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Coinduction is an important concept in functional programming. To formally prove properties of
corecursive functions one can try to define them in a proof assistant such as Coq [1]. But there are
limitations on the functions that can be defined. In particular, corecursive calls must occur directly
under a call to a constructor, without any calls to other recursive functions in between. In this paper
we show how a partially ordered set endowed with a notion of approximation can be organized as a
Complete Partial Order. This makes it possible to define corecursive functions without using Coq’s
corecursion, as the unique solution of a fixpoint equation, thereby escaping Coq’s builtin limitations.

1 Introduction

Coinduction is an important concept in functional programming. Coinductive types are the types of
possibly infinite data structures such as the lists of Haskell, and corecursive functions compute values in
coinductive types. An example is the Sieve of Eratosthenes that produces the infinite stream of primes.

To formally define corecursive functions one can try to use a proof assistant such as Coq. But then
one quickly stumbles on the limitations of Coq on this matter. Indeed the language of this proof assistant
is total, meaning that a function must be defined on all its domain (which is not requested for functional
programming languages in general). Totality is ensured in Coq by a syntactical check of so-called guard-
edness. This criterion consists in checking that any corecursive call occurs directly under a call to a
constructor of the coinductive type that constitutes the codomain (a.k.a. range) of the function under def-
inition [5]. For example, Rose trees are coinductively defined as the constructor tree applied to a forest,
which is an inductively-defined list of Rose trees. A mirror function would be corecursively defined by
mirror t = tree(map mirror(reverse(forest t))), but this is rejected by Coq because the corecursive call is
not directly under the constructor tree, but under map, a recursive function defined on lists.

In a previous paper [7] we propose a method for defining such functions by replacing the syntactical
guardedness criterion by a semantical proof obligation of productiveness: for each input, an arbitrarily
close approximation of the corresponding output is eventually produced. When a functional (i.e., a
higher-order function, which constitutes the ”blueprint” of a corecursive function under definition) is
monotonic and satisfies the productiveness requirement, a corecursive function can be defined as the
unique fixpoint of the functional in question. This technique requires that the codomain of the function
under definition be organized as a Complete Partial Order (CPO). For some simpler coinductive types
such as streams or possibly infinite lists, the CPO can be directly defined using Coq’s builtin mechanisms.
But for mixed coinductive-inductive types such as Rose trees these mechanisms no longer work, and [7]
replaces the native coinductive types of Coq with inductive types, completed with equivalence classes of
”ascending” sequences of elements in inductive types, which are the limits of the sequences in question.

However, the construction we ended up with in [7] imposes some not-so-practical conditions. The
order had to be weakly total, thus excluding the natural prefix order of Rose trees. Although we were able
to exhibit a weakly total order, the constructor tree is not monotonic w.r.t. this order. As a consequence,
functionals that employ this constructor are not monotonic either, which excludes them for being used in
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fixpoint equations for the definition of corecursive functions. For example, the mirror function cannot be
defined in the natural manner, as a fixpoint of the functional Mirror= λ f .λt. tree(map f (reverse(forest t))),
but in an indirect way that makes it harder to prove that the obtained function is indeed the intended one.

Contributions. In this paper we replace the weak totality condition on orders by a notion of approxima-
tion meeting some quite natural conditions. These conditions are easier to satisfy than the (comparatively
arbitrary) weak totality. We illustrate with the example of finite trees that the natural (i.e. structural) or-
der on inductive types — quite importantly, this is the least constrained order under which constructors
are monotonic — does satisfy the conditions on approximations whereas it did not satisfy weak totality.
We then describe the construction of a CPO under the said conditions. This construction is substantially
more involved than that in [7], but has to be done only once and can then be instantiated on any inductive
type with an adequate notion of approximation in order to generate coinductive types. For Rose trees, the
effect of the new construction is that the tree constructor is now monotonic w.r.t. their natural prefix or-
der. It is now possible to define mixed recursive-corecursive functions in the most natural manner, as the
unique solution of the fixpoint equation induced by a monotonic, productive functional of the function.

Outline. Section 2 presents preliminary notions, chief among which an abstract notion of approxima-
tions and a number of assumptions over them. We show that the assumptions have a model - finite trees
with their natural prefix order and a ”cut” function. Some technical developments are also included.

Section 3 defines the completion operation that produces a CPO from a a partially ordered set with
a least element. Completion is done in several steps: first, one completes an initial set of ”finite” ele-
ments with new elements that are equivalence classes of ascending sequences of finite elements, thereby
providing such sequences with ”limits” (least upper bounds) required by CPOs. Second, the order and
approximations are extended to the new elements. Third, we show using a ”diagonalization” technique
that ascending sequences of both old and new elements have limits among the new elements, meaning
that the construction of the CPO does not require further completion steps.

