
EasyChair Preprint
№ 10154

Detecting Falls with Wearable Sensors Using
Machine Learning Techniques

Shailendra Bhandari, Negar Elmisadr, Bereket Zerabruk Tekeste
and Raju Shrestha

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

May 13, 2023



Detecting Falls with Wearable Sensors using
Machine Learning Techniques

1st Shailendra Bhandari
Department of Computer Science

OsloMet – Oslo Metropolitan University
Oslo, Norway

shailendra.vandari@gmail.com/ orcid.org/0000-0002-7860-4854

2ndNegar Elmisadr
Department of Computer Science

OsloMet– Oslo Metropolitan University
Oslo, Norway

s366271@oslomet.no

3rdBereket Zerabruk Tekeste
Department of Computer Science

OsloMet– Oslo Metropolitan University
Oslo, Norway

s331401@oslomet.no

4thRaju Shrestha
Department of Computer Science

OsloMet– Oslo Metropolitan University
Oslo, Norway

raju.shrestha@oslomet.no

Abstract—This study presents an innovative approach to the
problem of fall detection, leveraging wearable sensor technology.
Initially, we delineate the definition of falls, followed by an
examination of their classification methods and categories. To
address this issue, we propose a typology that employs both
Long Short-Term Memory (LSTM) and a hybrid Convolutional
Neural Network (CNN1D + LSTM). These models are trained
to detect falls, utilizing data sourced from accelerometers, gy-
roscopes, and magnetometers. Our proposed network models
are trained and rigorously evaluated using a comprehensive
wearable sensor dataset. They are also benchmarked against
a range of different classifiers for comparative purposes. The
LSTM model demonstrated an impressive accuracy of 98.04%,
while the hybrid CNN1D + LSTM model achieved an exceptional
accuracy of 99.68%. To further validate our approach, we
compared the performance of our models against other deep
neural network architectures that have previously been proposed
and implemented. Our models demonstrated competitive, if not
superior, performance, endorsing their potential for effective real-
world application in fall detection.

Index Terms—Deep Learning, Neural Networks, Fall Detection

I. INTRODUCTION

Over the past two decades, automatic fall detection (FD)
devices have evolved as crucial assistive technologies. The
primary function of these systems is to promptly detect signifi-
cant falls and alert medical professionals or caregivers, thereby
mitigating potential risks. Moreover, these solutions can also
alleviate the psychological stress associated with caregiving
for the elderly. It is well-established that individuals aged 60
and above are susceptible to adverse outcomes following falls,
necessitating effective real-time detection and analysis.

Numerous studies have explored automatic fall detection us-
ing various technologies, including sensors, video monitoring,
and wearable devices. Decision-making based on data from
multiple sources often proves more effective than relying on a
single source. Consequently, multimodal fall detection, lever-

aging data from diverse sources for accurate fall identification,
has gained traction in research.

Fall detection is of paramount importance in fields such
as preventive medicine, wellness management, and assisted
living, particularly for the elderly population. Consequently,
an array of fall detection systems has emerged, either reported
in the scientific literature or commercially available. Most of
these systems predominantly depend on accelerometers and
gyroscopes attached to an individual’s body. These systems
utilize either discrete sensors incorporated into a device specif-
ically designed for this purpose or sensors integrated with
smartphones. The latter offers established and universally ac-
cessible communication facilities, such as the ability to contact
emergency services. Despite these advancements, automatic
fall detection continues to face significant challenges, with the
most formidable being the accurate determination of the type
of fall. As this field continues to progress, addressing these
challenges will be essential for enhancing the effectiveness
and reliability of fall detection systems.

Various sensor technologies [1], such as inertial sensors,
depth cameras, microphones, pressure sensors, and thermal
sensors, have been used in fall detection systems due to im-
provements in information transmission technologies and body
sensor networks. Accelerometers, which capture body motions
and are sensitive to posture changes, are the most prevalent
sensors for fall detection. Accelerometer-based fall detection
systems have several advantages, including compactness, low
cost, effectiveness, unobtrusiveness, and high mobility.

Wearable sensors must be implanted in the body to provide
long-term fall detection services and function for as long as
possible. This need leads to issues in the design and develop-
ment of systems, including reliability, security, usability, and
sustainability. The amount of batteries, for example, has an
impact on the size and comfortability of sensors. Furthermore,
repeatedly recharging or replacing batteries may reduce the fall
detection system’s utility and user acceptance. As a result,



numerous energy-efficient fall detection systems have been
developed for long-term fall detection services that aim at
minimizing power consumption and extending battery life as
long as feasible to enable long-term fall detection services.
This need creates system design and development issues, such
as reliability, security, usability, and long-term viability.

