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Abstract. The ever-increasing gap between compute and I/O perfor-
mance in HPC platforms, together with the development of novel NVMe
storage devices (NVRAM), led to the emergence of the burst buffer
concept—an intermediate persistent storage layer logically positioned
between random-access main memory and a parallel file system. De-
spite the development of real-world architectures as well as research
concepts, resource and job management systems, such as Slurm, provide
only marginal support for scheduling jobs with burst buffer requirements,
in particular ignoring burst buffers when backfilling. We investigate the
impact of burst buffer reservations on the overall efficiency of online job
scheduling for common algorithms: First-Come-First-Served (FCFS) and
Shortest-Job-First (SJF) EASY-backfilling. We evaluate the algorithms in
a detailed simulation with I/O side effects. Our results indicate that the
lack of burst buffer reservations in backfilling may significantly deteriorate
scheduling. We also show that these algorithms can be easily extended to
support burst buffers. Finally, we propose a burst-buffer–aware plan-based
scheduling algorithm with simulated annealing optimisation, which im-
proves the mean waiting time by over 20% and mean bounded slowdown
by 27% compared to the burst-buffer–aware SJF-EASY-backfilling.

Keywords: High performance computing (HPC) · EASY backfilling ·
online job scheduling · multi-resource scheduling · simulated annealing ·
nonvolatile memory · simulation

1 Introduction

With the deployment of Fugaku [5], supercomputing has already exceeded the
threshold of exascale computing. However, this significant milestone only empha-
sised the challenge of a constantly growing performance gap between compute
and I/O [16]. HPC applications typically alternate between compute-intensive
and I/O-intensive execution phases [10], where the latter is often characterised
by emitting bursty I/O requests. Those I/O spikes produced by multiple parallel
jobs can saturate network bandwidth and eventually lead to I/O congestion,
which effectively stretches the I/O phases of jobs resulting in higher turnaround
times. The development of novel storage technologies, such as NVRAM, paves
the way to solve the issue of bursty I/O by introducing burst buffers [20].
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A burst buffer is an intermediate, fast and persistent storage layer, which is
logically positioned between the random-access main memory in compute nodes
and a parallel file system (PFS) in a far (backend) storage. Burst buffers absorb
bursty I/O requests and gradually flush them to the PFS, which facilitates, e.g.,
more efficient checkpointing, data staging or in-situ analysis [11].

Many recent supercomputers were equipped with burst buffers, including the
leading TOP500 machines: Fugaku [22], Summit, and Sierra [24]. In Summit and
Sierra, storage devices are installed locally in each compute node – the node-local
architecture. The main advantages of this architecture are (a) the linear scaling
of I/O bandwidth; and (b) exclusive, consistent and predictable access of jobs
to the storage devices, which results in lower variation in I/O performance. An
alternative is the remote shared architecture (in, e.g., Cori [2] and Trinity [12]).
There are several sub-types of remote shared architectures depending on the
placement of burst buffers, which may be located in (1) selected compute nodes,
(2) specialised I/O nodes, (3) specialised network-attached storage nodes or (4)
in a backend storage system [11]. Compared to node-local architectures, shared
architectures provide data resiliency and longer residency times, making them
more suitable for data staging. An additional benefit of specialised network-
attached storage nodes (3) is a transparent maintenance of the supercomputing
cluster—replacement of a storage device can be performed without causing
downtime of any compute or I/O node. Our paper focuses on shared burst buffer
architectures (and our results can be applied to any of the sub-type listed above)
because, as we will show later, shared burst buffers challenge the efficiency of
modern HPC schedulers.

HPC platforms are managed by middleware, Resources and Jobs Management
Systems (RJMS) such as Slurm [25], responsible for scheduling and executing
jobs submitted by users. A user submitting a job specifies the binary with
all the arguments, but also parameters used for scheduling: the number of
requested nodes and the walltime – an upper bound on the processing time.
RJMSs usually implement some sort of backfilling algorithm for scheduling
[8]. Perhaps the most common is the First-Come-First-Served (FCFS) EASY-
backfilling (aggressive backfilling) [23], in which jobs are queued according to their
arrival time (sometimes weighted by the job’s or the user’s priority, but this is
orthogonal to our approach). Another common scheduling policy is the Shortest-
Job-First (SJF; SPF) EASY-backfilling [3] that sorts pending jobs by their
walltime. SJF usually improves user-centric metrics such as mean waiting time
or mean slowdown. Regardless of the ordering, the EASY-backfilling algorithm
may backfill (execute a job out of order) whenever there are enough free nodes,
and the backfilled job would not delay the job at the head of the queue.