Section 4 applies completion to produce the mixed inductive-coinductive type of Rose trees from
finite trees. The roadmap for defining the mirror recursive-corecursive function as the unique fixpoint of
its functional is presented. Section 5 concludes and presents related and future work. This paper will be
formalized in Coq, but we keep it language-agnostic and use standard mathematics for better readability.

2 Preliminaries

2.1 Sequences and Complete Partial Orders

Definition 1 Consider a set C and a partial order ⪯ on C. We denote by ≺ the relation defined by t ≺ t′

iff t ⪯ t′ and t , t′. A sequence (si)i∈N of elements of C is

• increasing whenever for all i ∈ N, si ⪯ si+1;

• strictly increasing, whenever for all i ∈ N, si ≺ si+1;

• stabilizing to c ∈ C whenever there exist m ∈ N such that for all i ≥ m, si = c, and stabilizing
whenever it is stabilizing to some c ∈C;

• ascending whenever it is increasing and non-stabilizing.

Remark. A sequence is ascending iff it is increasing and has a strictly increasing subsequence, and each
increasing and stabilizing sequence is stabilizing to a unique value.
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Definition 2 A Complete Partial Order (CPO) is a tuple (C,⪯,⊥), where ⪯ is a partial order on C, ⊥ is
the least element for ⪯, and such that each increasing sequence (sn)n∈N over C has a least upper bound.

Hereafter we call least upper bounds limits and denote the limit of a sequence (sn)n∈N by lim[(sn)n∈N].
An important feature of CPOs is that the order ⪯ should be interpreted as a definition order. In

this sense, ⊥ is the least defined element, and elements that are maximal with respect to the order are
interpreted as are ”fully defined”. Intermediate, non-maximal elements are therefore ”partially defined”.

2.2 Partially Ordered Sets with Least Element and Approximations

Assumption 1 In the sequel we assume:

1. a partially ordered set (C◦,⪯◦) with a least element ⊥. Elements of C◦ are often called finite. It is
required that no finite element be an upper bound for an ascending sequence of finite elements;

2. for each N ∈ N, an approximation function ⌈·⌉N : C◦→C◦. For any c ∈C◦, ⌈c⌉N is called the N-th
approximation of c, and satisfies the following properties:

(a) for all c ∈C◦ and N ∈ N, ⌈c⌉N ⪯◦ c;
(b) for all c,c′ ∈C◦ and N ∈ N, c ⪯ c′ implies ⌈c⌉N ⪯◦ ⌈c′⌉N;
(c) for all c ∈C◦ and N,N′ ∈ N, N ≤ N′ implies ⌈c⌉N ⪯◦ ⌈c⌉N′;
(d) for all c ∈C◦ there exists N ∈ N such that ⌈c⌉N = c;
(e) for all c ∈C◦ and N,N′ ∈ N, N ≤ N′ implies ⌈⌈c⌉N′⌉N = ⌈c⌉N;

3. for any N ∈ N and any ascending sequence (sn)n∈N, (⌈sn⌉N)n∈N is stabilizing.

Remark. The requirements in Assumption 1 are quite natural. Item 1 holds if finite elements have
finitely many finite elements smaller than them, a property which may be expected from finite elements.
Item 2.(a) says that approximations do approximate w.r.t. the order, items 2.(b) and 2.(c) says that ap-
proximations are monotonic in both arguments; item 2.(d) says that for finite elements approximation
can be exact, and item 2.(e) says that approximating first at some order N′ ≥ N and then approximating
at order N amounts to approximating at order N. Finally, item 3 says that mapping approximations to
ascending sequences makes them stabilize - the sequence of approximations cannot grow forever.
Example 1 Let C◦ be the set T of trees inductively defined by the rules ⊥ ∈ T and for each list l over T ,
tree l ∈ T. Let ⪯◦ be the prefix relation on T , inductively defined by ⊥ ⪯◦ t for each t ∈ T, and, for every
pair of lists l, l′ over T having the same length, say, m, tree l ⪯◦ tree l′ whenever l[i] ⪯◦ l′[i] for each
i < n (where l[i] denotes the i-th element of the list l). Let ⌈·⌉N (”cut at height N”) denote the function
λ t. if N = 0∨ t =⊥ then ⊥ else tree(map(⌈·⌉N−1)(forest t) where forest(tree l) ≜ l and map is the mapping
function on lists. We have proved in Coq that Assumption 1 holds for these definitions. The code is
available at https://project.inria.fr/wpte2022/ .

Remark. Item 2.(b) in the above Assumption implies that for increasing sequence (sn)n∈N, the sequence
(⌈sn⌉N)n∈N is increasing. Hence, for ascending sequences (sn)n∈N the sequence (⌈sn⌉N)n∈N is increasing
and stabilizing (cf. Item 3 of the Assumption) and therefore has a limit.

