Short Note on the Riemann Hypothesis

Frank Vega

EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair.

Short Note on the Riemann Hypothesis

Frank Vega

Abstract

Robin criterion states that the Riemann hypothesis is true if and only if the inequality $\sigma(n)<e^{\gamma} \times n \times \log \log n$ holds for all natural numbers $n>5040$, where $\sigma(n)$ is the sum-of-divisors function of n and $\gamma \approx 0.57721$ is the Euler-Mascheroni constant. Let $q_{1}=2, q_{2}=3, \ldots, q_{m}$ denote the first m consecutive primes, then an integer of the form $\prod_{i=1}^{m} q_{i}^{a_{i}}$ with $a_{1} \geq a_{2} \geq \cdots \geq a_{m} \geq 0$ is called an Hardy-Ramanujan integer. If the Riemann hypothesis is false, then there are infinitely many HardyRamanujan integers $n>5040$ such that Robin inequality does not hold and we prove that $n^{\left(1-\frac{0.6253}{\log q_{m}}\right)}<N_{m}$, where $N_{m}=\prod_{i=1}^{m} q_{i}$ is the primorial number of order m and q_{m} is the largest prime divisor of n. In addition, we show that q_{m} will not have an upper bound by some positive value for these counterexamples and therefore, the value of q_{m} tends to infinity as n goes to infinity.

Keywords Riemann hypothesis • Robin inequality • sum-of-divisors function • prime numbers
Mathematics Subject Classification (2010) MSC 11M26 • MSC 11A41 • MSC 11 A 25

1 Introduction

In mathematics, the Riemann hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part $\frac{1}{2}$ [7]. Let $N_{m}=2 \times 3 \times 5 \times 7 \times 11 \times \cdots \times q_{m}$ denotes a primorial number of order m such that q_{m} is the $m^{t h}$ prime number [5]. As usual $\sigma(n)$ is the sum-of-divisors function of n [1]:

$$
\sum_{d \mid n} d
$$

F. Vega

CopSonic, 1471 Route de Saint-Nauphary 82000 Montauban, France
ORCiD: 0000-0001-8210-4126
E-mail: vega.frank@gmail.com
where $d \mid n$ means the integer d divides n and $d \nmid n$ means the integer d does not divide n. Define $f(n)$ to be $\frac{\sigma(n)}{n}$. Say Robins (n) holds provided

$$
f(n)<e^{\gamma} \times \log \log n
$$

The constant $\gamma \approx 0.57721$ is the Euler-Mascheroni constant and log is the natural logarithm. The importance of this property is:

Theorem 1.1 Robins(n) holds for all natural numbers $n>5040$ if and only if the Riemann hypothesis is true [7]. Moreover, if the Riemann hypothesis is false, then there are infinitely many natural numbers $n>5040$ such that Robins(n) does not hold [7].

It is known that Robins (n) holds for many classes of numbers n. Robins (n) holds for all natural numbers $n>5040$ that are not divisible by 2 [1]. We recall that an integer n is said to be square free if for every prime divisor q of n we have $q^{2} \nmid n[1]$.

Theorem 1.2 Robins(n) holds for all natural numbers $n>5040$ that are square free [1].

Let $q_{1}=2, q_{2}=3, \ldots, q_{m}$ denote the first m consecutive primes, then an integer of the form $\prod_{i=1}^{m} q_{i}^{a_{i}}$ with $a_{1} \geq a_{2} \geq \cdots \geq a_{m} \geq 0$ is called an Hardy-Ramanujan integer [1]. Based on the theorem 1.1, we know this result:

Theorem 1.3 If the Riemann hypothesis is false, then there are infinitely many natural numbers $n>5040$ which are an Hardy-Ramanujan integer and Robins (n) does not hold [1].

We prove if the Riemann hypothesis is false, then there are infinitely many HardyRamanujan integers $n>5040$ such that Robins (n) does not hold and $n^{\left(1-\frac{0.6253}{\log q m}\right)}<$ N_{m}, where $N_{m}=\prod_{i=1}^{m} q_{i}$ is the primorial number of order m and q_{m} is the largest prime divisor of n. Furthermore, we show that q_{m} will not have an upper bound by some positive value for these counterexamples and thus, the value of q_{m} tends to infinity as n goes to infinity.

