Near-Square Primes Conjecture

Frank Vega

EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair.

NEAR-SQUARE PRIMES CONJECTURE

FRANK VEGA

Abstract

In 1912, Edmund Landau listed four basic problems about prime numbers in the International Congress of Mathematicians. These problems are now known as Landau's problems. Landau's fourth problem asked whether there are infinitely many primes which are of the form $n^{2}+1$ for some integer n. This problem remains open. We prove this conjecture is indeed true.

1. Results

Definition 1.1. Given a function $f: \mathbb{N} \rightarrow \mathbb{R}$, we define

$$
\lim _{n \rightarrow \infty} I(f(n))=1
$$

when $\exists m_{0} \in \mathbb{N}$ such that $\forall n>m_{0}: f(n) \in \mathbb{Z}$ and

$$
\lim _{n \rightarrow \infty} I(f(n))=0
$$

when $\nexists m_{0} \in \mathbb{N}$ such that $\forall n>m_{0}: f(n) \in \mathbb{Z}$.
Lemma 1.2. Given a function $f: \mathbb{N} \rightarrow \mathbb{R}$ and an irrational number α, we have that

$$
\lim _{n \rightarrow \infty} I(\alpha \times f(n))=0
$$

when

$$
\lim _{n \rightarrow \infty} I(f(n))=1
$$

Proof. Certainly, a number $\alpha \times k \notin \mathbb{Z}$ when k is an integer even though k could be no matter how large we want.
Theorem 1.3. There are infinitely many primes which are of the form $n^{2}+1$ for some integer n.

Proof. Suppose, there are not infinitely many primes which are of the form $n^{2}+1$ for some integer n. In number theory, Wilson's theorem states that a natural number $n>4$ is a composite number if and only if the product of all the positive integers less than n is multiple of $n[2]$. That is the factorial $(n-1)!=1 \times 2 \times 3 \times \cdots \times(n-1)$ satisfies

$$
(n-1)!\equiv 0 \quad(\bmod n)
$$

exactly when n is a composite number [2]. In this way, if the Near-square primes conjecture is false, then we would have that $n^{2}+1$ must be a composite number when n tends to infinity. Consequently, we obtain that

$$
\lim _{n \rightarrow \infty} I\left(\frac{n^{2}!}{n^{2}+1}\right)=1
$$

[^0]Key words and phrases. number theory, square, divisor, prime.

We know that

$$
\prod_{j=1}^{\infty} \frac{\left(p_{j}^{2}-1\right)}{\left(p_{j}^{2}-1\right)}=1
$$

where p_{j} is the $j^{\text {th }}$ prime number. We also know that

$$
\lim _{n \rightarrow \infty} I\left(\frac{n^{2}!}{n^{2}+1} \times 1\right)=1
$$

and thus, we obtain that

$$
\lim _{n \rightarrow \infty} I\left(\frac{n^{2}!}{n^{2}+1} \times \prod_{j=1}^{\infty} \frac{\left(p_{j}^{2}-1\right)}{\left(p_{j}^{2}-1\right)}\right)=1
$$

Since $n^{2}+1$ should be a composite number when n tends to infinity, then this must be in the form of $p_{1}^{a_{1}} \times p_{2}^{a_{2}} \times \cdots \times p_{m}^{a_{m}}$ such that $p_{1}, p_{2}, \cdots, p_{m}$ are prime numbers and $a_{1}, a_{2}, \cdots, a_{m}$ are positive integers according to the Fundamental theorem of arithmetic [2]. In the case of $2 \notin\left\{a_{1}, a_{2}, \cdots, a_{m}\right\}$, then we can pick some $a_{i} \in\left\{a_{1}, a_{2}, \cdots, a_{m}\right\}$ such that $a_{i}>3$ or $a_{i}=1$ and obtain that

$$
\lim _{n \rightarrow \infty} I\left(\frac{n^{2}!}{p_{i}}\right)=1
$$

and

$$
\lim _{n \rightarrow \infty} I\left(\frac{n^{2}!}{p_{1}^{a_{1}} \times p_{2}^{a_{2}} \times \cdots \times p_{i}^{a_{i}-1} \times \cdots \times p_{m}^{a_{m}}}\right)=1
$$