Even though numerous fall detectors have been used and
some are on the market, none has been labeled as a superior
method. According to estimates, nearly half of the elderly who
fall do not disclose it to their healthcare provider. This fact
encourages the usage of non-wearable gadgets with remote
monitoring capabilities. A computer system that can identify
and classify falls automatically and effectively would help
monitor the older population and speed up the help process,
minimizing the risk of long-term injury and mortality. One of
the most typical issues with such systems is a high number
of false positives in their recognition method, leading to a
surge in surveillance system calls. According to current multi-
disciplinary research, falls among the elderly are a significant
global public health concern. Several wearable motion sensor-
based fall detection systems have been developed, but these
systems fail to adequately assess the exact nature of human
falls. Fall detection devices are less expensive than a person’s
daily observation. A form of fall device reported to be in use
is a wearable sensor device that consists of a magnetometer,
gyroscope, and accelerometer tri-axial device. This device
detects a fall with the utmost accuracy and simplicity.

In the aged, falls are majorly responsible for severe injuries
and death. According to the World Health Organization [2],
over 30% of the elderly, aged 64 and more, fall at least once a
year. A previous study showed that nearly half of the elderly
population died after laying on the floor for more than an hour
within six months of a fall. Also, around 420,000 falls result
in death each year. As a result of this statistic, falls are the
second most significant cause of unintentional injury mortality.

II. RELATED WORKS

Various papers give an account of the development of fall
detection from different aspects. We chose the most highly
cited review papers from 2014 to 2020. There are two ap-
proaches to fall detection using wearable sensors—threshold-
based systems and machine learning-based systems. While
threshold-based systems have been popular because of their
low computational overhead, they could be prone to more
false positives and false negatives, given that the thresholds
themselves may be affected by various factors. As a result,
machine learning algorithms for fall detection have been a
much-researched area. There has been extensive research into
the efficiencies of various machine-learning techniques for fall
detection.

de Quadros et al [3] compare threshold-based mecha-
nisms and machine learning-based mechanisms for fall detec-
tion applied on data generated by accelerometer, gyroscope,
and magnetometer. The paper concludes that the machine
learning-based mechanism yielded much better results than the
threshold-based solutions. Machine learning-based techniques

differ from each other in multiple factors—the feature set used,
sensors employed, placement of sensors, algorithms applied,
the dataset used, performance parameters monitored, and so
on. In [4], the dataset was generated from an accelerometer
and gyroscope at the waist level. Feature extraction was
performed using the windowing technique, feature selection
using the rank-based system, and classification using Naı̈ve-
Bayes, LSM, ANN, SVM, and kNN algorithms. kNN, ANN,
and SVM had the best performance results compared to LSM
and Naı̈ve-Bayes. Results show an accuracy of 87.5%, a
sensitivity of 90.70%, and a specificity of 83.78%, for kNN.

Jefiza et al. [5] use a backpropagation neural network
(BPNN) for fall detection, with data collected from a three-
axis accelerometer and gyroscope, and reported an accuracy of
98.182%, a precision of 98.33%, the sensitivity of 95.161%,
and specificity of 99.367%. Hossain et al. [6] also attempt
to distinguish falls from ADLs and compare SVM, kNN,
and complex tree algorithms applied to data generated by
accelerometers. The paper compared the performance of these
algorithms concerning the accuracy, precision, and recall of
ADLs and four types of falls (forward, backward, right, and
left). It was observed that the accuracy and precision of SVM
were the highest, while complex trees performed better in
terms of recall analysis.

One of the observed drawbacks of wearable sensors is that
the placement of the sensors impacts the accuracy of fall clas-
sification and detection. Yu et al. [7] attempt to reduce errors
caused by incorrect sensor positions and detail an HMM-based
fall detection system for the same. Sensor orientation calibra-
tions are applied on HMM classifiers to resolve issues arising
out of misplaced sensor (3-axis accelerometer) locations and
misaligned sensor orientations. This paper reports a sensitivity
of 99.2% on an experimental dataset and 100% for a real-world
fall dataset.