2 Known Results

These are known results:
Theorem 2.1 [1]. For $n>1$:

$$
f(n)<\prod_{q \mid n} \frac{q}{q-1} .
$$

Theorem 2.2 [2].

$$
\prod_{k=1}^{\infty} \frac{1}{1-\frac{1}{q_{k}^{2}}}=\zeta(2)=\frac{\pi^{2}}{6}
$$

Theorem 2.3 [3]. Let $n>e^{e^{23.762143}}$ and let all its prime divisors be $q_{1}<\cdots<q_{m}$, then

$$
\left(\prod_{i=1}^{m} \frac{q_{i}}{q_{i}-1}\right)<\frac{1771561}{1771560} \times e^{\gamma} \times \log \log n
$$

Theorem 2.4 Robins(n) holds for all natural numbers $10^{10^{13.11485}} \geq n>5040$ [6].
Theorem 2.5 [9]. For $q_{m} \geq 20000$, we have

$$
\log q_{m}<\log \log N_{m}+\frac{0.1253}{\log q_{m}}
$$

Theorem 2.6 [8]. For $x \geq 286$:

$$
\prod_{q \leq x} \frac{q}{q-1}<e^{\gamma} \times\left(\log x+\frac{1}{2 \times \log (x)}\right)
$$

Theorem 2.7 [4]. For $x>-1$:

$$
\frac{x}{x+1} \leq \log (1+x)
$$

3 A Central Theorem

The following is a key theorem. It gives an upper bound on $f(n)$ that holds for all natural numbers n. The bound is too weak to prove Robins(n) directly, but is critical because it holds for all natural numbers n. Further the bound only uses the primes that divide n and not how many times they divide n.

Theorem 3.1 Let $n>1$ and let all its prime divisors be $q_{1}<\cdots<q_{m}$. Then,

$$
f(n)<\frac{\pi^{2}}{6} \times \prod_{i=1}^{m} \frac{q_{i}+1}{q_{i}}
$$

Proof Putting together the theorems 2.1 and 2.2 yields the proof:

$$
f(n)<\prod_{i=1}^{m}\left(\frac{q_{i}}{q_{i}-1}\right)=\prod_{i=1}^{m}\left(\frac{q_{i}+1}{q_{i}} \times \frac{1}{1-\frac{1}{q_{i}^{2}}}\right)<\frac{\pi^{2}}{6} \times \prod_{i=1}^{m} \frac{q_{i}+1}{q_{i}}
$$

4 A Particular Case

We can easily prove that $\operatorname{Robins}(n)$ is true for certain kind of numbers.
Theorem 4.1 Robins(n) holds for $n>5040$ when $q \leq 5$, where q is the largest prime divisor of n.

Proof Let $n>5040$ and let all its prime divisors be $q_{1}<\cdots<q_{m} \leq 5$, then we need to prove

$$
f(n)<e^{\gamma} \times \log \log n
$$

that is true when

$$
\prod_{i=1}^{m} \frac{q_{i}}{q_{i}-1} \leq e^{\gamma} \times \log \log n
$$

according to the theorem 2.1. For $q_{1}<\cdots<q_{m} \leq 5$,

$$
\prod_{i=1}^{m} \frac{q_{i}}{q_{i}-1} \leq \frac{2 \times 3 \times 5}{1 \times 2 \times 4}=3.75<e^{\gamma} \times \log \log (5040) \approx 3.81
$$

However, we know for $n>5040$

$$
e^{\gamma} \times \log \log (5040)<e^{\gamma} \times \log \log n
$$

and therefore, the proof is complete when $q_{1}<\cdots<q_{m} \leq 5$.

5 Robin on Divisibility

The next theorem implies that Robins(n) holds for a wide range of natural numbers $n>5040$.

Theorem 5.1 Robins(n) holds for all natural numbers $n>5040$ when a prime $q \leq$ 1771559 complies with $q \nmid n$.

Proof Note that $f(n)<\frac{n}{\varphi(n)}=\prod_{q \mid n} \frac{q}{q-1}$ from the theorem 2.1, where $\varphi(x)$ is the Euler's totient function. We have that $f(n)<\frac{1771561}{1771560} \times e^{\gamma} \times \log \log (n)$ for any number $n>10^{10^{13.11485}}$. Suppose that n is not divisible by a prime q for q less than or equal to some prime bound Q and $n>N=10^{10^{13.11485}}$. Then,

$$
\begin{aligned}
f(n) & <\frac{n}{\varphi(n)} \\
& =\frac{n \times q}{\varphi(n \times q)} \times \frac{q-1}{q} \\
& <\frac{1771561}{1771560} \times \frac{q-1}{q} \times e^{\gamma} \times \log \log (n \times q)
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{f(n)}{e^{\gamma} \times \log \log (n)} & <\frac{1771561}{1771560} \times \frac{q-1}{q} \times \frac{\log \log (n \times q)}{\log \log (n)} \\
& \leq \frac{1771561}{1771560} \times \frac{Q-1}{Q} \times \frac{\log \log (n \times Q)}{\log \log (n)} \\
& =\frac{1771561}{1771560} \times \frac{Q-1}{Q} \times \frac{\log \log (n)+\log \left(1+\frac{\log (Q)}{\log (n)}\right)}{\log \log (n)} \\
& =\frac{1771561}{1771560} \times \frac{Q-1}{Q} \times\left(1+\frac{\log \left(1+\frac{\log (Q)}{\log (n)}\right)}{\log \log (n)}\right)
\end{aligned}
$$

