settings.
Section V presents the experimental results of our approach. In
section VI, we present threats to validity. Section VII presents
the related work. Finally, section VIII presents summarise our
findings.

II. BACKGROUND AND DATA COLLECTION

In this section, we provide background information about
reopened pull requests and describe how our datasets were
selected for our study.

A. Background
GitHub allows developers to work effectively in a dis-

tributed software open projects enabled by Git [12]. Unlike
control version system such as subversion, with Git there is
no canonical copy of the code base. All copies are working
copies, and developers can commit local changes on a working
copy without needing to be connected to a centralized server
[13].

When a set of changes is ready, contributors create and sub-
mit pull requests to the main repository in GitHub. Integrators
inspect submitted code changes, identify issues, make accept
or reject decision, and close the pull requests. Nevertheless,
in some cases, pull requests may be opened again for further
modification and code review, and these pull requests are
called reopened pull requests. We illustrated an example of
the reopened pull requests in our previous works [3], [14].

B. Data collection
We use the same dataset as our previous work [3]. We

choose 7 popular projects with more than 5,000 stars, because
they receive many pull requests and provide datasets for our
research. We describe these 7 projects as follow:

• rails2 is a web application development framework that
includes everything needed to create database-backed
web applications according to the Model-View-Controller
(MVC) pattern.

• cocos2d-x3 is a multi-platform framework for building
2d games, interactive books, demos and other graphical
applications. It is an open-source game framework written
in C++, with a thin platform dependent layer. It is widely
used to build games, apps and other cross platform GUI
based interactive programs.

• symfony4 is a PHP framework for web applications and

2https://github.com/rails/rails/
3https://github.com/cocos2d/cocos2d-x/
4https://github.com/symfony/symfony/

a set of reusable PHP components. It was originally
conceived by the interactive agency SensioLabs for the
development of web sites for its own customers;

• homebrew-cask5 is a command line interface workflow
for the administration of Mac applications distributed as
binaries.

• zendframework6 is a collection of professional PHP
packages used to develop web applications and services
using PHP.

• angular.js7 is an open source JavaScript tool set for
building the framework of web application.

• bootstrap8 is an open source framework for developing
responsive, mobile first projects on the web with HTML,
CSS, and JavaScript.

Table I shows the basic statistics of 7 projects. The table
represents the percentage of reopened pull requests. In the
fifth column, the value before the slash is the number of
reopened pull requests, and the value after the slash is its
percentage. 2.97% and 3.78% of pull requests are reopened in
projects angular.js and zendframework respectively. In projects
rails, symfony, homebrew-cask and bootstrap, more than 1%
of pull requests are reopened. Reopened pull requests exist in
all projects.

III. APPROACH

In this section, we describe the cross-project reopened pull
request prediction. Figure 2 presents the overall framework
of the cross-project reopened pull requests prediction model
that has two phases: a model-building phase and a prediction
phase. In the model-building phase, our goal is to build a cross-
project reopened pull-request prediction model that is learning
from a source project. In the prediction phase, the model is
used to predict reopened pull requests in a target project.

A. Model-building phase

As shown in Figure 2, our framework takes as input
instances (pull requests) from source project (step 1) with
a known class (i.e., reopened or non-reopened). We collect
code features, review features and developer feature. Next, it
extracts various metrics from the source project to build the
cross-project model (step 2). More specifically, we compute
code features, review features and developer feature for each
pull request in training dataset from a source project. Then
we use a weighted vector to represent each pull request, and
each element in this vector corresponds to the value of a
feature. For pull requests in the training set, we know whether
they are reopened or not. We run training dataset and build a
decision tree classifier. A decision tree classifier is a machine
learning algorithm that uses a tree-like model of decisions to
help identify a strategy most likely to reach a goal (e.g., to
predict whether or not a pull request will be reopened). We
describe details of features as follow:

5https://github.com/caskroom/homebrew-cask/
6https://github.com/zendframework/zendframework/
7https://github.com/angular/angular.js/
8https://github.com/twbs/bootstrap/



TABLE I
BASIC INFORMATION OF PROJECTS.