where $n^{2}+1=p_{i} \times p_{1}^{a_{1}} \times p_{2}^{a_{2}} \times \cdots \times p_{i}^{a_{i}-1} \times \cdots \times p_{m}^{a_{m}}, a_{i}-1>2$ or $a_{i}-1=0$ and there is no square of a prime number p_{j}^{2} that is eliminated from the division $\frac{n^{2}!}{n^{2}+1}$ in the numerator n^{2} !. Certainly, we will only eliminate from the numerator n^{2} !, the numbers $p_{i} \leq n^{2}$ and $p_{1}^{a_{1}} \times p_{2}^{a_{2}} \times \cdots \times p_{i}^{a_{i}-1} \times \cdots \times p_{m}^{a_{m}} \leq n^{2}$ such that $p_{i} \neq p_{1}^{a_{1}} \times p_{2}^{a_{2}} \times \cdots \times p_{i}^{a_{i}-1} \times \cdots \times p_{m}^{a_{m}}$, where p_{i} and $p_{1}^{a_{1}} \times p_{2}^{a_{2}} \times \cdots \times p_{i}^{a_{i}-1} \times \cdots \times p_{m}^{a_{m}}$ are not square numbers. We are always able to obtain such exponent $a_{i}>3$ when $\forall a_{j} \in\left\{a_{1}, a_{2}, \cdots, a_{m}\right\}: a_{j}>2$, due to the number $n^{2}+1$ is not in the form of x^{3} for some natural number x when n tends to infinity. Certainly, according to the Catalan's conjecture, the only solution in the natural numbers of

$$
x^{a}-y^{b}=1
$$

for $a, b>1, x, y>0$ is $x=3, a=2, y=2, b=3$ [1]. In addition, we are always able to obtain such exponent $a_{i}=1$ when $\exists a_{j} \in\left\{a_{1}, a_{2}, \cdots, a_{m}\right\}: a_{j}=1$. In the case of $2 \in\left\{a_{1}, a_{2}, \cdots, a_{m}\right\}$, then we can pick those prime divisors $p_{k_{1}}, p_{k_{2}}, \cdots, p_{k_{t}}$ which have 2 as exponent in $n^{2}+1$ and obtain that

$$
\lim _{n \rightarrow \infty} I\left(\frac{n^{2}!}{\left(p_{k_{1}} \times p_{k_{2}} \times \cdots \times p_{k_{t}}\right)}\right)=1
$$

and

$$
\lim _{n \rightarrow \infty} I\left(\frac{n^{2}!}{\left(p_{k_{1}} \times p_{k_{2}} \times \cdots \times p_{k_{t}}\right) \times p_{b_{1}}^{r_{1}} \times p_{b_{2}}^{r_{2}} \times \cdots \times p_{b_{s}}^{r_{s}}}\right)=1
$$

where $n^{2}+1=\left(p_{k_{1}} \times p_{k_{2}} \times \cdots \times p_{k_{t}}\right) \times\left(p_{k_{1}} \times p_{k_{2}} \times \cdots \times p_{k_{t}}\right) \times p_{b_{1}}^{r_{1}} \times p_{b_{2}}^{r_{2}} \times$ $\cdots \times p_{b_{s}}^{r_{s}}, 2 \notin\left\{r_{1}, r_{2}, \cdots, r_{s}\right\}$ and there is no square of a prime number p_{j}^{2} that is eliminated from the division $\frac{n^{2}!}{n^{2}+1}$ in the numerator n^{2} !. Certainly, we will only eliminate from the numerator n^{2} !, the numbers $\left(p_{k_{1}} \times p_{k_{2}} \times \cdots \times p_{k_{t}}\right) \leq n^{2}$ and $\left(p_{k_{1}} \times p_{k_{2}} \times \cdots \times p_{k_{t}}\right) \times p_{b_{1}}^{r_{1}} \times p_{b_{2}}^{r_{2}} \times \cdots \times p_{b_{s}}^{r_{s}} \leq n^{2}$ such that $\left(p_{k_{1}} \times p_{k_{2}} \times \cdots \times p_{k_{t}}\right) \neq$
$\left(p_{k_{1}} \times p_{k_{2}} \times \cdots \times p_{k_{t}}\right) \times p_{b_{1}}^{r_{1}} \times p_{b_{2}}^{r_{2}} \times \cdots \times p_{b_{s}}^{r_{s}}$, where $\left(p_{k_{1}} \times p_{k_{2}} \times \cdots \times p_{k_{t}}\right)$ and $\left(p_{k_{1}} \times p_{k_{2}} \times \cdots \times p_{k_{t}}\right) \times p_{b_{1}}^{r_{1}} \times p_{b_{2}}^{r_{2}} \times \cdots \times p_{b_{s}}^{r_{s}}$ are not square numbers. We are always able to obtain such number $p_{b_{1}}^{r_{1}} \times p_{b_{2}}^{r_{2}} \times \cdots \times p_{b_{s}}^{r_{s}} \neq 1$, due to $n^{2}+1$ is not in the form of x^{2} for some natural number x when n tends to infinity. In this way, we have that