So

$$
\frac{f(n)}{e^{\gamma} \times \log \log (n)}<\frac{1771561}{1771560} \times \frac{Q-1}{Q} \times\left(1+\frac{\log \left(1+\frac{\log (Q)}{\log (n)}\right)}{\log \log (n)}\right)
$$

for $n>N=10^{10^{13.11485}}$. The right hand side is less than 1 for $Q \leq 1771559$. Moreover, note that the inequality $10^{10^{13.11485}}>e^{e^{23.762143}}$ is satisfied. Therefore, Robins (n) holds as a consequence of the theorems 2.3 and 2.4.

6 A Main Insight

The next theorem is a main insight.
Theorem 6.1 Let $\frac{\pi^{2}}{6} \times \log \log n^{\prime} \leq \log \log n$ for some natural number $n>5040$ such that n^{\prime} is the square free kernel of the natural number n. Then $\operatorname{Robins}(n)$ holds.

Proof Let n^{\prime} be the square free kernel of the natural number n, that is the product of the distinct primes q_{1}, \ldots, q_{m}. By assumption we have that

$$
\frac{\pi^{2}}{6} \times \log \log n^{\prime} \leq \log \log n
$$

For all square free $n^{\prime} \leq 5040, \operatorname{Robins}\left(n^{\prime}\right)$ holds if and only if $n^{\prime} \notin\{2,3,5,6,10,30\}[1]$. Robins (n) holds for all natural numbers $n>5040$ when $n^{\prime} \in\{2,3,5,6,10,15,30\}$ due to the theorem 4.1. When $n^{\prime}>5040$, we know that Robins $\left(n^{\prime}\right)$ holds and so

$$
f\left(n^{\prime}\right)<e^{\gamma} \times \log \log n^{\prime}
$$

because of the theorem 1.2. By the previous theorem 3.1:

$$
f(n)<\frac{\pi^{2}}{6} \times \prod_{i=1}^{m} \frac{q_{i}+1}{q_{i}}
$$

Suppose by way of contradiction that Robins(n) fails. Then

$$
f(n) \geq e^{\gamma} \times \log \log n
$$

We claim that

$$
\frac{\pi^{2}}{6} \times \prod_{i=1}^{m} \frac{q_{i}+1}{q_{i}}>e^{\gamma} \times \log \log n .
$$

Since otherwise we would have a contradiction. This shows that

$$
\frac{\pi^{2}}{6} \times \prod_{i=1}^{m} \frac{q_{i}+1}{q_{i}}>\frac{\pi^{2}}{6} \times e^{\gamma} \times \log \log n^{\prime}
$$

Thus

$$
\prod_{i=1}^{m} \frac{q_{i}+1}{q_{i}}>e^{\gamma} \times \log \log n^{\prime},
$$

and

$$
\prod_{i=1}^{m} \frac{q_{i}+1}{q_{i}}>f\left(n^{\prime}\right),
$$

This is a contradiction since $f\left(n^{\prime}\right)$ is equal to

$$
\frac{\left(q_{1}+1\right) \times \cdots \times\left(q_{m}+1\right)}{q_{1} \times \cdots \times q_{m}}
$$

according to the formula $f(x)$ for the square free numbers [1].

7 Proof of Main Theorem

Theorem 7.1 If the Riemann hypothesis is false, then there are infinitely many HardyRamanujan integers $n>5040$ such that Robins (n) does not hold and $n^{\left(1-\frac{0.6253}{\log q_{m}}\right)}<$ N_{m}, where $N_{m}=\prod_{i=1}^{m} q_{i}$ is the primorial number of order m and q_{m} is the largest prime divisor of n. In addition, q_{m} will not have an upper bound by some positive value for these counterexamples and therefore, the value of q_{m} tends to infinity as n goes to infinity.

Proof Let $\prod_{i=1}^{m} q_{i}^{a_{i}}$ be the representation of some natural number $n>5040$ as a product of primes $q_{1}<\cdots<q_{m}$ with natural numbers as exponents a_{1}, \ldots, a_{m}. The primes $q_{1}<\cdots<q_{m}$ must be the first m consecutive primes and $a_{1} \geq a_{2} \geq \cdots \geq a_{m} \geq 0$ since the natural number $n>5040$ will be an Hardy-Ramanujan integer. We assume that Robins (n) does not hold. Indeed, we know there are infinitely many HardyRamanujan integers such as $n>5040$ when the Riemann hypothesis is false according to the theorem 1.3. From the theorem 5.1, we know that necessarily $q_{m} \geq$ 1771559. So,

$$
e^{\gamma} \times \log \log n \leq f(n)<\prod_{q \leq q_{m}} \frac{q}{q-1}<e^{\gamma} \times\left(\log q_{m}+\frac{1}{2 \times \log \left(q_{m}\right)}\right)
$$

because of the theorems 2.1 and 2.6. Hence,

$$
\log \log n<\log q_{m}+\frac{0.5}{\log \left(q_{m}\right)}
$$

From the theorem 2.5, we have that

$$
\log \log n<\log \log N_{m}+\frac{0.1253}{\log q_{m}}+\frac{0.5}{\log \left(q_{m}\right)}
$$

