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Abstract Planning for multi-robot coverage seeks to determine collision-free paths
for a fleet of robots, enabling them to collectively observe points of interest in an en-
vironment. Persistent coverage is a variant of traditional coverage where coverage-
levels in the environment decay over time. Thus, robots have to continuously revisit
parts of the environment to maintain a desired coverage-level. Facilitating this in the
real world demands we tackle numerous subproblems. While there exist standard
solutions to these subproblems, there is no complete framework that addresses all
of their individual challenges as a whole in a practical setting. We adapt and com-
bine these solutions to present a planning framework for persistent coverage with
multiple unmanned aerial vehicles (UAVs). Specifically, we run a continuous loop
of goal assignment and globally deconflicting, kinodynamic path planning for mul-
tiple UAVs. We evaluate our framework in simulation as well as the real world. In
particular, we demonstrate that (i) our framework exhibits graceful coverage—given
sufficient resources, we maintain persistent coverage; if resources are insufficient
(e.g., having too few UAVs for a given size of the enviornment), coverage-levels
decay slowly and (ii) planning with global deconfliction in our framework incurs
a negligibly higher price compared to other weaker, more local collision-checking
schemes. (Video: https://youtu.be/aqDs6Wymp5Q)

1 Introduction
Traditional robot-coverage is the problem of determining a collision-free path for
a robot that covers all points of interest in an environment [10]. Persistent cov-
erage seeks to continuously maintain a desired coverage-level over an environ-
ment [9, 17, 22]. In our case, coverage-levels degrade over time, thereby increasing
the urgency with which points must be revisited. For example, consider a floor-
cleaning robot—once a part of the floor is cleaned, more dust will eventually collect
over it and thereby decrease its coverage-level. There has been a rise in the use of
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of the costs of the real-edges (which reflects the cost to reach the goal) and the
cost of the pseudo-edge (which reflects the priority of the cell that the pseudo-edge
connects). The final goal Gk for UAV Uk is the parent of the pseudo-goal on this
optimal path.

4.4 Goal Planner
Once a goal is assigned to Uk, the GP computes a kinodynamically feasible path to it
via search-based planning on a state-lattice [16, 19]. The state-space for each UAV
includes its two-dimensional pose (x,y,q), linear velocity v, and time t. Assuming
double-integrator dynamics for each UAV, we generate an action-space consisting
of feasible motion primitives. These primitives use cells of size 1m�1m. This dis-
cretization is independent of the mission-map discretization. We implicitly construct
a graph using the action space during a weighted-A* search to the goal [12, 20]. The
search prunes away all transitions that correspond to trajectories that either intersect
no-fly zones or collide with the committed plans of other vehicles in space or time.
We terminate the search as soon as a state is expanded whose incoming edge (from
the predecessor on the found path) covers the goal cell (specifically, the trajectory
corresponding to this edge contains a point whose distance to the goal cell is less
than rk). We assign the time taken to execute an action as its edge-cost in the graph.
While our aim is to plan for minimum-time paths, it is also desirable for the UAVs to
fly at high speeds whenever possible and avoid stopping. For this reason, we incen-
tivize actions with increasing velocities, penalize actions with decreasing velocities,
and heavily penalize hovering.

