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Abstract—We present five methodologies for probabilistic load
forecasting which are a method based on Bayesian estimation, a
rank-reduction operation based on principle component analysis,
least absolute shrinkage and selection operator (Lasso) estima-
tion, ridge regression, and a supervised learning algorithm called
scaled conjugate gradient (SCG) neural network. These five
models considered can be regarded as a variety of competitive
approaches for analyzing hourly electric load and temperature.
The modeling approaches incorporates the load and temperature
effects directly, and reflect hourly patterns of the load. We
provide empirical studies based on the Global Energy Forecasting
Competition 2014 (GEFCom 2014). In this research, we use
historical load data only to forecast the future load. The study
performs the estimation comparison of the five methodologies,
showing that ridge regression has a marginal advantage over the
others.

Index Terms—Load Forecasting, methodologies, mean squared
error, relative error percentage

I. INTRODUCTION

Point forecasts have been used for several decades to predict
energy supply, demand and prices for electrical system and
financial planning purposes. An overview of energy fore-
casting was introduced in Hong (2014), which looks at the
forecasting practices of smart grids back upon the inception
of the electricity market. Many methodologies have been intro-
duced and extensively applied in the utility market, however,
due to the global modernization of smart power grids, the
electricity demand becomes more and more volatile and less
predictable. To find the consumption pattern of the electricity
load and to predict more precisely to meet the economic
demand, Global Energy Forecasting Competition (GEFCom)
was held by Dr. Tao Hong in 2012, 2014 and 2017 respectively
to invite worldwide candidates submit their load estimation
results for forecasting energy demand. Hong et al. (2016)

summarized the up-to-data research progress on probabilistic
energy forecasting, most of them were the submission of
GEFCom 2014.

A practical overview of energy forecasting is discussed
in a chronological order including short and long term load
forecasting for over a century and a summarized computer
based method for short term load forecasting is presented
in Hong (2014). In this paper, we introduced and discussed
several methodologies for point load forecasting using the
case study from the forecasting competition GEFCom2014.
These methodologies include Gauss-Bayes (GB), Reduced
Rank Gauss-Bayes, Lasso, Ridge Regression(RR) and machine
learning (scaled conjugate gradient algorithm). Due to the
intrinsic conditions/problems that cause the estimation of the
future load consumption to be unreliable, we tried to find one
method that can minimize the mean square error and achieve
the lowest relative error percentage. Thus, the purpose of using
these five methods is to compare the load forecasting results
that are used to quantify the uncertainty in the electricity
demand. The data we used in this paper is GEFCom2014
provided by Hong et al. (2016).

The structure of this paper is as follows: section 2 introduces
five methodologies; section 3 presents the load forecasting
results in each of the techniques and give a further discussion
on ridge regression and principle components analysis; finally,
the paper is concluded in section 4.

II. PREDICTION METHODOLOGIES

A. Gauss-Bayes

Assume the multivariate random vector xi ∈ RN(i =
1, ..., k) includes the hourly load values of k consecutive



consumption months. Two sub-matrices Y and Z can be
partitioned from the raw matrix X , such as

[X] = [Y Z] (1)

where submatrices Y and Z include historical and future load
values.

Suppose that random variables y and z are jointly normally
distributed. The Bayesian posterior distribution of (z|y = Y )
is given by

ẑz|y = ΣzyΣ−1yy y (2)

and
Σ̂z|y = Σzz − ΣzyΣ−1yy Σyz (3)

where Σ−1yy is the generalized inverse of Σyy and ΣzyΣ−1yy is
the regression coefficients of the matrix.

The Gauss-Bayes technique can result in the optimal values
of MSE, however, there is an unavoidable fact that the matrix
of Σyy is not always well conditioned and the numerical
calculations of this method cannot be trusted (Ghorbani and
Chong 2017).

Fig. 1: plot of normalized historical data

B. Reduced Rank Gauss-Bayes

Reduced Rand Gauss-Bayes is defined as a dimension
reduction method. Principle component analysis also known
as an unsupervised dimension reduction methodology is one
of the techniques for multivariate analysis (Maitra and Yan
2008), and the reduced rank normally presents on reducing the
number of predictive variable (Bair,Hastie, Paul and Tibshirani
2006). Due to the huge calculating load of computing XTX to
get eigenvector W , there is a computationally efficient way to
obtain the W by using singular value decomposition (SVD),
which is given by

X = UΣVᵀ (4)

However, the smallest singular value from Eq.(4) is big enough
to supply determinate information about the condition number
of the raw matrix X (Klema and Laub 1980).