Lemma 1 Assume two increasing and stabilizing sequences (sn)n∈N, (s′n)n∈N over C◦, such that for all
n ∈ N, sn ⪯

◦ s′n. Then lim[(sn)n∈N] ⪯◦ lim[(s′n)n∈N].

Proof. Per the above observations, lim[(sn)n∈N] is the value at which (sn)n∈N stabilizes, hence, there
exists i ∈ N such that for all j ≥ i, s j = lim[(sn)n∈N]. Similarly, there exists i′ ∈ N such that for all j ≥ i′,
s′j = lim[(s′n)n∈N]. Set i′′ := max i i′. Then, lim[(sn)n∈N] = si′′ ; by hypothesis of the lemma si′′ ⪯

◦ s′i′′
holds; and si′′ = lim[(s′n)n∈N]. By transitivity, lim[(sn)n∈N] ⪯◦ lim[(s′n)n∈N], which proves the lemma.

https://project.inria.fr/wpte2022/
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2.3 An Equivalence Relation on Sequences

Similar sequences eventually reach elements that are pairwise equal up to arbitrary close approximations:

Definition 3 Two sequences (sn)n∈N, (s′n)n∈N over C◦ are similar, written (sn)n∈N ∼ (s′n)n∈N, whenever for
all N ∈ N there exists i ∈ N such that for all j ≥ i, ⌈s j⌉N = ⌈s′j⌉N .

Lemma 2 The similarity relation ∼ is an equivalence relation on sequences over C◦.

Proof. Reflexivity and symmetry are immediate. For transitivity, assume (sn)n∈N ∼ (s′n)n∈N and (s′n)n∈N ∼

(s′′n )n∈N. Choose any N ∈N. From (sn)n∈N ∼ (s′n)n∈N we obtain i ∈N such that for all j ≥ i, ⌈s j⌉N = ⌈s′j⌉N ,
and from (s′n)n∈N ∼ (s′′n )n∈N we obtain i′ ∈ N such that for all j ≥ i′, ⌈s′j⌉N = ⌈s

′′
j ⌉N . Setting i′′ := max i i′

we get: for all j ≥ i′′, ⌈s j⌉N = ⌈s′j⌉N = ⌈s
′′
j ⌉N ; which proves (sn)n∈N ∼ (s′′n )n∈N and establishes transitivity.

Lemma 3 For an ascending sequence (sn)n∈N, let s be the (unique) value at which (⌈sn⌉N)n∈N stabilizes.
If (sn)n∈N ∼ (s′n)n∈N then (⌈s′n⌉N)n∈N also stabilizes at s.

Proof. From the stabilization hypothesis we obtain i ∈N such that for all j ≥ i, ⌈s j⌉N = s. From (sn)n∈N ∼

(s′n)n∈N we obtain i′ such that for all j ≥ i′, ⌈s j⌉N = ⌈s′j⌉N . Setting i′′ := max i i′ we obtain that for all
j ≥ i′′, ⌈s′j⌉N = ⌈s j⌉N = s. Hence, (⌈s′n⌉N)n∈N stabilizes at s; which proves the lemma.

Lemma 3 helps defining approximations of equivalence classes ⌈[(sn)n∈N]∼⌉N of ascending sequences:

Definition 4 For an ascending sequence over C◦, ⌈[(sn)n∈N]∼⌉N = lim[(⌈sn⌉N)n∈N].

Indeed, Lemma 3 says that the above definition is independent on the chosen representative in the class.
This is essential in the rest of the paper. Unless otherwise stated, sequences are assumed to be over C◦.

Lemma 4 For ascending sequences (sn)n∈N and (s′n)n∈N it holds that (sn)n∈N ∼ (s′n)n∈N if and only if for
all N ∈ N, ⌈[(sn)n∈N]∼⌉N = ⌈[(s′n)n∈N]∼⌉N .

Proof. (⇒): per the above remarks, ⌈[(sn)n∈N]∼⌉N = lim[(⌈sn⌉N)n∈N] and ⌈[(s′n)n∈N]∼⌉N = lim[(⌈s′n⌉N)n∈N].
If (sn)n∈N ∼ (s′n)n∈N we know by Lemma 3 that the value lim[(⌈sn⌉N)n∈N] at which (⌈sn⌉N)n∈N stabilizes
equals the value lim[(⌈s′n⌉N)n∈N] at which (⌈s′n⌉N)n∈N stabilizes. Hence the conclusion ⌈[(sn)n∈N]∼⌉N =
⌈[(s′n)n∈N]∼⌉N .