Project owner Repository Language #Pull requests #Reopened pull requests #Stars
rails rails Ruby 19,190 467/2.43% 36,253

cocos2d cocos2d-x C++ 14,134 113/0.80% 10,514
symfony symfony PHP 14,569 220/1.37% 14,800
caskroom homebrew-cask Ruby 31,980 331/1.04% 11,229

zendframework zendframework PHP 5,631 213/3.78% 5,522
angular angular.js JavaScript 7,504 223/2.97% 56,359

twbs bootstrap JavaScript 7,614 136/1.79% 112,425

Fig. 2. Overall framework of the cross-project predictor

Code feature. In previous work [15], code features were
having already been used to predict whether pull requests
would be accepted. We also use code features in cross-
project reopened pull requests prediction. We only consider
pull requests features at the first close. Some pull requests are
reopened and closed several times, and they may have further
modification and updated values of features. We take in count
four features to measure modified codes, including number of
commits, number of changed files, number of added lines and
number of deleted lines in a pull request.

Review feature. Previous work [16] found that pull requests
with a lot of comments are much less likely to be accepted.
The evaluation process is related to the code review decisions,
and it may more affect reopened pull requests. Integrators
inspect the submitted code changes, identify issues, and make
accept or reject decisions. Integrators’ attitude in code review
towards pull requests may also have an impact on reopen-
ing pull requests. Therefore, we consider review features,
including number of comments, evaluation time and closed
status. Evaluation time is the time difference between the
pull request’s submission and first close. Closed status assess
whether a pull request is accepted or rejected at its first close.

Developer feature. An initial study [17] noticed that certain
people were more productive at either fixing bugs or reassign-
ing bugs to others who fix them. Their bugs are less likely to

be reopened after they are closed. Previous work [15] appraises
contributors’ historical accept ratios in predicting whether pull
requests would be accepted. Developers’ performance records
are important in predicting reopened bugs or accepted pull
requests. We also apply developer feature which quantifies
the reputation of contributors who submit pull requests. Pull
requests submitted by contributors with hight experience may
be less likely to be reopened. To compute the developer’s
reputation, we collect contributors who submitted the pull
requests, the creation time and statuses (merged or rejected)
for pull requests in each project. For pull requests submitted
by the same contributor, we sort them by their creation time.
For each pull request, we compute the number of accepted and
rejected pull requests submitted by the same contributor before
its creation time. Briefly, the reputation is the proportion of
previous pull requests which are submitted by the contributor
and get accepted.

B. Prediction phase

In the prediction phase, the same cross-project prediction
model built in step 2 is applied to predict whether a closed
pull request would be reopened in the target project. For a
pull request in a target project, we first extract code features,
review features and developer feature as those extracted the
model-building phase (step 3). We then input the values of
these metrics into the cross-project model (Step 4). It outputs
the pull request prediction result about whether it will be either
reopened or non-reopened (Step 5).

IV. EXPERIMENTAL SETTINGS

In this section, we aim at presenting the experimental setting
to evaluate the performance of our approach. The main goal
of this work is twofold. (i) We build trained model based
one source project to train a model and use it to predict the
reopening of a pull request of another project. (ii) We study
feature importance in predicting reopened pull requests.

A. Evaluation process and metrics

As shown in Table I, our datasets include 7 projects and
100,622 pull requests. For each project, its dataset is used as
a testing dataset of a target project, and other project is used
as a training dataset of a source project. We use a training
dataset to build a cross-project prediction model, and use the
testing dataset to evaluate performance.

In evaluation, we use precision, recall and f1-measure. The
accuracy measures the number of correctly classified reopened



pull requests (both non-reopened and reopened) over the total
number of pull requests. Precision is the ratio of correctly
predicted reopened pull requests over all the pull requests
predicted as reopened. Recall is the ratio of correctly predicted
reopened pull requests over all actually reopened pull requests.
F1-measure is the weighted harmonic mean of precision and
recall. These metrics are commonly used in the software
engineering literature [18], [19].