The current approach to managing burst buffers by RJMS seems to just
extend the user-provided job description by the requested volume of burst buffer
storage. This requested volume is then granted for the job’s entire duration
(just as compute nodes are granted for the entire duration). However, when we
analysed backfilling in Slurm, we noticed that these burst buffer requests are
treated quite differently from compute nodes. Slurm documentation explains this

https://www.top500.org/lists/top500/2020/11/
https://slurm.schedmd.com/overview.html
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phase as: “After expected start times for pending jobs are established, allocate
burst buffers to those jobs expected to start earliest and start stage-in of required
files.” It means that the burst buffers are allocated after backfilling, which may
starve jobs requiring burst buffers.

Contributions. We address the problem of efficient online job scheduling in
supercomputers with shared burst buffer architecture as follows:

1. By simulation, we show that in the EASY-backfilling algorithm, the Slurm-
like decoupling of burst buffer reservations from processor reservations leads
to heavy-tailed distribution turnaround times.

2. We point to a possible starvation issue of jobs with burst buffer requirements
in Slurm backfilling implementation.

3. We show a simple extension of EASY-backfilling which significantly improves
scheduling efficiency by considering both burst buffers and processors.

4. We propose a burst-buffer–aware plan-based scheduling algorithm with sim-
ulated annealing optimisation, which improves the mean waiting time by
over 20% and mean bounded slowdown by 27% compared to the SJF EASY-
backfilling with burst buffer reservations.

Source code associated with this paper is available at:
https://github.com/jankopanski/Burst-Buffer-Scheduling

2 Related work

Scheduling in HPC is a vast research area. Below, we review only the papers
addressing the problem of scheduling with burst buffer resources.

FCFS and EASY-backfilling are examples of queue-based scheduling algo-
rithms. Queue-based schedulers periodically attempt to launch jobs based on
only the current state of a system. An alternative is plan-based scheduling
which creates an execution plan of all pending jobs [15]. Zheng et al. [26] used
simulated annealing for finding an optimal execution plan. However, they only
considered standard, CPU jobs. Our proposed plan-based algorithm (Section 3.3)
extends their approach with burst buffer requirements and introduces several
improvements to their simulated annealing optimisation, significantly reducing
the number of iterations required to find a near-optimal solution.

Efficient job scheduling in platforms with shared burst buffer architecture
was studied by Lackner, Fard and Wolf [19]. A job waiting for burst buffers may
end up with a higher turnaround time than if it started earlier, but without fast
persistent storage (which could increase its runtime). [19] proposed an extension
to backfilling by estimating job’s turnaround times with and without the access
to burst buffers. In general, their solution is complementary to ours and could be
incorporated into our plan-based scheduling.

Fan et al. [7] formulated the multi-resource scheduling problem as a multi-
objective integer linear program (ILP), which maximises both compute and
storage utilisation. The ILP is optimised by a genetic algorithm generating a

https://github.com/jankopanski/Burst-Buffer-Scheduling
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Pareto front. To limit the computational complexity, they perform the optimi-
sation only on a fixed-size window at the front of a waiting queue. A potential
problem in their algorithm may arise in the step of resource allocation. For
instance, in a Dragonfly cluster topology, we prefer to allocate nodes for a job
within a single group. Such topology-awareness is not readily reflected in the
proposed ILP. In contrast, our plan-based approach is as generic as backfilling
and thus does not impose any limitations on resource allocation.

Herbein et al. [13] considered I/O contention between burst buffers and PFS.
They modified EASY-backfilling by allowing it to start only those jobs that
do not oversaturate network links and switches. While this change solves the
issue of stretching I/O phases, it might result in underutilisation of the network
bandwidth. Consequently, although the job running time is minimised, the waiting
time may increase, leading to a higher turnaround time.