(⇐) : Choose an arbitrary N ∈ N. Per the above remarks, from the hypothesis ⌈[(sn)n∈N]∼⌉N =
⌈[(s′n)n∈N]∼⌉N we obtain that the value lim[(⌈sn⌉N)n∈N] at which ⌈(sn)n∈N⌉N stabilizes equals the value
lim[(⌈s′n⌉N)n∈N] at which ⌈(s′n)n∈N⌉N stabilizes. Let i be the least natural number such that for all j ≥ i,
⌈s j⌉N = lim[(⌈sn⌉N)n∈N] and let i′ be the least natural number such that for all j≥ i′, ⌈s′j⌉N = lim[(⌈s′n⌉N)n∈N].
Set i′′ :=max i i′. Hence, for all j ≥ i′′,⌈s j⌉N = ⌈s′j⌉N and since N was chosen arbitrarily, by Definition 3,
(sn)n∈N ∼ (s′n)n∈N; which proves the (⇐) implication and the lemma.

2.4 An Order Relation on Equivalence Classes of Sequences

Notation. We denote by K the set of equivalence classes of ascending sequences of elements in C◦.

Definition 5 For k,k′ ∈ K, k ≾ k′ whenever for all N ∈ N, ⌈k⌉N ⪯◦ ⌈k′⌉N .

Lemma 5 The relation ≾ is a partial order on K.
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Proof. Reflexivity and transitivity of ≾ easily result from the corresponding properties of ⪯◦. For anti-
symmetry: let k = [(sn)n∈N]∼ and k′ = [(s′n)n∈N]∼. Then, k ≾ k′ means that for all N ∈ N, ⌈[(sn)n∈N]∼⌉N ⪯◦

⌈[(s′n)n∈N]∼⌉N , and k′ ≾ k means that for all N ∈ N, ⌈[(s′n)n∈N]∼⌉N ⪯◦ ⌈[(sn)n∈N]∼⌉N . As ⪯◦ is antisymmet-
ric, for all N ∈ N, ⌈[(sn)n∈N]∼⌉N = ⌈[(s′n)n∈N]∼⌉N , and by Lemma 4, (sn)n∈N ∼ (s′n)n∈N, i.e., [(sn)n∈N]∼ =
[(s′n)n∈N]∼: the lemma is proved.

We give an equivalent characterization of the order ≾, expressed as Lemma 7 below. To prove that lemma
we need the monotonicity of approximations of equivalence classes:

Lemma 6 If k ∈ K and N ≤ N′ then ⌈k⌉N ⪯◦ ⌈k⌉N′ .

Proof. Let k = [(sn)n∈N]∼, thus, ⌈k⌉N = lim[(⌈sn⌉N)n∈N] and ⌈k⌉N′ = lim[(⌈sn⌉N′)n∈N]. Using Assumption 1
item 2.(c), for all n ∈ N, ⌈sn⌉N ⪯

◦ ⌈sn⌉N′ . By Lemma 1 we obtain lim[(⌈sn⌉N)n∈N] ⪯◦ lim[(⌈sn⌉N′)n∈N].
Hence the conclusion ⌈k⌉N ⪯◦ ⌈k⌉N′ .

Lemma 7 k ≾ k′ if and only if for all N ∈ N there is N′ ∈ N such that ⌈k⌉N ⪯◦ ⌈k′⌉N′ .

Proof. (⇒): this direction is trivial, as by Definition 5 k ≾ k′ means that for all N ∈ N there does exist
N′ := N such that ⌈k⌉N ⪯◦ ⌈k′⌉N′ .

(⇐): Choose an arbitrary N ∈ N. For the corresponding N′ ∈ N we have two cases:

• either N′ < N, in which case by Lemma 6, ⌈k′⌉N′ ⪯◦ ⌈k′⌉N and by transitivity using hypothesis
⌈k⌉N ⪯◦ ⌈k′⌉N′ we obtain ⌈k⌉N ⪯◦ ⌈k′⌉N ;

• or N ≥ N′, and from ⌈k⌉N ⪯◦ ⌈k′⌉N′ , using Assumption 1 item 2.(b) we obtain ⌈⌈k⌉N⌉N ⪯◦ ⌈⌈k′⌉N′⌉N ,
which, by using item 2.(e), amounts to ⌈k⌉N ⪯◦ ⌈k′⌉N .

Since N ∈ N has been arbitrarily chosen and in all cases ⌈k⌉N ⪯◦ ⌈k′⌉N , by Definition 5 we obtain k ≾ k′,
which proves the (⇐) implication and the lemma.

3 Completion

We show how a partially ordered set with a least element (C◦,⪯◦,⊥) satisfying Assumption 1 can be
completed in order to obtain a CPO (C,⪯,⊥). We have already noted that increasing and stabilizing
sequences have limits. Hence, limits have to be constructed for the ascending sequences.