B. Research Questions

We are interested to answer following research questions:
RQ1: How does the cross-project prediction perform?
Motivation. Zimmermann et al. found that when no or a

little data was available, developers used data from another
project to successfully make defect prediction for another one
project [9]. In this research question, we aim at building a
cross-project predictor based on one project as a source project
to predict the pull request reopening in a data of another
project. We wonder how the cross-project prediction perform.

Approach. To solve this research question, we aim at
building decision tree training models based on one projects
as a source project and persist them by crossing the seven
projects between them. For each of the 6 source projects used
separately to predict the reopened pull requests in one and
only target project, we select the results of the source project
that achieves high f1-measure.

RQ2: Which features are important in cross-project
reopened pull request prediction?

Motivation. Different features may have various weights
in cross-project reopened pull request prediction. We wonder
which features are more important than other.

Approach. In order to answer this question, we use decision
tree classifier to compute feature importance in the prediction
of reopened pull requests. Feature importance is calculated as
the decrease in node impurity weighted by the probability of
reaching that node. The node probability can be calculated
by the number of reopened pull request that reach the node,
divided by the total number of pull requests. The higher the
value is, and the more important the feature is.

V. EXPERIMENTAL RESULTS

In this section, we study the results of our study aiming at
answering above research questions.

A. RQ1: Performance of cross-project prediction

In order to answer RQ1, we study results based on different
combination of source projects and target project. We first
analyze the project rails as an example. Table II shows
results when the project rails is the target project. In each
row, we predict reopened pull requests in the project rails
as target projects by crossing the projects symfony, cocos2d-
x, angular.js, zendframework, homebrew-cask and bootstrap
respectively as source projects. The best results are in bold.
Results show that the combination cocos2d-x =>rails achieves
the best performance by achieving an accuracy of 96.52% and
f1-measure of 90.58%.

TABLE II
PREDICTING THE REOPENED PULL REQUEST BASED ON THE PROJECT

RAILS AS THE TARGET PROJECT

Source =>Target
projects

Accuracy Precision Recall F1-
measure

symfony =>rails 96.47% 98.07% 83.92% 90.45%
cocos2d-x =>rails 96.52% 96.60% 85.20% 90.58%
angular.js =>rails 96.02% 95.29% 85.00% 89.85%
zendframework =>rails 96.42% 96.61% 84.75% 90.29%
homebrew-cask =>rails 92.24% 78.51% 83.92% 81.13%
bootstrap =>rails 94.83% 82.77% 92.97% 87.57%

Table III shows the performances of the cross-projects re-
opened pull requests prediction across 7 projects. The projects
on top of the table are used as a target for single source cross-
projects, while the projects on the left side of the table are
used as source projects. We use the source project to train the
decision tree model, and the target project is used as a class
project to predict the reopened pull requests. Results in green
color represent the highest performance predictions of the
cross-project prediction of each target across 6 target projects.
For example, in the third column, we use the project angular.js
as a target project to predict the reopened pull requests in
the source projects rails, cocos2d-x, symfony, homebrew-cask,
zendframework and bootsrap respectively. Results show that
when predicting reopened pull requests in the target project an-
gular.js, the source project symfony is more suitable comparing
to the other source projects. In the same way, we compared the
performances of the other source projects, and find the source
project which achieves the highest F1-measure in predicting
reopened pull requests for a specific target project.

The Table IV presents the combinations of the cross-project
that carry out the best results across 42 combinations from
the Table III. Each target project is used separately with each
of the six remaining projects as source projects to predict
the reopened pull requests and select the combination (i.e.,
the prediction results of the crossed projects) that achieves
the best results. For instance, the second row presents the
best result when combining the project homebrew-cask as
a source project to predict the reopened pull request in the
project twbs as a target. In the same way, we processed
to select the best combination of crossed projects (sources
and targets) that has good performances. This we notice
that the single source cross-project reopened pull requests
prediction achieves good performances in most of the projects.

RQ1: Across the 7 projects, the single source cross-
project reopened pull requests prediction achieves good
performances in most of the projects.