Chelli et al. [8] compares the performance of 4 algo-
rithms—ANN, kNN, quadratic SVM, and ensemble bagged
tree—in two steps. First, only acceleration and angular ve-
locity data are used. Then, new features that improve the
performance of the classifier are extracted from the power
spectral density of the acceleration. The accuracy of the
algorithms is observed to have increased after applying feature
extraction techniques. The objective of Wang et al. [9] was to
test the impact of optimal feature selection on fall detection
accuracy. The features of accelerations in different parts of the
body are collected through wearable devices. The Bayesian
framework was applied to select the optimal features from
the data generated by the wearable devices. The weight of
each feature was calculated, after which training was done
based on the optimal feature set. It was observed that improved
classification led to better accuracy, sensitivity, and specificity.

Genoud et al. [10] propose a system for soft fall detection
using ML in wearable devices. The feature sets used were
linear acceleration and gyroscope readings, and the algorithms
compared were decision tree, decision tree ensemble, kNN,
and multilayer perceptrons (MLP). The experiments showed
that the decision tree ensemble outperformed the results ob-



tained by the other algorithms. Kao et al. [11] use an ensemble
of spectrum analysis with GA-SVM, SVM, and C4.5 classi-
fiers. The sensor readings were from 3-axis accelerometers.
The best results were given by GA-SVM, with an accuracy of
94.1%, a sensitivity of 94.6%, and a specificity of 93.6%.

Musci et al. [12] describe an RNN model with LSTM blocks
on data generated by 3D accelerometers for fall detection.
The paper observes that though it is difficult to distinguish
high dynamic activities from falls, the approach described
achieves a better overall classification. Fakhrulddin et al.
[13] apply CNN to streaming time series accelerometer data
collected from body sensor networks (BSN) for fall and
non-fall situations. Yves M. Galvão et al. [14] proposed a
multimodal approach with a convolution neural network and
LSTM trained to detect falls based on RGB images and
information from accelerometers and provide an extensive
comparison with state-of-the-art models, a multimodal solution
presents an improvement in the accuracy.

III. A DEEP LEARNING MODEL FOR FALL DETECTION

A. Convulational Neural Network

Convolutional Neural Networks (CNNs) are a type of deep
neural network that apply convolution operations to learn
kernels for extracting features from input data. These kernels
can be defined using different topological models, such as
1D kernels primarily used for temporal processing within a
defined window and 2D kernels predominantly used for spatial
relation learning and image processing [15]–[17]. CNNs have
been instrumental in addressing a variety of challenges, includ-
ing decoding facial recognition, analyzing documents, and un-
derstanding climate grey areas. A distinguishing characteristic
of CNNs, in comparison to conventional neural networks, is
their superior performance with image, speech, or audio signal
inputs.

CNNs are typically composed of three types of layers:
convolutional, pooling, and fully connected. The convolutional
layer, which is the first and most crucial component, performs
most of the computation. This layer requires input data, a filter,
and a feature map, among other components. The input, often
a 3D matrix of pixels from a color image, is subjected to a
convolution operation using a 2D weighted array known as
a feature detector, kernel, or filter. This filter systematically
sweeps across the image, performing dot products of the input
pixels and the filter values. The outputs of these operations,
known as feature maps or convoluted features, are then passed
to subsequent layers.

Following the convolutional layers, the pooling or down-
sampling layers serve to reduce the dimensionality of the data,
thereby enhancing computational efficiency and mitigating
overfitting. This layer applies a filter across the input and
populates the output array based on a clustering method.
Two common methods used are max pooling, where the
highest value pixel in the receptive field is selected, and
average pooling, where the mean value of the receptive field
is calculated.

The final layer is the fully-connected layer, where each node
in the output layer is directly connected to a node in the
preceding layer, contrasting with the partially connected layers
where the pixel values of the input image are not directly
connected to the external layer.

The sequential combination of these layers allows CNNs to
process data hierarchically, focusing on fundamental features
like colors and edges in the initial layers and identifying
increasingly complex attributes as data progresses through the
network. This hierarchical processing enables CNNs to accu-
rately identify the target object, highlighting the sophisticated
design of CNNs in facilitating nuanced image recognition
tasks.

B. Long-Short Term Memory
The long short-term memory (LSTM) architecture is a deep

learning architecture that involves a recurrent neural network
(RNN) published [18] in 1997 by Sepp. Hochreiter and Jürgen
Schmidhuber. Unlike regular feed-forward neural networks,
LSTM has feedback connections. Therefore, it is well suited
to learn from experience to classify, process, and predict
time series when they are very long time lags of unknown
size between important events. A memory cell in LSTM is
composed of four main elements, an input gate, a neuron with
self recurrent connection, a forget gate, and an output gate.
An input gate can allow incoming signals to alter the state
of the memory cell or block it. The reconnect connection
bars any outside inference where the state of the memory
cell can remain constant from one step to another. The forget
gate can modulate the memory cell’s self-recurrent connection,
allowing the cell to remember or forget its previous state as
needed. And finally, the output gate can allow the memory
cell’s state to affect other neurons or prevent it. In this project
work, we are employing single-layer LSTM as well as multi-
layer LSTM RNN. The network architecture for the LSTM
model we used in this dataset is shown in Figure [1].