Since the first few eigenvalues normally account for the
bulk part of the sum of all the eigenvalues, using only a
subset of eigenvalues and the corresponding eigenvectors is a
reasonable approach. Resolving the noisy observation vector
onto a principle subspace which only includes the filtered
information can be achieved by

w = Gy (5)

where G = (V
′

M,LVM,L)−1V
′

M,L, M is the lenght of random
vector y and L is the number of eigenvalues included. (Ghor-
bani and Chong 2017). By substituting w in Eq.(2) and (3)
we have:

ẑz|w = ΣzwΣ−1www (6)

and
Σ̂z|w = Σzz − ΣzwΣ−1wwΣwz (7)

Due to the dimensional reduction property of this method, if
the posterior distribution of estimation of z using Eq.(6) and
(7) has similar results to the estimation results from Eq.(2)
and (3), this method can be considered as a good substitute
for Gauss-Bayes method.

C. Ridge Regression (RR)

Ridge regression technique is one of the shrinkage methods
that incorporate the shrinkage estimator, which is added into
the diagonal elements of correlation matrix. Compared to
other ordinary least square (OLS) estimation techniques, ridge
regression method is more stable as it is a continuous process
that shrinks parameters (Tibshirani, 1996). Because of this
diagonal of ones considered as a ridge, it is where the ridge
regression gets its name. Thus, the RR technique is given by

β = (R+ λI)−1X
′
Y (8)

The value of bias of the estimator is given by

β = (R+ λI)−1X
′
Y (9)

and the equation of the covariance matrix is given by

V (β
′
) = (X

′
X + λI)−1X

′
X(X

′
X + λI)−1 (10)

As a shrinkage method, ridge regression is slightly different
as the estimation method which will be mentioned below.
RR can only shrink all the coefficient toward zero, but not
exactly to zero unless λ = ∞. However, due to this reason,
ridge regression cannot perform variable selection in the linear
model, which is one of the advantages of technique. The other
difference between the and RR is the ridge penalty term uses
the ‖β‖22 where the uses the ‖β‖1, it represents as

argmin‖y −Xβ‖22 + λ‖β‖22 (11)

in which
argmin‖y −Xβ‖22, s.t.‖β‖22 ≤ t (12)

where t is the tuning parameter of λ.



D. least Absolute Selection and Shrinkage Operator ()

Least absolute selection and shrinkage operator (Lasso)
estimation technique is a penalized ordinary least squares
(OLS) regression estimator (Ziel and Liu 2016). One of the
reason that Lasso is superior to OLS is that it can determine
a smaller subset to give the powerful effects when there are a
large number of predictors (Tibshirani,1996). Thus, the Lasso
estimation is given by

argmin‖y −Xβ‖22 + λ‖β‖1 (13)

where λ is the tuning parameter and X is the regressor matrix.
Lasso estimation is another shrinkage method that tunes λ to
determine the ‘penalty’ on the sizes of parameter. The purpose
of introducing λ in the OLS is to get a good estimation of y
but balancing the coefficient of |y| in a reasonable size. In
this research, we use 10-fold cross-validation of estimation
that will automatically select a sequence number of different
lambdas for the forecasting. During the calculation, Lasso will
try to set some coefficient to zero, it represents as

argmin‖y −Xβ‖22, s.t.‖β‖1 ≤ t (14)

t is the 1-to-1 relationship with the λ mentioned in Eq.(14).

E. Scale Conjugated Gradient Algorithm (SCG)

The technique of deep learning used in this research is
scaled conjugated gradient algorithm, which is a method of
combining the model-trust region approach with the scale
conjugate gradient (SCG) approach. Thereinto, the model-trust
region approach comes from the Levenberg-Marquardt algo-
rithm which is a variation of the standard Newton algorithm. A
Lagrange Multiplier ( Fletcher, 1975) λk is introduced in SCG
algorithm to regulate the indefiniteness of E”(w̃k), which is

s̄k =
E

′
(w̃k + αkP̃k)− E′

(w̃k)

σk
+ λkP̃k (15)

Here, P̃k denote as search direction, αk is the step size,
E(w̃) is an error function, in which w̃k +αkP̃k is an updated
function. If E

′
(w̃k 6= 0) then set k = k + 1 and go to 2 else

return w̃k+1, as the desired minimum (Moller,1993).