A hybrid solution that combines detailed information from RJMS with low-
level I/O requests scheduling was proposed by Zhou et al. [27]. They presented
an I/O-aware scheduling framework for concurrent I/O requests from parallel
applications. It enables the system to keep the network bandwidth saturated and
keep a uniform stretch of I/O phases of jobs, improving average job performance.
In that sense, it is an alternative solution to Herbein et al. However, as Zhou et
al. approach does not require any modification of the main scheduling algorithm,
it can be incorporated into our burst-buffer–aware plan-based scheduling.

3 Scheduling algorithms

3.1 Example

Table 1. Example of jobs with an inefficient
schedule with the standard EASY-backfilling.

Job Submit[m] Runtime[m] CPU BB[TB]

1 0 10 1 4
2 0 4 1 2
3 1 1 3 8
4 2 3 2 4
5 3 1 3 4
6 3 1 2 2
7 4 5 1 2
8 4 3 2 4

We start with an illustrative exam-
ple of how a burst buffer reserva-
tion may impact the FCFS EASY-
backfilling schedule. Suppose we are
executing jobs as defined by Ta-
ble 1 on a small cluster with 4 nodes
(denoted by CPUs) and 10 TB of
shared burst buffer storage. For sim-
plicity, walltime of each job is equal
to its runtime (perfect user runtime
estimates). The BB column denotes
the total amount of burst buffer re-
quested by a job. The scheduler runs
periodically at every minute. The first iteration of scheduling starts at time 0
and also includes jobs submitted at time 0. For comparison of algorithms, we
present how this set of jobs would be scheduled by EASY-backfilling without
(Fig. 1) and with (Fig. 2) burst buffer reservations. Filled rectangles represent
started jobs; stripped represent future FCFS reservations.

Let us focus our attention on job 3. Fig. 1 shows the schedule created by
the backfilling without burst buffer reservations. At the time 0 (top-left), two
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Fig. 1. FCFS EASY-backfilling without future burst buffer reservations may delay all
jobs in a queue behind the first job (3), which received a reservation of processors. Job 3
cannot start at its scheduled time (t=4min, bottom-left) as there are not enough burst
buffers until job 1 completes. Note that subfigures show the schedule in subsequent
time moments (t=0 min top-left, t=1 top-right, t=2 middle-left, etc.)
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Fig. 2. Schedule by FCFS EASY-backfilling with burst buffer reservations. Job 3 is
scheduled after job 1 completes, which permits backfilling all the remaining jobs.
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Fig. 3. Gantt chart of the first 3500 jobs executed by FCFS EASY-backfilling without
future reservations of burst buffers. The large empty spaces in the chart, which are
immediately followed by tall jobs, indicate significantly underutilised compute resources.

jobs are submitted and started immediately. After a minute (top-right), job 3 is
submitted, but there are not enough available processors to start it. Concerning
only CPUs, jobs 1 and 3 would be able to run in parallel after the completion
of job 2. However, their summarised burst buffer requirements exceed the total
capacity of 10 TB available in the cluster. As the standard EASY-backfilling
does not consider burst buffers in scheduling, it would schedule job 3 just after
job 2. At time 2 (middle-left), job 4 is submitted. Despite having enough free
processors and burst buffers, it cannot be launched instantly as it would delay
job 3, which is at the front of the waiting queue and hence received a reservation
of 3 CPUs for the time period 4-5. The same situation applies to job 5, which
given the resources, could be backfilled in place of job 3, but would then delay its
scheduled execution. It is not the case for job 6, which can be backfilled before
job 3. An unusual situation happens at time 4 (bottom-left). Job 3 does not
have enough burst buffers to start the execution and prevents all other jobs from
starting. It causes most of the processors in the cluster to remain idle until the
completion of job 1. Indeed, job 3 behaves like a barrier in the scheduling of
other jobs. The last time step presents the moment just after the completion of
job 1. Job 3 is finally able to start. Additionally, job 7 is backfilled ahead of jobs
4 and 5 as it has enough processors and burst buffers to start immediately.

Fig. 2 shows how FCFS EASY-backfilling with burst buffer reservations
schedules the same set of jobs. The first difference from the previous algorithm
appears at time step 1. Although the newly arrived job 3 cannot start at that
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time, its burst buffer requirements are recognised and it is scheduled after job
1 completes. Thus, job 4 can start immediately when submitted, as it will not
delay job 3. At time 4, all the new jobs 5, 6, 7, 8 can be backfilled ahead of job 3.
Lastly, at time 10, there are only left jobs 3 and 7.