Input (101 time-steps 
 and 9 feature) LSTM 32 (and 100 cells)  

Output 1X2  

Fig. 1. Architecture used for the Dataset Accelerometer— LSTM.

IV. EXPERIMENTAL SETUP

A. Dataset
The data set for this project is taken from the reference

article [19] and is available publicly in the link 1. With

1https://drive.google.com/open?id=1gqS1fkTvtuAaKj
0cn9n04ng1qDAoZ2t

https://drive.google.com/open?id=1gqS1fkTvtuAaKj_0cn9n04ng1qDAoZ2t
https://drive.google.com/open?id=1gqS1fkTvtuAaKj_0cn9n04ng1qDAoZ2t


Erciyes University Ethics Committee approval, ten males (24
± 3 years old, 67.5 ± 13.5 kg, 172 ± 12 cm) and seven
females (21.5 ± 2.5 years old, 58.5 ± 11.5 kg, 169.5 ±
12.5 cm) healthy volunteers participated in the study with
informed written consent. A wireless sensor unit was fitted
to the subject’s waist and right thigh, among other body
parts. The sensor unit comprises three tri-axial devices: an
accelerometer, a gyroscope, and a magnetometer/compass.
Raw motion data were recorded along three perpendicular axes
(x, y, z) from the unit with a sampling frequency of 25 Hz
yielding AccX , AccY , AccZ(m/s2), GyrX , GyrY , GyrZ(/s)
and MagX ,MagY ,MagZ(Gauss). The data set consists of
57.96% falls and 42.04% of activities of daily life. In addition,
there are altogether 1570 records, 910 falls, and 660 daily life
activities.

B. Pre-processing
Usually, the studies on fall detection mostly use simple

thresholding of the sensory outputs like acceleration and rota-
tional rates because of its simplicity and low processing time.
However, in this dataset, additional features of the recorded
signals are considered. The total acceleration of the waist
accelerometer is given by

AT =
√
A2

x +A2
y +A2

z (1)

where Ax, Ay, Az are the accelerations along the x, y, and z
axes respectively. Initially, the time index corresponding to the
peak AT value of the waist accelerometer in each record was
identified. Then, the two-second intervals (25Hz × 2s = 50
samples) before and after this point was taken, corresponding
to a time window of 101 samples (50+AT index+50) and
ignore the rest of the record. Data from the remaining axes of
each sensor unit are also reduced in the same way, considering
the time index obtained from the waist sensor as a reference,
resulting in six 101 × 9 arrays of data. Each column of data
is represented by an N × 1 vector s = [s1, s2, . . . , sN ]T ,
where N = 101. Extracted features consist of the minimum,
maximum, and mean values, as well as variance, skewness,
kurtosis, the first 11 values of the auto-correlation sequence,
and the first five peaks of the discrete Fourier transform (DFT)
of the signal with the corresponding frequencies.

The total acceleration of the five falls plotted over a four-
second time interval around their peak at time 0 is shown
in Figure [2]. The individual fall differs from one another, as
shown in the figure. Similarly, Figure [3] shows the mean total
acceleration of all 910 falls.

The total five activities of daily life plotted over a four-
second time interval around their peak at time 0 is shown in
Figure [4]. The individual activities of daily life differ from
one another as shown in the figure. Similarly, Figure [5] shows
the mean total acceleration of all 660 activities of daily life.

C. Evaluation protocol
From the raw data, nine measure signals Acc X, Acc Y,

Acc Z, Gyr X, Gyr Y, Gyr Z, Mag X, Mag Y, Mag Z ) of
the FallDataSet and 17 features, 153 (17×9) feature vector
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Fig. 2. The total acceleration of five falls plotted over four-second time
intervals around their peak at time 0.
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Fig. 3. The accelerations of falls plotted over a time interval.