B. RQ2: Important features for predicting reopened pull re-
quests.

We use decision tree classifier to predict whether pull
requests will be reopened or not. Decision tree classifier also
computes the importance of each feature in the prediction
of reopened pull requests, and we plot the results in the
Table V. Feature importance may be different in various
projects. For example, in source project rails and the target



TABLE III
F1-MEASURE COMPARISON BETWEEN THE CROSS-PROJECTS REOPENED PULL REQUESTS PREDICTION

Source/Target rails angular.js cocos2d-x Symfony homebrew-cask zendframework bootstrap
rails / 83.61% 86.22% 82.55% 61.82% 81.54% 24.81%
angular.js 89.85% / 84.06% 80.65% 59.58% 77.73% 24.25%
cocos2d-x 90.58% 84.26% / 67.61% 73.54% 80.36% 35.74%
symfony 90.45% 85.72% 84.18% / 61.79% 79.57% 20.59%
homebrew-cask 81.13% 81.62% 83.75% 66.15% / 79.40% 53.34%
zendframework 90.29% 84.87% 86.52% 83.72% 67.34% / 33.68%
bootstrap 87.57% 76.33% 84.68% 69.84% 73.24% 74.43% /

TABLE IV
PERFORMANCES OF CROSS-PROJECT REOPENED PULL REQUESTS

PREDICTOR

Source=>Target projects Accuracy Precision Recall F1-
measure

homebrew-cask =>bootstrap 78.76% 48.12% 59.83% 53.34%
zendframework =>cocos2d-x 95.11% 97.36% 77.86% 86.52%
zendframework =>symfony 94.12% 93.72% 75.64% 83.72%
cocos2d-x =>homebrew-cask 89.95% 78.51% 69.16% 73.54%
rails =>zendframework 93.06% 90.18% 74.41% 81.54%
cocos2d-x =>rails 96.52% 96.60% 85.20% 90.58%
symfony =>angular.js 94.87% 97.91% 76.24% 85.72%

zendframework, the three most important features are the
number of commits, number of changed files, and the number
of added lines. In source project homebrew-cask and the
target project bootstrap, the three most important features
include a number of commits, closed status, and number
of added lines. In the majority of projects, the number of
commits is the most important in the prediction of reopened
pull requests. Some pull requests have many commits, and
they may be difficult for integrators to make a complete
evaluation. Therefore, pull requests with many commits are
likely to be reopened, and the number of commits is the most
important feature.

RQ2: In the majority of projects, the number of commits
is the most important in the cross-project reopened pull
request prediction.

VI. THREATS TO VALIDITY

In this section, we introduce threats to the validity of our
study.

Threats to external validity relate to the generalization of
our research. Firstly, our experimental results are limited to 7
projects in GitHub. We cannot claim that other projects will
achieve the same results. In the future, we plan to use more
projects to better generalize the results of our method. We
will conduct broader experiments to validate whether the singe
source cross-project prediction performs well. Secondly, we
analyze open-source software projects in GitHub, and it is
unknown whether other platforms have similar results. In the
future, we plan to study other platforms and compare their
results with our findings in GitHub.

Threats to construct validity refer to the degree to which
the construct being studied is affected by experiment settings.
We use accuracy, precision, recall, and F1-measure. These
evaluation metrics are also used by various automated software

engineering techniques [18], [19]. As a results, there is little
threat to construct validity.

VII. RELATED WORKS

In this section, we mainly discuss related works, including
reopened pull requests and cross-project prediction.

A. Reopened pull requests

In GitHub, there are several works which are focusing on
pull requests evaluation and prediction [3], [14]. We conducted
a case study to understand reopened pull requests [14]. We pro-
posed an approach DTPre which was an automatic predictor
of reopened pull requests based on decision tree classifier [3].
Previous work [3] designed a within-project reopened pull
request prediction, while this paper explores the cross-project
reopened pull request prediction.

B. Cross-project prediction

The cross-project prediction has been the main area of
researches in different aspects by reusing training data from
other projects to make a prediction in a new project. Sev-
eral authors discussed the cross-project defect prediction [4]–
[11]. Rahman et al. [4] compared the cross-project defect
prediction with the prediction within a project, and they
found that cross-project prediction performance was no worse
than within-project performance and considerably better than
random prediction. Xin et al. [20] showed that cross-project
prediction worked well if there was a sufficient amount of
training data to build the model. Xin et al. further proposed a
HYbrid model reconstruction approach for cross-project defect
prediction [7]. Canfora et al. [6] conducted a study for cross-
project defect prediction, based on a multi-objective logistic
regression model built using a genetic algorithm. Turhan et
al. [10] proposed a practical defect prediction method for
companies that did not track defect related data to investigate
the applicability of cross-company (CC) data for building
localized defect predictors using static code features.