Although this example may seem artificial, it distils the problem we observed
when simulating a larger set of jobs (see Fig. 3).

3.2 Burst buffer reservations in backfilling

In this section, we show how to extend EASY-backfilling with burst buffer
reservations. Algorithm 1 shows the pseudocode of EASY-Backfilling. Jobs in
the waiting queue Q are stored in the order of arrival. At the beginning, the
algorithm attempts to launch jobs according to FCFS policy until the first job
J for which there are not enough free resources (processors or burst buffers).
The reservation for processors is acquired for J at the earliest possible time in
the future. Next, the remaining jobs in Q are backfilled ahead of J under the
condition that they would not delay the scheduled execution of J .

The standard EASY-Backfilling does not include the part presented in the
square brackets (line 14). This minor change—a future reservation of burst buffers
together with processors prior to the backfilling process—solves the problem
presented in the example in Section 3.1.

In principle, Slurm implements conservative backfilling. However, there is an
issue in Slurm implementation of burst buffer support, which could possibly lead
to starvation of jobs with burst buffer requirements. Slurm allows to delay a job

Algorithm 1 EASY-Backfilling scheduling
1: procedure FCFS(Q) . Q - queue of pending jobs
2: for J ∈ Q do
3: if there are enough free processors and burst buffers for J then
4: Launch J and remove it from Q . Allocations cannot overlap
5: else
6: Break
7: procedure Backfill(Q)
8: for J ∈ Q do . Allocations cannot overlap with reservations
9: if there are enough free processors and burst buffers for J then
10: Launch J and remove it from Q

11: procedure EASY-Backfilling(Q)
12: FCFS(Q)
13: J ← pop the first job from Q
14: Reserve compute [and storage] resources for J at the earliest time in the future
15: if SJF then
16: Sort Q ascending by walltime
17: Backfill(Q)
18: Remove reservations for J . Will be reacquired in the next scheduling
19: Push back J at the front of Q
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requesting burst buffer if it has not started a stage-in phase. In this case, the job
does not receive a reservation of processors. Therefore, other jobs can be backfilled
ahead of it. In our experimental workload, every job requires burst buffers, thus
every job can be arbitrarily delayed. Assuming that all jobs require burst buffers
and each job is executed right after the stage-in phase, as in our model (Fig. 4),
Slurm backfilling works similarly to backfilling without any future reservations—
procedure Backfill at line 7 (but without the reservation in line 14). There are
still some differences between Slurm scheduling and the Backfill procedure. First,
Slurm decouples allocation of burst buffers and allocation of processors. Slurm
also has an FCFS scheduling loop running concurrently to backfilling.

In conclusion, the large empty spaces visible in Fig. 3 only happen in the
theoretical EASY-backfilling without future reservations of burst buffers. The
current, greedy scheduling in Slurm solves this but at the expense of potentially
arbitrary delays of jobs with burst buffer requirements. A simple extension
of backfilling with future simultaneous processor and burst buffer reservations
eliminates both problems.

3.3 Plan-based scheduling

The general idea of plan-based scheduling is to create an execution plan for all
jobs in the waiting queue. An execution plan is an ordered list of jobs with their
scheduled start times and assigned resources. Naturally, only a few jobs could be
launched immediately. Others are provided with non-overlapping reservations of
resources at different points of time in future for the duration of their walltimes.
The easiest way to create the execution plan is to iterate over the queue of
jobs and for each job find the earliest point in time when sufficient resources
are available. The quality of the obtained plan depends on the order of jobs.
Therefore, it is possible to define an optimisation objective and perform a search
over permutations of jobs.

We further investigate and extend the plan-based approach to scheduling with
simulated annealing optimisation proposed by Zheng et al. [26]. First, we extend
the reservation schema with the reservations for burst buffer requests. Second, we
apply several modifications to the simulated annealing. Our plan-based scheduling
is presented in Algorithm 2. The input parameters Q, r, N ,M denote the waiting
queue, cooling rate, number of cooling steps and constant temperature steps
respectively.