Definition 6 Given a triple (C◦,⪯◦,⊥) satisfying Assumption 1, the completion operation consists in

1. extending the base set C◦ to a set C = C◦∪K where K is the set of equivalence classes [(sn)n∈N]∼
of ascending sequences over C◦;

2. defining the limits of each ascending sequence (sn)n∈N over C◦ to be the equivalence class of the
sequence: lim[(sn)n∈N] ≜ [(sn)n∈N]∼.

3. extending the order ⪯◦ on C◦ to a relation ⪯ on C as follows:

(a) for c,c′ ∈C◦, c ⪯ c whenever c ⪯◦ c′;
(b) for c ∈C and k ∈ K, c ⪯ k whenever there exists N ∈ N such that c ⪯◦ ⌈k⌉N;
(c) for k,k′ ∈ K, k ⪯ k′ whenever k ≾ k′.

Remark. Definition 6 says nothing about limits of increasing sequences containing elements that are
themselves limits (from K). Such sequences are dealt with ahead in the paper and shown to have limits
among the new elements. Hence, the CPO construction does not require further completion steps.
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A key difference with the earlier completion operation in [7] is that equivalence classes there were
all maximal with respect to the order; this was required in order to exclude limit elements (in K) from
occurring in ascending sequences. In the new construction, limit elements are not excluded any more
from ascending sequences, which enables us to have a nontrivial order on K, in which maximal elements
are seen as ”fully defined”, but in which ”partially defined”, non-maximal limit elements also exist.

We now show that the relation ⪯ is an order and that the constructed limits are least upper bounds of
the respective sequences. This is then used in the next subsection in order to provide limits to sequences
that include both finite elements and equivalence classes, and to prove that those limits are least upper
bounds as well, thereby completing the organization of old and new elements and their order as a CPO.

Lemma 8 In the context of Definition 6, the relation ⪯ is an order relation on C.

Proof. The reflexivity of ⪯ follows from those of ⪯◦ and of ≾. For antisymmetry: on C◦ it follows from
the antisymmetry of ⪯◦. On K, it follows from the antisymmetry of ≾. These are the only situations to
consider, as for c ∈C◦ and k ∈ K having k ⪯ c is impossible according to Definition 6.

There remains to prove that ⪯ is transitive. There are only 4 possible cases:

1. c,c′,c′′ ∈ C◦ with c ⪯ c′, c′ ⪯ c′′: by Definition 6 of completion item 3.(a), here ⪯ is ⪯◦ and the
required c ⪯ c′′ results from the transitivity of ⪯◦;

2. c,c′ ∈C◦ and k ∈ K with c ⪯ c′ and c′ ⪯ k: by Definition 6 item 3.(b), the latter means there exists
N ∈ N such that c′ ⪯◦ ⌈k⌉N , and since c ⪯ c′, the same N ensures c ⪯◦ ⌈k⌉N and thus c ⪯ k;

3. c ∈ C◦ and k,k′ ∈ K with c ⪯ k and k ⪯ k′: by Definition 6 item 3.(b), there exists N ∈ N such that
c ⪯◦ ⌈k⌉N , and by Definition 5 and item 3.(c), ⌈k⌉N ⪯◦ ⌈k′⌉N , thus, by transitivity, there exists N ∈N
such that c ⪯◦ ⌈k′⌉N , meaning that c ⪯ k′;

4. k,k′,k′′ ∈ K with k ⪯ k′ and k′ ⪯ k′′ : by Definition 6 item 3.(c), here ⪯ is ≾ and the required k ⪯ k′′

results from the transitivity of ≾. This concludes the proof of transitivity for ⪯ and of the lemma
as a whole.

Lemma 9 In the context of Definition 6, the limit lim[(sn)n∈N] of an ascending sequence (sn)n∈N over C◦

is a least upper bound for (sn)n∈N.

Proof. By Definition 6, given an ascending sequence (sn)n∈N, it limit lim[(sn)n∈N] is defined to be the
equivalence class [(sn)n∈N]∼ of the sequence.

We first prove that [(sn)n∈N]∼ is an upper bound for the sequence (sn)n∈N. That is, we must prove
that for all n ∈ N, sn ⪯ [(sn)n∈N]∼. Choose an arbitrary n ∈ N, and choose N such that ⌈sn⌉N = sn. This is
made possible by Assumption 1 item 2.(d). We then have sn = ⌈sn⌉N ⪯

◦ lim[(⌈sn⌉N)n∈N] = ⌈[(sn)n∈N]∼⌉N .
Hence, sn ⪯

◦ ⌈[(sn)n∈N]∼⌉N and, by Definition 6 item 3.(b), sn ⪯ [(sn)n∈N]∼. The upper-bound claim of
[(sn)n∈N]∼ with respect to (sn)n∈N is proved.