5 Experimental Setup and Results
We evaluate our framework in both simulation, where we assume perfect state esti-
mation and control, and on real UAVs, which can deviate from their planned paths.
The UAVs can withstand winds of speeds up to 30 m/s. Thus, the effect of wind is
negligible under normal conditions. Accounting for large deviations from planned
paths requires replanning and is part of future work. Our framework uses an identi-
cal set of parameters in both cases. We generate motion primitives with a maximum
speed of 6 m/s and a maximum turning rate of 6 �/s. We avoid adding angular veloc-
ity to the state-space by ensuring that these primitives start and end at zero angular
velocity. Two UAVs are deemed to have collided if at any point in time the distance
between these 2D locations is less than dmin = 10 m. The parameter rk = 15 m de-
fines the circular area directly underneath a UAV that is deemed covered for any
2D location of the UAV. We impose a planning timeout of 4 s on the Goal Plan-
ner, which is how long it is given to compute a plan. We use an Euclidean-distance
heuristic in the Weighted-A* search [20] with an inflation of 5. Fig. 7d and 7e shows
the two coverage-maps used for the experiments presented in this paper.
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Fig. 7: (a) UAV used in the experiments. (b) The two UAVs (circled in red) executing a mission.
(c) GUI showing a satellite image of the mission site along with UAV data overlay. (d) Map used
for experiments (big; coverage zone roughly 400m�400m). (e) Map used for experiments (small;
coverage zone roughly 200m�100m)

We plot the number of collisions between UAVs in Fig. 6a, the average time a UAV
is stationary in Fig. 6b, and the time taken by the Goal Planner in Fig. 6c, all against
varying lengths of committed plans. Fig. 6 shows that our deconfliction scheme
results in competitive planning times and also guarantees collision-free UAV move-
ment with negligible stoppage. Other collision-checking schemes are either overly
conservative and compute convoluted, long-winding paths, or simply fail to avoid
collisions.

5.3 Real-World Experiments
Hardware Setup For the real-world experiments, our planning framework was run
on a Lenovo T470s laptop running Ubuntu 16.04 and equipped with an Intel Core
i7-7600U processor and 20 GB of RAM.

Planner Evaluation We present results from real-world experiments in Table 2.
Fig. 8a plots C̄t for eight real-world runs. Additionally, dynamic removal of UAVs
from the mission was tested in five of these runs, and the remaining UAVs were
left undisturbed. Beyond this point, we are only covering the area with one UAV.
Hence, it is expected to see criticality increase. By iteratively planning and executing
computed paths, we isolate our planner from the stochasticity of controller-based
execution in the real world. Our planner quantitatively performs just as well in the
real-world as it does in simulation in spite of this stochasticity. This is because our
framework seeks latest information about UAV and map statuses from the real world
and constantly uses it to repeatedly solve our myopic version of the full problem (as
explained in Sec. 4).

Map Number
of

UAVs

Timing (ms) Path Planning

tGA tGP ttotal Number of
Expansions

Expansions
per second

tstopped
(%)

Fig. 7e 1 105 240 363 37 186 0.00
2 117 1181 1325 162 152 7.12

Table 2: Results of real-world experiments averaged over 8 runs (rounded down to the nearest
integer) and tstopped expressed as a percentage of total mission time (maximum over all runs).
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(a) (b)
Fig. 8: (a) Coverage criticality over time in the real-world: unless explicitly pointed to by arrows,
the curves represent an experiment with two UAVs run on the smaller map. A cross (�) on a
curve indicates the point in time when one of the two UAVs was removed from the mission. (b)
Comparison of all simulation and real-world missions executed in the small map from Fig. 7e by
two UAVs. The black curve with confidence intervals corresponds to the simulated experiments.

6 Conclusion and Future Work
We present and evaluate a planning framework for real-world, persistent coverage
with multiple UAVs. Our framework continuously decides where UAVs should fly
and computes kinodynamically feasible, globally deconflicting plans. We evaluate
our framework in both simulated and real-world settings. We also motivate and com-
pare global deconfliction with weaker, more local collision-avoidance schemes.

In many practical settings like ours, state spaces are high-dimensional and time
for deliberation is limited. Planning times can be a bottleneck in these cases and
cause delays. While our stopping maneuvers handle such situations, a natural exten-
sion is to incorporate anytime planning [26].

In the current framework, the goal assignment is based on priorities and is de-
coupled from goal planning. This is greedy and not optimal. Better strategies to
repeatedly cover previously observed coverage-zones can be learned from data and
added as macro-actions in the planner.
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