Unlike the above researches, we address a different problem,
namely cross-project reopened pull request prediction.

VIII. CONCLUSION

Cross-project reopened pull requests are important for the
projects that do not have enough historical data to build
prediction models. In this paper, we propose a cross-project
approach for predicting reopened pull requests in GitHub.
This study brings new insight into the performances of the



TABLE V
FEATURE IMPORTANCE FOR CROSS-PROJECT REOPENED PULL REQUESTS PREDICTION

Features homebrew-cask
=>bootstrap

zendframework
=>cocos2d-x

zendframework
=>symfony

cocos2d-x
=>homebrew-cask

rails
=>zend-
framework

cocos2d-
x =>rails

symfony
=>Angular.js

Average

Number of commits 0.327 0.275 0.275 0.611 0.476 0.611 0.463 0.434
Number of changed file 0.038 0.411 0.411 0.040 0.361 0.040 0.274 0.225
Number of added lines 0.128 0.000 0.000 0.000 0.045 0.000 0.000 0.025
Number of deleted lines 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Number of comments 0.019 0.033 0.034 0.002 0.017 0.002 0.015 0.017
Evaluation time 0.079 0.169 0.169 0.083 0.041 0.084 0.116 0.106
Closed status 0.322 0.038 0.038 0.234 0.040 0.234 0.025 0.133
Reputation 0.084 0.074 0.073 0.029 0.021 0.029 0.107 0.060

cross-project using a decision tree classifier. Based on 100,622
pull requests from 7 open-source projects, experimental results
show that the cross-project reopened pull request prediction
achieves an f1-measure of 53.34%, 86.52%, 83.72%, 73.54%,
81.54%, 90.58%, and 85.72% for the target projects bootstrap,
cocos2d-x, symfony, homebrew-cask, zendframework, rails,
and angular.js respectively. We use decision tree to compute
feature importance, and find that number of commits is the
most important feature in the majority of projects.

In the future, we plan to use more projects from different
open-source projects to explore whether our approaches would
have similar results in the prediction of reopened pull requests.

ACKNOWLEDGMENT

This work is supported by the National Key Research and
Development Program of China No. 2018AAA0102301, the
National Natural Science Foundation of China under Grant No.
61672078, the State Key Laboratory of Software Development
Environment under Grant No.SKLSDE-2019ZX-05, and the
Massiwa Technology of Comoros under Grant No.9108-B-19.

REFERENCES

[1] A Lima, L Rossi, and M Musolesi. Coding together at scale: Github asa
collaborative social network. In Proceedings of 8th AAAI International
Conference on Weblogs and Social Media, 2014.

[2] Georgios Gousios, Andy Zaidman, Margaret-Anne Storey, and Arie
Van Deursen. Work practices and challenges in pull-based development:
the integrator’s perspective. In 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, volume 1, pages 358–368. IEEE,
2015.

[3] Abdillah Mohamed, Li Zhang, Jing Jiang, and Ahmed Ktob. Predicting
which pull requests will get reopened in github. In 2018 25th Asia-
Pacific Software Engineering Conference (APSEC), pages 375–385.
IEEE, 2018.

[4] Foyzur Rahman, Daryl Posnett, and Premkumar Devanbu. Recalling
the” imprecision” of cross-project defect prediction. In Proceedings of
the ACM SIGSOFT 20th International Symposium on the Foundations
of Software Engineering, pages 1–11, 2012.

[5] Feng Zhang, Quan Zheng, Ying Zou, and Ahmed E Hassan. Cross-
project defect prediction using a connectivity-based unsupervised clas-
sifier. In 2016 IEEE/ACM 38th International Conference on Software
Engineering (ICSE), pages 309–320. IEEE, 2016.