We now prove that [(sn)n∈N]∼ is the least upper bound of (sn)n∈N. Assume b ∈ C such that for all
n ∈ N, sn ⪯ b. There are two cases to consider: b ∈C◦ or b ∈ K. If b ∈C◦ then for all n ∈ N, sn ⪯

◦ b. But
this is impossible by Assumption 1 item 1 since (sn)n∈N is ascending.

If b ∈ K, then b = [(s′n)n∈N]∼ for some ascending sequence (s′n)n∈N. From the fact that for all n ∈ N,
sn ⪯ [(s′n)n∈N]∼, using Assumption 1 item 2.(b) we obtain that for all n ∈ N, there is N′ ∈ N such that
sn ⪯

◦ ⌈[(s′n)n∈N]∼⌉N′ . Choose an arbitrary N ∈ N. Since for all n ∈ N, ⌈sn⌉N ⪯
◦ sn we further obtain that

for all n ∈ N there exists N′ ∈ N such that ⌈sn⌉N ⪯
◦ ⌈[(s′n)n∈N]∼⌉N′ . Now, the sequence (⌈sn⌉N)n∈N is

increasing and stabilizing, and lim[(⌈sn⌉N)n∈N] is an element, say, ⌈sk⌉N of the sequence. We thus obtain
that for the arbitrarily chosen N ∈ N, there exists N′ ∈ N such that lim[(⌈sn⌉N)n∈N] ⪯◦ ⌈[(s′n)n∈N]∼⌉N′ .
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Moreover, we know that lim[(⌈sn⌉N)n∈N] = ⌈[(sn)n∈N]∼⌉N . We thus obtain that for all N ∈ N, there exists
N′ ∈ N such that ⌈[(sn)n∈N]∼⌉N ⪯◦ ⌈[(s′n)n∈N]∼⌉N′ . By Lemma 7 we obtain [(sn)n∈N]∼ ≾ [(s′n)n∈N]∼. Then,
by Definition 6 item 3.(c), [(sn)n∈N]∼ ⪯ [(s′n)n∈N]∼ = b. Thus, in the only possible case (b ∈ K) we have
obtained that [(sn)n∈N]∼ is ⪯-ordered with b. This concludes the proof of the lemma.

3.1 Completion + Diagonalization = CPO

In this section we show how to ”finish” the completion operation in the previous section in order to
obtain a CPO. We add what is missing: limits for ascending sequences that include equivalence classes.
The main idea is to use a diagonalization technique to extract an ascending sequence of finite elements
from an ascending sequence that includes equivalence classes. We need a few technical lemmas. The
first lemma adapts Assumption 1 items 2.(a)-(c), which hold for elements of C◦, to the elements of K.

Lemma 10
1. for all k ∈ K and N ∈ N, ⌈k⌉N ⪯ k;

2. for all k,k′ ∈ K and N ∈ N, k ⪯ k′ implies ⌈k⌉N ⪯ ⌈k′⌉N;

3. for all k ∈ K and N,N′ ∈ N, N ≤ N′ implies ⌈k⌉N ⪯ ⌈k⌉N′ .

Proof.

1. The approximation ⌈k⌉N is an element of C◦, hence, by Definition 6 item 3.(b), for ⌈k⌉N ⪯ k it is
enough to show that there exists N′ ∈ N such that ⌈k⌉N ⪯ ⌈k⌉N′ . Setting N′ := N ensures this;

2. By Definition 6 item 3.(c), k ⪯ k′ is just k ≾ k′, which by Definition 5 is just the conclusion of this
item - that for all N ∈ N, ⌈k⌉N ⪯ ⌈k′⌉N ;

3. Both ⌈k⌉N and ⌈k⌉N′ are elements of C◦, thus, ⪯ = ⪯◦, and the conclusion follows by Lemma 6.

Notation. For equivalence classes k,k′ ∈ K we write k ≺ k′ for k ≾ k′ and k , k′. We denote by Cω the
set of sequences over a set C. We call the diagonal of a s ∈ (C◦∪K)ω the sequence (⌈sn⌉n)n∈N ∈ (C◦)ω.

Lemma 11 k ≺ k′ implies that for all N ∈ N, ⌈k⌉N ≺◦ ⌈k′⌉N .

Proof. Choose an arbitrary N ∈ N. From Lemma 7 we obtain ⌈k⌉N ⪯◦ ⌈k′⌉N . There remains to show
that the previous inequality is strict. For, assuming the contrary, we would have that for all N ∈ N,
⌈k⌉N = ⌈k′⌉N . Then, k ≾ k′ and k′ ≾ k follow by Definition 7, implying k = k′, in contradiction to k ≺ k′.

Lemma 12 If s ∈ (C◦∪K)ω is increasing, the sequence (⌈sn⌉n)n∈N ∈ (C◦)ω is increasing as well.