As the optimisation objective, we minimise a sum of waiting times of jobs
weighted by an exponent α ∈ R+ (definition of the waiting time is given in
Fig. 4). For a permutation P , let WP

j denote the waiting time of the j-th job in
Q according to the execution plan created based on P .

min
P

∑
j∈Q

(WP
j )α (1)

We denote the sum in the above formula as a score S of the execution plan of P .
Zheng et al. observed that for small values, such as α = 1, this objective allows
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Algorithm 2 Plan-based scheduling
1: procedure Plan-Based(Q, r, N , M)
2: if Q is small (≤ 5 jobs) then
3: Perform exhaustive search over all permutations
4: Reserve resources; Launch jobs; Return
5: Pbest, Sbest ← find a permutation with the lowest score among candidates
6: Pworst, Sworst ← find a permutation with the highest score among candidates
7: if Sbest 6= Sworst then . Simulated annealing
8: T ← Sworst − Sbest . Initial temperature
9: P ← Pbest

10: for N iterations do
11: for M iterations do
12: P ′ ← swap two jobs at random positions in P
13: Create execution plans for P and P ′ . Details in Section 3.3
14: S ← calculate score for P based on the execution plan
15: S′ ← calculate score for P ′ based on the execution plan
16: if S′ < Sbest then
17: Sbest ← S′; Pbest ← P ′

18: S ← S′; P ← P ′

19: else if random(0, 1) < e(S−S′)/T then
20: S ← S′; P ← P ′

21: T ← r · T . Temperature cooling
22: Launch jobs and reserve resources according to the execution plan of Pbest

one job to be significantly postponed in favour of other jobs as long as the total
waiting time of all jobs improves, which eventually may even lead to starvation.
The higher is the value of α, the more penalised is the objective function for
delaying a job. Plan-based scheduling does not ensure as strict fairness criteria as
reservations in EASY-backfilling, but increasing the value of α may be perceived
as a soft mechanism for ensuring fair resource sharing.

We enhance the simulated annealing algorithm of [26] as follows. First, we
introduce a set of candidates I for the initial permutation used to generate the
best and worst initial scores (Sbest, Sworst), which allow us to set an optimal
initial temperature T according to the method proposed by [1]. We define the
set of 9 initial candidates by sorting jobs according to 9 different criteria: (1) the
order of submission (FCFS); (2) ascending and (3) descending by the requested
number of processors, (4) ascending and (5) descending by the requested size of
burst buffer per processor, (6) ascending and (7) descending by the ratio of the
requested size of burst buffer per processor to the requested number of processors,
(8) ascending and (9) descending by walltime.

Second, we make the search space exploration faster by (1) introducing
exhaustive search over all possible permutations for small queues (up to 5 jobs);
(2) faster cooling (r = 0.9, N = 30, M = 6); and (3) skipping the annealing if it is
unlikely to find a better permutation—when the scores of the best and the worst
initial candidates are the same (Sbest = Sworst). As a result, our algorithm finds
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a near-optimal permutation in only N ·M + |I| = 189 iterations, compared to
d100 log0.9(0.0001)e = 8742 iterations by Zheng et al. The number of iterations
has principal importance in online job scheduling, where the time available for
scheduling is limited.

4 Simulation

4.1 Method

To evaluate and compare scheduling algorithms, we created a detailed supercom-
puter simulator. We extended Batsim [6,21]—a simulator framework of RJMS
based on SimGrid [4], which is capable of simulating I/O contention and I/O
congestion effects. We used Pybatsim scheduler to implement our algorithms and
manage I/O side effects.

Platform model: Our simulated cluster is modelled according to a Dragonfly
topology. It consists of 108 nodes divided into 3 groups, each group contains
4 chassis, each chassis has 3 routers, and there are 3 nodes attached to each
router. However, only 96 of the nodes are compute nodes. The other 12 nodes
are assigned a storage role. That is, a single node in every chassis is dedicated to
being a burst buffer node. This type of shared burst buffer architecture resembles
the architecture of Fugaku, where one of every 16 compute nodes contains SSDs
for burst buffers [22]. In our model, a single compute node is equivalent to a
single processor/CPU. While our simulated cluster has a limited size (only 108
nodes), we consider it sufficient to show the effects of the proposed scheduling
policies. We could not scale to more nodes due to a technical issue with Batsim
reporting errors on larger SimGrid Dragonfly clusters.

The bandwidth of a compute network is set to model 10 Gbit/s Ethernet.
The compute network is connected with a single shared link to one additional
node which represents PFS. We set the bandwidth of this link to 5 GB/s, based
on data from the IO500 list, to make I/O side effects noticeable. We set the
total burst buffer capacity to the expected total burst buffer request when all
nodes are busy, which we calculate based on the average of the fitted log-normal
distribution of burst buffer request per processor (described below). We divide
this capacity equally among the storage nodes.