of dimensionality for each test are extracted. Feature extraction
is essential for implementation with standard machine learning
classifiers. This will be briefly explained in the result section.
Extraction is unnecessary for deep neural network features as
we are feeding the raw data. We evaluate all the models by
training 80% of the data point from the datasets and testing the
remaining data points. We investigated three different topology
architectures for processing the raw sensor data to optimize our
performance. The proposed network model architectures are
based on LSTM shown in Figure [6,7] and LSTM CNN1D
as shown in Figure [8]. Using the CNN and LSTM model,
we evaluate the accelerometer, magnetometer, and gyroscope
data processing with a one-dimensional filter CNN1D and the
LSTM. CNN is an expert in processing spatial relations, while
LSTM is useful for the processing of temporal as well as
spatial patterns. Since the data we are analyzing is not a multi-
class dataset, we are using the sigmoid activation function in
the dense layer and binary cross-entropy loss. We use Adam
optimizer in all the models. Similarly, we used the ReLu
activation function on the input Conv1D layer in Conv1D +
LSTM model.
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Fig. 4. The total acceleration of five falls plotted over four-second time
intervals around their peak at time 0.
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Fig. 5. The accelerations of activities of daily life plotted over a time interval.

V. RESULTS

A. Standard Machine Learning Classifiers

Typical machine learning algorithms, such as support vector
machine (SVM), decision tree (DT), random forest (RF), and
K- Nearest Neighbours (K-NN), are used to build fall detection
models. We extracted the minimum, maximum, mean, median,
skewness, kurtosis, and variance features for the three-axis
acceleration, velocity, and angular velocity data, trained by the
use of the TensorFlow deep learning framework. We propose
a multimodal approach by combining Conv1D and LSTM
networks with these features. To test the accuracy of the
approach in this study, a comparative test experiment with
different standard machine learning classification methods was
performed. The resulting accuracy scores on the test dataset
are reported in Listing [1] and are shown in Figure [9]. The
best-performing classifier is the RF, K-NN classifier yielding
an accuracy score of 100%.

Listing 1. The standard machine learning classifiers scores
Classifier Score

0 SVC 0.949045
1 Decision Tree 0.987261
2 Random Forest 1.000000
3 K Neighbors 1.000000
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Fig. 6. The network architecture for single-layer LSTM based model.
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Fig. 7. The network architecture for multi-layer LSTM based model.

Initially, the accuracy of the K-NN model is 100%; however,
in an attempt to reduce the number of features from a total
of 153 to 68, the accuracy is still 99.68%. We performed
principal component analysis on the training feature dataset
to obtain 68 dimensions explaining most of the training data
variance. Dimensionality reduction of the full feature space
from 153 to 68 features reduces the accuracy score by 0.32%,
which is not a drastic reduction, and we should consider a
successful simplification. The results from all the evaluated
models- K-NN, single and multi-layer LSTM, and Conv1D
+ LSTM model are summarized in Table [I]. The Conv1D +
LSTM model outperforms multi-layer LSTM, followed by the
single-layer LSTM in accuracy. Also, the comparison between
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Fig. 8. The network architecture for CNN1D based model.
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Fig. 9. The machine learning classifiers K-Nearest Neighbors, Decision
Tree, Random Forest and Support Vector Machine was fitted to the training
dataset (obtained from the FallDataSet by feature extraction) and the resulting
accuracy scores.

accuracy, F1-score, precision, and recall is shown in figure
[10]. The advantage of using a deep neural network is that
these models operate directly on raw sensor data, extracting
features by themselves in its convolutional layer. However, in
K-NN, RF, and SVM classifiers, the data must be fed after
feature extraction, i.e., data preprocessing is essential.

The final models (K-NN, LSTM, and Conv1D +LSTM)
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Fig. 10. The machine learning classifiers K-Nearest Neighbors, Decision
Tree, Random Forest, and Support Vector Machine was fitted to the training
dataset (obtained from the FallDataSet by feature extraction) and the resulting
accuracy scores.

TABLE I
PERFORMANCE OF THE MODEL USED FOR FALL DETECTION USING

WEARABLE SENSORS.

Machine learning model Accuracy f1-
scores

Precision Recall

K-NN classifier (reduced
features)

99.68% - - -

Single layer LSTM 98.04% 99.22% 98.47% 100%
Multi-layer LSTM 98.73% 98.86% 98.31% 99.47%
Conv1D + LSTM 99.68% 99.73% 100% 99.47%

have higher accuracy than SVC and DT classifiers. The new
approach of using CNN and LSTM together also improved
the accuracy.