Proof. Any two consecutive elements ⌈si−1⌉i−1 and ⌈si⌉i satisfy ⌈si−1⌉i−1 ⪯ ⌈si⌉i by Lemma 10 items 2&3.

Lemma 13 If s ∈ (C◦∪K)ω is ascending and there is i ∈N such that si ∈ K, then (⌈sn⌉n)n∈N is ascending.

Proof. By Lemma 12 the sequence (⌈sn⌉n)n∈N is increasing. We only need to prove that it has a strictly
increasing subsequence. Since s is ascending it has a strictly increasing subsequence (sin)n∈N. Since
si ∈ K, we obtain that for all j ≥ i, s j ∈ K. Consider the subsequence (sin)n∈N,in≥i of (sin)n∈N. As a
subsequence of an strictly increasing subsequence, (sin)n∈N,in≥i is strictly increasing, thus, for all n ∈ N
s.t. in ≥ i, sin ≺ sin+1 . Fix such an n ∈ N. Using Lemma 11 with N := in we obtain ⌈sin⌉in ≺

◦ ⌈sin+1⌉in .
By Assumption 1 item 2.(c), ⌈sin+1⌉in ⪯

◦ ⌈sin+1⌉in+1 . Overall, ⌈sin⌉in ≺
◦ ⌈sin+1⌉in+1 ; and since n was chosen

arbitrarily, (⌈sin⌉in)n∈N,in≥i is a strictly increasing subsequence of (⌈sn⌉n)n∈N, proving the lemma.

The last lemma in this section provides limits to sequences s ∈ (C◦∪K)ω with at least one element in K.
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Lemma 14 If s ∈ (C◦∪K)ω is ascending and si ∈ K, then [(⌈sn⌉n)n∈N]∼ is the least upper bound for s.

Proof. We first prove that [(⌈sn⌉n)n∈N]∼ is an upper bound for s. Thus, we need to show that for all
j ∈ N, s j ⪯ [(⌈sn⌉n)n∈N]∼. Since s is increasing, it is enough to show the above inequality for j ≥ i, i.e.,
when s j ∈ K. By Lemma 7 we only need to show (†): for all N ∈ N, there exists N′ ∈ N such that
⌈s j⌉N ⪯

◦ ⌈[(⌈sn⌉n)n∈N]∼⌉N′ . Choose an arbitrary N ∈ N. Let p = max j N. Thus, by Assumption 1 item
2.(b), ⌈s j⌉N ⪯

◦ ⌈sp⌉N . Using Assumption 1 item 2.(c), ⌈sp⌉N ⪯
◦ ⌈sp⌉p. By transitivity, ⌈s j⌉N ⪯

◦ ⌈sp⌉p. But
since (by Lemma 13) (⌈sn⌉n)n∈N] is ascending, we know by Lemma 9 that [(⌈sn⌉n)n∈N]∼ is an upper bound
for (⌈sn⌉n)n∈N. In particular, ⌈sp⌉p ⪯

◦ [(⌈sn⌉n)n∈N]∼, and by transitivity, ⌈s j⌉N ⪯
◦ [(⌈sn⌉n)n∈N]∼, which by

Definition 6 item 3.(b) implies that there exists N′ ∈ N such that ⌈s j⌉N ⪯
◦ ⌈[(⌈sn⌉n)n∈N]∼⌉N′ , i.e., (†).

We now prove that [(⌈sn⌉n)n∈N]∼ is a least upper bound for s. Thus, assuming an upper bound
b ∈ C◦ ∪K for s, we need to show that [(⌈sn⌉n)n∈N]∼ ⪯ b. Now, by Lemma 9, [(⌈sn⌉n)n∈N]∼ is the least
upper bound for (⌈sn⌉n)n∈N. Hence in order to show [(⌈sn⌉n)n∈N]∼ ⪯ b it is enough to show that b is an
upper bound for (⌈sn⌉n)n∈N. Choose an arbitrary n ∈ N. We have, by Lemma 10 item 1, ⌈sn⌉n ⪯ sn and
since b is an upper bound for s, sn ⪯ b. Hence, for an arbitrary n ∈ N, ⌈sn⌉n ⪯ b, which establishes that b
is an upper bound for (⌈sn⌉n)n∈N, which completes the proof of the lemma.

4 Rose Trees as CPOs

In this section we focus on the definition of Rose trees, i.e., trees with finite breadth and possibly infinite
depth, using the finite trees defined in Example 1 and the CPO construction in the previous section.

Remember from Example 1 that finite trees C◦ have constructors ⊥ and tree a l for finite lists l of
finite trees. The prefix order ⪯◦ is such that for all t ∈ C◦, ⊥ ⪯◦ t, and for all lists l, l′ of trees having the
same length m, tree l ⪯◦ tree l′ if and only if for all i <m, l[i] ⪯◦ l′[i]. Together with their approximations
they satisfy Assumption 1 and therefore constitute a CPO (C◦∪K,⪯,⊥) where K is the set of equivalence
classes of ascending sequences of finite trees. Such ascending sequences require trees having at least one
branch that grows ”forever”, and their limits (in K) have at least one infinite branch.