[6] Gerardo Canfora, Andrea De Lucia, Massimiliano Di Penta, Rocco
Oliveto, Annibale Panichella, and Sebastiano Panichella. Multi-objective
cross-project defect prediction. In 2013 IEEE Sixth International
Conference on Software Testing, Verification and Validation, pages 252–
261. IEEE, 2013.

[7] Xin Xia, David Lo, Sinno Jialin Pan, Nachiappan Nagappan, and Xinyu
Wang. Hydra: Massively compositional model for cross-project defect
prediction. IEEE Transactions on software Engineering, 42(10):977–
998, 2016.

[8] Annibale Panichella, Rocco Oliveto, and Andrea De Lucia. Cross-
project defect prediction models: L’union fait la force. In 2014
Software Evolution Week-IEEE Conference on Software Maintenance,
Reengineering, and Reverse Engineering (CSMR-WCRE), pages 164–
173. IEEE, 2014.

[9] Thomas Zimmermann, Nachiappan Nagappan, Harald Gall, Emanuel
Giger, and Brendan Murphy. Cross-project defect prediction: a large
scale experiment on data vs. domain vs. process. In Proceedings of
the 7th joint meeting of the European software engineering conference
and the ACM SIGSOFT symposium on The foundations of software
engineering, pages 91–100, 2009.

[10] Burak Turhan, Tim Menzies, Ayşe B Bener, and Justin Di Stefano. On
the relative value of cross-company and within-company data for defect
prediction. Empirical Software Engineering, 14(5):540–578, 2009.

[11] Tim Menzies, Andrew Butcher, Andrian Marcus, Thomas Zimmermann,
and David Cok. Local vs. global models for effort estimation and
defect prediction. In 2011 26th IEEE/ACM International Conference
on Automated Software Engineering (ASE 2011), pages 343–351. IEEE,
2011.

[12] Chandra Maddila, Chetan Bansal, and Nachiappan Nagappan. Predicting
pull request completion time: a case study on large scale cloud services.
In Proceedings of the Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
pages 874–882, 2019.

[13] Yue Yu, Huaimin Wang, Gang Yin, and Tao Wang. Reviewer recommen-
dation for pull-requests in github: What can we learn from code review
and bug assignment? Information and Software Technology, 74:204–218,
2016.

[14] Jing Jiang, Abdillah Mohamed, and Li Zhang. What are the character-
istics of reopened pull requests? a case study on open source projects
in github. IEEE Access, 7:102751–102761, 2019.

[15] Georgios Gousios, Martin Pinzger, and Arie van Deursen. An ex-
ploratory study of the pull-based software development model. In Pro-
ceedings of the 36th International Conference on Software Engineering,
pages 345–355. ACM, 2014.

[16] Jason Tsay, Laura Dabbish, and James Herbsleb. Influence of social and
technical factors for evaluating contribution in github. In Proceedings of
the 36th international conference on Software engineering, pages 356–
366. ACM, 2014.

[17] Thomas Zimmermann, Nachiappan Nagappan, Philip J Guo, and Bren-
dan Murphy. Characterizing and predicting which bugs get reopened.
In Proceedings of the 34th International Conference on Software Engi-
neering, pages 1074–1083. IEEE Press, 2012.

[18] Jing Jiang, Yun Yang, Jiahuan He, Xavier Blanc, and Li Zhang.
Who should comment on this pull request? analyzing attributes for
more accurate commenter recommendation in pull-based development.
Information and Software Technology, 84:48–62, 2017.

[19] Emad Shihab, Akinori Ihara, Yasutaka Kamei, Walid M Ibrahim, Masao
Ohira, Bram Adams, Ahmed E Hassan, and Ken-ichi Matsumoto.
Predicting re-opened bugs: A case study on the eclipse project. In
Reverse Engineering (WCRE), 2010 17th Working Conference on, pages
249–258. IEEE, 2010.

[20] Xin Xia, David Lo, Shane McIntosh, Emad Shihab, and Ahmed E
Hassan. Cross-project build co-change prediction. In 2015 IEEE
22nd International Conference on Software Analysis, Evolution, and
Reengineering (SANER), pages 311–320. IEEE, 2015.