III. PRE-PROCESSING DATA

In this research, we use five year continually hourly load and
corresponding 25 stations temperatures data. To format this
data set, we use a Hankel matrix which contains k rows sample
of vector data with length N in each row. Hankel matrix
stocks K samples each one time shifted from the previous
one. Assume LN represents the load consumption for day N .
Then our Hankel matrix is:

x1
x2
...
xk

 =


L1 L2 · · · LN

L2 L3 · · · LN+1

...
...

. . .
...

Lk Lk+1 · · · LK+N−1

 (16)

As the data vectors x1, x2, ..., xk are not drawn from the
same distribution with the same units, we should perform

a scaling approach to the load and temperatures in different
benchmarks to make the normalization meaningful. One ap-
proach is introduced here. Suppose that li(M) is the maximum
value in the vector li which is a vector of load and/or
temperature over N consecutive measuring 24 hours of days.
We can apply the normalization to obtain xi as

xi = li/li(M) (17)

This normalization in Eq.(26) has the interpretation that
vector contains load and/or temperature values as a fraction of
the values on the M th day. Before applying each technique,
we also subtract the average vector x̄ from each xi. (Ghorbani
and Chong 2017).

IV. RESULTS AND DISCUSSION

Figure 1 represent the histogram of the normalized data (first
column in matrix X) and as you can see it represents a bell
shape.

The discussion based on each of the constructed matrices
of the historical data X will be applied in five techniques
respectively. The estimation is focused on the N th hour load
value by using the N − 1 previous hours load consumption
value as predictors. Here N is a variable value. Relative error
percentage (REP) is used here to compare the performance of
each technique. The REP is calculated by comparing the mean
squared error with the true future load value, it represents as

mse =
1

N

N∑
i=1

(z − ẑ)2

base =
1

N

N∑
i=1

z2

REP = 100 ∗
√
mse/base

(18)

A. Comparison of prediction results

First, we use eight predictor variables to forecast the next-
hour load (prediction) value. The eight predictors are as
follows: the previous five hours of load values, the load value
from 24 hours ago, and the load value from exactly seven days
ago. In Table 1, we show the results of the load forecasting
for all five techniques.

Load data Forecasting
Techniques Gauss-

Bayes
Reduced
Rank
Gauss-
Bayes

Lasso Ridge
Regres-
sion

SCG
ANN

Relative
Error
Percent-
age

11.5539% 12.4589% 11.5533% 11.6473% 9.3047%

TABLE I: Load forecasting by using only 8 predictors

Table 1 shows the percentage of the relative error when
only considering eight historical load data as predictors to
predict the 6th hourly load consumption. It turns out that
SCG gives the best result when the numbers of predictors



(a) Reduced Rank Gauss-Bayes result (b) RR result

(c) Lasso Result (d) SCG ANN result

Fig. 2: Plots of Load Forecasting in Multiple Techniques

are limited. However, except SCG technique shows a smaller
percentage that is below 10%, the prediction results of all
the other techniques are relatively worse than the expectation.
Thus, a further testing was performed to see whether it can
provide a more accurate forecasting.

At this point, we change the observation vector N − 1
from 80 to 200 and the comparison among four techniques
are shown in Figure 2. It’s worth noting that Gauss-Bayes
method cannot be performed when the observation vector is
too big. The reason of calculation difficulties is due to ill-
conditioning issues associated with Gauss-Bayes. Thus, only
Reduced Rank Gauss-Bayes, Lasso, ridge regression and SCG
were participated in this competition. The results are shown
in Figure 2.

It turns out that the amplitude oscillation of the curve in
Reduced Rank Gauss-Bayes and SCG techniques are quite
big, and the relative error percentage ranges roughly from
13.5% to 9.2%, and 14% to 5% respectively. In addition, the
curve of Reduced Rank Gauss-Bayes method slowly converge

when the number of predictors are more than 140 while the
curve has no such obvious convergent tendency in SCG ANN
method. In ridge regression technique, the value of REP has a
dramatic decrease when M is around 165 and then converge
to about 6% when M is 180. Although the curve in Lasso
technique has the same tendency with ridge regression, the
REP is slightly higher than the result in ridge regression and
also more oscillated. From now on, ridge regression shows
the best prediction results when M changes from 80 to 200.
However, the tuning parameter λ is a fixed value which may
affect the prediction result although it turns out to have the
best forecasting ability. Thus we change the λ value to see
how much the load forecasting will be affected.