That is the same as

$$
\log \log n-\log \log N_{m}<\frac{0.6253}{\log q_{m}}
$$

Then,

$$
\begin{aligned}
\log \log n-\log \log N_{m} & =\log \left(\log N_{m}+\log \left(\frac{n}{N_{m}}\right)\right)-\log \log N_{m} \\
& =\log \left(\log N_{m} \times\left(1+\frac{\log \left(\frac{n}{N_{m}}\right)}{\log N_{m}}\right)\right)-\log \log N_{m} \\
& =\log \log N_{m}+\log \left(1+\frac{\log \left(\frac{n}{N_{m}}\right)}{\log N_{m}}\right)-\log \log N_{m} \\
& =\log \left(1+\frac{\log \left(\frac{n}{N_{m}}\right)}{\log N_{m}}\right)
\end{aligned}
$$

In addition, we know that

$$
\log \left(1+\frac{\log \left(\frac{n}{N_{m}}\right)}{\log N_{m}}\right) \geq \frac{\log \left(\frac{n}{N_{m}}\right)}{\log n}
$$

using the theorem 2.7 since $\frac{\log \left(\frac{n}{N_{m}}\right)}{\log N_{m}}>-1$. Certainly, we will have that

$$
\log \left(1+\frac{\log \left(\frac{n}{N_{m}}\right)}{\log N_{m}}\right) \geq \frac{\frac{\log \left(\frac{n}{N_{m}}\right)}{\log N_{m}}}{\frac{\log \left(\frac{n}{N_{m}}\right)}{\log N_{m}}+1}=\frac{\log \left(\frac{n}{N_{m}}\right)}{\log \left(\frac{n}{N_{m}}\right)+\log N_{m}}=\frac{\log \left(\frac{n}{N_{m}}\right)}{\log n}
$$

In this way, we have that

$$
\frac{\log \left(\frac{n}{N_{m}}\right)}{\log n}<\frac{0.6253}{\log q_{m}}
$$

which is equivalent to

$$
\log \left(\frac{n}{N_{m}}\right)<\log \left(n^{\frac{0.6253}{\log q_{m}}}\right)
$$

and thus

$$
\frac{n}{N_{m}}<n^{\frac{0.6253}{\log q m}}
$$

Finally, we obtain that

$$
n^{\left(1-\frac{0.6253}{\log q_{m}}\right)}<N_{m}
$$

Moreover, we know that q_{m} will not have an upper bound by some positive value for these counterexamples because of the theorem 6.1. Certainly, if there is a possible upper bound for q_{m}, then it cannot exist infinitely many Hardy-Ramanujan integers $n>5040$ such that Robins (n) does not hold as a consequence of the theorem 6.1.

Acknowledgments

The author would like to thank his mother, maternal brother and his friend Sonia for their support.

References

1. Choie, Y., Lichiardopol, N., Moree, P., Solé, P.: On Robin's criterion for the Riemann hypothesis. Journal de Théorie des Nombres de Bordeaux 19(2), 357-372 (2007). DOI doi:10.5802/jtnb. 591
2. Edwards, H.M.: Riemann's Zeta Function. Dover Publications (2001)
3. Hertlein, A.: Robin's Inequality for New Families of Integers. Integers 18 (2018)
4. Kozma, L.: Useful Inequalities. http://www.lkozma.net/inequalities_cheat_sheet/ineq. pdf (2021). Accessed on 2021-12-27
5. Nicolas, J.L.: Petites valeurs de la fonction d'Euler. Journal of number theory 17(3), 375-388 (1983). DOI 10.1016/0022-314X(83)90055-0
6. Platt, D.J., Morrill, T.: Robin's inequality for 20 -free integers. INTEGERS: Electronic Journal of Combinatorial Number Theory (2021)
7. Robin, G.: Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann. J. Math. pures appl 63(2), 187-213 (1984)
8. Rosser, J.B., Schoenfeld, L.: Approximate Formulas for Some Functions of Prime Numbers. Illinois Journal of Mathematics 6(1), 64-94 (1962). DOI doi:10.1215/ijm/1255631807
9. Solé, P., Planat, M.: Robin inequality for 7- free integers. Integers: Electronic Journal of Combinatorial Number Theory 11, A65 (2011)