$$
\lim _{n \rightarrow \infty} I\left(\frac{n^{2}!}{n^{2}+1} \times \prod_{j=1}^{\infty} \frac{\left(p_{j}^{2}-1\right)}{\left(p_{j}^{2}-1\right)}\right)=1
$$

is equivalent to

$$
\lim _{n \rightarrow \infty} I\left(\prod_{j=1}^{\infty}\left(p_{j}^{2}\right) \times g(n) \times \prod_{j=1}^{\infty} \frac{\left(p_{j}^{2}-1\right)}{\left(p_{j}^{2}-1\right)}\right)=1
$$

where

$$
\lim _{n \rightarrow \infty} I(g(n))=1
$$

since there is no square of a prime number p_{j}^{2} that must necessarily be eliminated from the division $\frac{n^{2}!}{n^{2}+1}$ in the numerator n^{2} ! within any case. In addition, we can transform this limit into

$$
\lim _{n \rightarrow \infty} I\left(\prod_{j=1}^{\infty} \frac{p_{j}^{2}}{p_{j}^{2}-1} \times h(n)\right)=1
$$

where

$$
\lim _{n \rightarrow \infty} I(h(n))=\lim _{n \rightarrow \infty} I\left(g(n) \times \prod_{j=1}^{\infty}\left(p_{j}^{2}-1\right)\right)=\lim _{n \rightarrow \infty} I\left(g(n) \times \prod_{p_{j}<n^{2}+1}\left(p_{j}^{2}-1\right)\right)=1
$$

since all the prime numbers p_{j} are lesser than $n^{2}+1$ when n tends to infinity. However,

$$
\lim _{n \rightarrow \infty} I\left(\prod_{j=1}^{\infty} \frac{p_{j}^{2}}{p_{j}^{2}-1} \times h(n)\right)=1
$$

would be the same as

$$
\lim _{n \rightarrow \infty} I\left(\frac{\pi^{2}}{6} \times h(n)\right)=1
$$

since we have that

$$
\prod_{j=1}^{\infty} \frac{p_{j}^{2}}{p_{j}^{2}-1}=\prod_{j=1}^{\infty} \frac{1}{1-p_{j}^{-2}}=\frac{\pi^{2}}{6}
$$

as a consequence of the result in the Basel problem [2]. Hence, we obtain a contradiction since

$$
\lim _{n \rightarrow \infty} I\left(\frac{\pi^{2}}{6} \times h(n)\right)=0
$$

according to the Lemma 1.2. To sum up, we have that our assumption that the Near-square primes conjecture were false is incorrect and therefore, we obtain that the conjecture should be necessarily true.

References

[1] Preda Mihailescu. Primary cyclotomic units and a proof of catalans conjecture. Journal für die reine und angewandte Mathematik, 2004(572):167-195, 2004.
[2] David G. Wells. Prime Numbers, The Most Mysterious Figures in Math. John Wiley \& Sons, Inc., 2005.

CopSonic, 1471 Route de Saint-Nauphary 82000 Montauban, France
E-mail address: vega.frank@gmail.com

[^0]: 2010 Mathematics Subject Classification. Primary 11A41; Secondary 40A99.