B. Ridge Regression Technique Analysis

We set λ value as a variable value then applied them
individually in the ridge regression method simulation. Part
of the result of the simulation is shown in Table 2.

The results in Table 2 illustrated an apparently pattern.
The load forecasting REP value increased when the Lambda



(a) Reduced Rank Gauss-Bayes mse vs M result (b) Reduced Rank Gauss-Bayes REP vs predictors result

Fig. 3: Reduced Rank Gauss-Bayes Prediction Results for different L

M
λ 0.001 0.1 0.3 0.5 0.7 0.9

80 6.865 6.960 7.248 7.506 7.730 7.928
100 6.790 6.876 7.149 7.399 7.619 7.814
120 6.7683 6.849 7.121 7.371 7.590 7.785
150 6.261 6.338 6.601 6.845 7.061 7.253
180 5.816 5.883 6.128 6.359 6.564 6.748
200 5.787 5.855 6.097 6.325 6.527 6.709

TABLE II: M versus Lambda of RR Load Forecasting REP
Result

value increased, in other words, a higher lambda gave a lower
prediction accuracy. However, as the M (predictors) increases,
the REP values decreases, which gave a better forecasting.
It is easy to understand that the more historical data were
used in the technique, the better forecasting result might be.
On the other hand, Although the λ had less influence to the
load forecasting and the ridge tuning was not that important
in this case, ridge regression technique still gave the best
forecasting result here. The lowest REP value can achieve
as low as 5.787%. The overall simulation result of ridge
regression technique with different M and variable λ was
shown in Figure 4.

C. Reduced Rank Gauss-Bayes method Analysis

Although we set up data matrices with different lengths of
observation vector, in Reduced Rank Gauss-Bayes method, we
are more interested in improving values of REP in each of the
observation vectors with different lengths.

Thus, instead of just choosing one hypothetical optimal L
value by setting only one threshold (95% in the above case),
we make the threshold as a variable number ranging from 50%
to 95% with 5% increment in each simulation, and the results
are shown in Figure 3.

To better understanding the performance of Reduced Rank
Gauss-Bayes method, studying of the dimension of the ob-
jected subspace is a good way. Here L is the number of eigen-

Fig. 4: M versus Lambda of RR Load Forecasting REP Result

values that represents part components of the data information.
As the setting threshold was a variable value, the obtained L
was also changed correspondingly. In Figure 4, the value of
MSE and REP for different Ms with variable threshold are
shown in Figure .3(a) and Figure .3(b) respectively. As the
L value increases to get more information, the value of MSE
and REP decreases when M increases.However, after a certain
point even by increasing M the value of MSE and REP do
not improve much due to the increased noise involved.

Thus, Reduced Rank Gauss-Bayes method by using L
represented as the dimension of the principal subspace shows
the decreased dimension calculation to find a more accurate
prediction result.

D. Discussion

Even though ridge regression methodology outperforms
other methods with regard to relative error percentage in load
forecasting, we may be able to improve other techniques
forecasting result in several ways. In this research, we treat



load data as historical information without considering the
seasonal facts. Ziel et al. (2016) mentioned a method to
separate the load data in eight groups according to the seasonal
daily, weekly and annual patterns. By doing this, a significant
improvement in the forecasting result might be achieved. We
simply consider historical load values in forecasting future
load values, while for the GEFCom2014-L data, the available
temperature information might give a different technique win-
ner in load forecasting. The proposed weather station selection
method mentioned in Hong et al. (2015) may give a better
supporting in the utilization of temperature data. We only
take Reduced Rank Gauss-Bayes method and ridge regression
technique in further discussion, while Lasso and machine
learning technique can also be taken into consideration by
applying an iteratively reweighted approach and combined
back propagation algorithm respectively in the forecasting
progress. Lastly, instead of only predicting the next hour’s
load value, we can forecast the next several hours’ load value
in order to give a hint for the peak load pricing in electricity
market.

V. CONCLUSION

We introduced five techniques based on Gauss-Bayes, prin-
ciple component analysis, Lasso, ridge regression, and scaled
conjugate gradient ANN, which were used individually based
on historical load and temperature data in load forecasting.
Ridge regression ranked first (marginally) among the five
methods, and gives a relative error percentage roughly between
5% to 7.5%. Reduced Rank Gauss-Bayes turns out to be
second best.
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