B. Comparison with other work
Machine learning-based techniques differ from each other

in multiple factors—the feature set used, sensors employed,
placement of sensors, algorithms applied, the dataset used,
performance parameters monitored, and so on. We compared
our results with some of the recent work on fall detection [5]–
[7], [11]–[14] with the appropriate model used and the results
are tabulated on Table [II].

VI. CONCLUSION

This project aims to address the possible solution to detect
falls. We tested different machine learning and deep learning
models on wearable sensor datasets to reach the proposed
problem (goal). The multi-layer LSTM and the model com-
posed of CNN and LSTM reached the highest accuracy of
100%. These results are very good in comparison to recent
research on similar data. To conform to the final performance
of the models, we need to do some hyper-tuning of the
parameters and calculate the learning rate. Because of the time
limitation, we could not perform this task. This work could
be done in the future.

The data was collected for the experimental purpose from
healthy volunteers. However, testing this model in real-world
applications might be challenging. Therefore, future conse-
quences of these methods’ real-world application should be



TABLE II
COMPARATIVE BETWEEN OUR RESULTS AND THE OTHER STUDIES

PRESENTS IN THE LITERATURE.

Contributors Machine learning
model

Results

R. Malekian,
et.al(2016) [6]

kNN, ANN, and
SVM

KNN:Acc=87.5%,Sens=90.70%,
Spec.=83.78%

Jefiza et al.
(2017) [5]

back-propagation
neural (network
(BPNN))

Acc=
98.182%,Sens=95.161%,
Spec.=99.367%

Yu et al.(2018)
[7]

Hidden Markov
Model-Based Fall
Detection

predictive value 0.981 and
sensitivity of 0.992

Kao et al.
(2017) [11]

GA-SVM, SVM
classifiers

Acc= 94.1%,Sens=94.6%,
Spec.=93.6%

Musci et al.
(2018) [12]

RNN model with
LSTM blocks

high precision on fall de-
tection

Fakhrulddin et
al.(2017) [13]

deep CNN CNN used to identify falls
but yet could not improve
the robustness of fall de-
tection

M. Galvão, et.
Al(2021) [14]

multimodal
approach with
CNN & LSTM

a multimodal solution
presents an improvement
in the accuracy

addressed. In addition, elderly people might not feel comfort-
able with these wearable sensors attached to their body parts.
The portable device running on the Linux version should be
capable of running the model, and the SD card to store the
sensor data is necessary. The captured data needs to inform
the timestamp to sync information. We encourage future work
on the application of the proposed model with real-world
scenarios to evaluate it on generalizing to specific person
groups such as elderly citizens.

VII. APPENDIX

A. Implemented codes
The methodology delineated above was operationalized

utilizing an array of computational tools and technologies.
The core algorithmic implementation was performed using
Tensorflow 2.8.0 and Keras 2.8.0, with Sklearn 1.0.1 employed
for any auxiliary machine-learning tasks. The entire codebase
was written in Python 3.8. The computational environment
comprised a DELL Inspiron 15 7000, equipped with an NVidia
GeForce GPU, which facilitated efficient data processing and
model training. For reproducibility and wider dissemination of
our work, we have made our codebase publicly accessible. It
can be retrieved from our GitHub repository at https://github.
com/shailendrabhandari/ACIT4630 Advanced MLandDL.git.

B. Visual Analysis of Model Performance during Training
and Testing Stages

All three neural networks under investigation demonstrated
exemplary performance, with test accuracies exceeding 99%.
This suggests that our model misclassifies fall events as non-
fall activities in approximately ±0.9% of cases in the single-
layer LSTM. A rapid increase in accuracy within the initial
40 epochs, as depicted in Figures [11, 12], underscores the
network’s swift learning capability. Following this phase, the
accuracy curves plateau, indicating optimal learning without

indications of overfitting for all models except the multi-layer
LSTM, as illustrated in Figure [11(DOWN)].

Parallel conclusions can be drawn from the training and
validation loss learning curves. For the single-layer LSTM
Figure [13 (UP)] and Conv1D + LSTM models (Figure [14]),
the learning curves reflect an ideal fit. An ideal fit, the target
of any learning algorithm, is characterized by a consistent
decrease in the loss until a point of stability is reached, with a
minimal divergence between the final loss values for training
and validation sets. It is anticipated that the model’s loss
will invariably be lower on the training dataset as compared
to the validation dataset, resulting in a discrepancy between
the training and validation loss learning curves, referred to
as the ”generalization gap”. An exemplary illustration of this
generalization gap is provided in Figure [14].
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Fig. 11. Training and test accuracy plots for UP: LSTM single layer DOWN:
multi-layer LSTM.
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