Job model: We consider parallel, non-preemptive and rigid jobs. Our simulated
job model (Fig. 4) includes data staging and checkpointing as burst buffer use
cases, which are interleaved with computation and communication phases. A job
is divided into a variable number of phases (from 1 to 10) based on the specified
number of computing operations. They are interleaved by I/O phases which
simulate checkpointing—one of the major use cases of burst buffers. When a job
checkpoints, it transfers data from compute nodes to the assigned burst buffer
nodes; meanwhile, the job’s computations are suspended. After the checkpoint
completes, data transfer from burst buffers to PFS is triggered, and the next
computation phase starts concurrently. Furthermore, jobs start and complete

https://batsim.readthedocs.io/en/latest/
https://simgrid.org/
https://gitlab.inria.fr/batsim/pybatsim
https://simgrid.org/doc/latest/Platform_Examples.html#dragonfly-cluster
https://simgrid.org/doc/latest/Platform_Examples.html#dragonfly-cluster
https://www.vi4io.org/
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Fig. 4. Job execution model used in simulations and job’s performance metrics. After
the job starts, it get the data from PFS (stage-in), then performs between 1 and 10
computation phases; after each, but last, computation phase, the job checkpoints. After
the last computation phase, the job transfers the results to PFS (stage-out).

with data staging phases between PFS and burst buffers. The size of the data
transfers is equal to the requested burst buffer size.

Workload model: In order to perform experiments on a realistic workload, we
decided to transform the KTH-SP2-1996-2.1-cln log from the Parallel Workload
Archive (PWA) [9] into the Batsim input format, resulting in the workload with
28453 jobs. We selected this log as it was recorded on a cluster with 100 nodes,
the closest to our simulated cluster. From the log, we extract submission times,
walltimes and the requested number of processors. The requested memory size
would be especially valuable for modelling burst buffer requests, but this data is
not available in this log. We use the log in two different settings: first, we perform
some experiments on the complete log; second, we split the workload into 16
non-overlapping, three-week-long parts to measure the variability of our results.

Burst buffer request model: As workloads in PWA do not contain information on
burst buffer requests, researchers either collect new logs [7] or create probabilistic
workload models [19,13]. As the log from [7] was unavailable, we supplemented
jobs from the KTH-SP2-1996-2.1-cln log with a probabilistic distribution of burst
buffer requests. Under the assumption that a burst buffer request size is equal to
the main memory request size, we created a model of burst buffer request size
per processor based on the METACENTRUM-2013-3 log. Burst buffer request
size equal to the requested RAM size is a representative case for modelling data
staging and checkpointing (saving a distributed state of an entire job).

At first, we investigated a cross-correlation between the requested memory
size and the number of processors. According to empirical cumulative distribution
functions, it appears only for large jobs with at least 64 processors. However,
large jobs contribute to only 11% of processor time. Therefore we model burst
buffer requests per processor independently from the job size. We fitted several
long-tail distributions to empirical data, which resulted in the best fit achieved
by a log-normal distribution. We validated the quality of fitting with 5-fold
cross-validation and Kolmogorov-Smirnov D-statistic test.

https://www.cs.huji.ac.il/labs/parallel/workload/l_kth_sp2/index.html
https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/
https://batsim.readthedocs.io/en/latest/input-workload.html
https://www.cs.huji.ac.il/labs/parallel/workload/l_metacentrum2/index.html
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4.2 Results

We evaluate and compare the following scheduling policies:

fcfs FCFS without backfilling;
fcfs-easy FCFS EASY-backfilling without reservations for burst buffers;
filler Perform the backfill procedure from Algorithm 1 but without reserving

resources for queued jobs in future (without line 14);
fcfs-bb FCFS EASY-backfilling with simultaneous reservations for processors

and burst buffers;
sjf-bb SJF EASY-backfilling with simultaneous reservations for processors and

burst buffers;
plan-α burst-buffer–aware plan-based scheduling; the number in the policy name

(e.g., plan-2) is a value of the parameter α from Eq. (1).

We show mean waiting time (Fig. 5) and mean bounded slowdown (Fig. 6,
bounded for jobs shorter than 10 minutes). The small black bars in these plots
show 95% confidence intervals.

Fig. 5 and Fig. 6 show the first surprising result: excluding the baseline fcfs,
fcfs-easy has two orders of magnitude higher mean waiting time and bounded
slowdown than other policies. The simple extension of the FCFS-backfilling to
explicitly reserve burst buffers (fcfs-bb) results in significant improvements. When
the scheduler is additionally able to change the ordering of the jobs (sjf-bb),
the gains are even higher. fcfs-easy shows better distribution than fcfs for the
majority of jobs. However, it changes for the last 32-quantile. The explanation
for this observation is visible in the tail distribution plot Fig. 9, which for each
policy presents individual values for 3000 jobs with the highest waiting times.
We see there an extremely significant dispersion of waiting times of fcfs-easy,
which also affects the bounded slowdown (Fig. 10). Overall, fcfs-easy on average
achieves better results than fcfs, but it can considerably delay numerous jobs.
These results quantitatively confirm the example from Section 3.1.

The simple filler shows good distribution of waiting times and bounded
slowdown, also in the quantile plots (Fig. 7 and Fig. 8 are boxenplots, also called
letter-value plots [14], with a logarithmic scale). However, the tail distribution
plots (Fig. 9 and Fig. 10) show that filler is likely to disproportionately delay
some jobs—pointing to their near-starvation, which we hinted at in Section 3.2.

Our proposed plan-based scheduling algorithm, plan-2, outperforms all other
policies. As opposed to queue-based scheduling, plan-based scheduling may leave
a cluster underutilised at a given moment to enable earlier execution of jobs in
the future. Although this behaviour can result in a higher median waiting time,
it should improve higher-order quantiles as seen in Fig. 7. However, as plan-1 has
much flexibility in reordering jobs, it is likely to fully utilise the cluster by taking
jobs from any position in the queue for instant execution. This flexibility comes
at the cost of significant delay of selected jobs, as shown in Fig. 9.

For a more robust comparison between the algorithms, we split the workload
into 16 three-week-long parts. We compute the average for each part and each
policy, and then normalise it by the corresponding average from the sjf-bb policy.
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Fig. 8. Bounded slowdown quantiles.
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Fig. 12. Normalised mean bounded slow-
down distribution over 16 workload parts.
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We chose sjf-bb as the reference policy, because on the whole workload, its mean
waiting time is smaller by 4.5% than fcfs-bb. Boxplots in Fig. 11 and Fig. 12
show statistics. Moreover, the 16 dots on each box correspond to the 16 averages,
one for each three-week-long part. These results might be interpreted in the
following way: the lower the boxplot, the better the scheduling efficiency. This
analysis confirms our results on the whole trace: in most cases, filler has a higher
mean than non-starving, burst-buffer–aware policies; and plan-based scheduling
outperform greedy list scheduling. Additionally, in the shorter workloads, plan-1
outperforms plan-2 because of the limited capability of delaying jobs.

5 Conclusion

The lack of reservations of burst buffers acquired simultaneously with processors
in backfilling can cause significant inefficiency in online job scheduling. Slurm
overcomes this issue by allowing to delay jobs with burst buffer requirements
which may cause their starvation. Although this issue is not commonly visible in
the current systems due to relatively low utilisation of the intermediate storage,
it may become more critical in the future with further adoption of burst buffers.

We proposed a relatively simple change to the EASY-backfilling which elimi-
nates this inefficiency. In our experiments, this amended EASY-backfilling results
in consistently good performance. In initial experiments, we tested a few other
reasonable local heuristics, like dynamic prioritising of jobs to balance utilisation
of burst buffers and processors. However, none of these approaches strongly
dominated this amended EASY-backfilling. To get even better results, we had
to employ a relatively more complex approach, the plan-based scheduling. The
presented plan-based scheduling not only solves the basic inefficiencies but also
improves overall efficiency in terms of waiting time and bounded slowdown.
Furthermore, it does not impose any requirements on resource allocation, so
it may be easily generalised to other kinds of resources such as main memory
(RAM), High Bandwidth Memory, GPUs, FPGAs or software licenses. However,
the plan-based approach requires more changes in the cluster scheduler; and is
also more computationally-intensive (although our enhancements kept the limited
number of iterations of the global optimisation loop).
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