Remark. Thanks to diagonalization, all sequences considered below are constituted only of finite trees.

Overall, the set K together with the set C◦ of finite trees constitute the set C◦ ∪K of Rose trees -
with finite breadth and possibly infinite depth. Among Rose trees there are those who do not have ⊥ as
a subtree. Such trees are maximal for the ⪯ order and, since this order is a definition order, the maximal
elements are interpreted as ”completely defined”. There are also elements that have some infinite subtrees
and some ⊥ subtrees. Those are non-maximal for the definition order ⪯ and hence not fully defined.

4.1 Extending the tree Constructor of Finite Trees to Rose Trees

We now define a function tree that takes a list of Rose trees (defined above) and produces a Rose tree.

Remark. In the sequel we identify the equivalence class of an increasing and stabilizing sequence with
the value at which all sequence in the class stabilize, i.e. their common limit. Hence, for increasing and
stabilizing sequences, [(sn)n∈N]∼ = lim[(sn)n∈N]. Since this identity also holds for ascending sequences
(cf. Definition 6), it holds for all increasing sequences, which enables us to treat them uniformly.

Consider now a list l = [t1, . . . , tm] of elements in C =C◦∪K. Thanks to the above identification, each
ti equals the equivalence class of some increasing sequence (ti

n)n∈N that converges to it: for all i = 1, . . .m,
ti = [(ti

n)n∈N]∼ = lim[(ti
n)n∈N]. Let us consider the sequence of lists ([t1

n, . . . , t
m
n ])n∈N. This sequence is
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”pointwise” increasing: for all n ∈ N and i = 1, . . .m, ti
n ⪯
◦ ti

n+1, and, thanks to the monotony of the ⪯◦

(prefix) order, the sequence (tree[t1
n, . . . , t

m
n ])n∈N is increasing. This justifies the following definition:

Definition 7 (tree function on Rose Trees) tree [[(t1
n)n∈N]∼, . . . , [(tm

n )n∈N]∼] ≜ lim[(tree[t1
n, . . . , t

m
n ])n∈N].

We now show that the above definition does not depend on the choice of representatives in the equiva-
lence classes [(t1

n)n∈N]∼, . . . , [(tm
n )n∈N]∼. Thus, it is required to prove that for each pair of lists of increasing

sequences [(t1
n)n∈N, . . . (tm

n )n∈N] and [(t′1n )n∈N, . . . (t′mn )n∈N] satisfying (ti
n)n∈N ∼ (t′in )n∈N for all i = 1, . . . ,m, it

holds that (tree[t1
n, . . . t

m
n ])n∈N ∼ (tree[t′1n , . . . t

′m
n ])n∈N. Fix an arbitrary N ∈ N. Now, from (ti

n)n∈N ∼ (t′in )n∈N

for all i = 1, . . . ,m, we obtain, for each i = 1, . . . ,m, some ji ∈ N such that for all j ≥ ji,⌈ti
j⌉N = ⌈t

′i
j ⌉N .

Setting J to be the maximum of the ji and by using the definition of approximations for trees, we obtain
for all j ≥ J, ⌈tree[t1

j , . . . t
m
j ]⌉N+1 = tree[⌈t1

j ⌉N , . . . , ⌈t
m
j ⌉N] = tree[⌈t′1j ⌉N , . . . , ⌈t

′m
j ⌉N] = ⌈tree[t′1j , . . . t

′m
j ]⌉N+1.

Combined with the fact that for all j (in particular for j ≥ J), ⌈tree[t1
j , . . . t

m
j ]⌉0 = ⊥ = ⌈tree[t′1j , . . . t

′m
j ]⌉0,

for the arbitrarily chosen N ∈ N there is J ∈ N such for all j ≥ M,⌈tree[t1
j , . . . t

m
j ]⌉N = (⌈tree[t′1j , . . . t

′m
j ])⌉N .

But by definition of ∼ this is just (tree[t1
n, . . . t

m
n ])n∈N ∼ (tree[t′1n , . . . t

′m
n ])n∈N, which is what we had to prove

in order to show the independence from representatives in Definition 7 of the tree function for Rose trees.
There remains to prove that the function satisfies the following properties of its restriction to finite trees:

• approximations: ⌈tree l⌉0 = ⊥ and ⌈tree l⌉N+1 = tree(map ⌈·⌉N) l);

• monotonicity : tree l⪯ tree l′ iff for some m ∈N, length l= length l′ =m and for all i<m, l[i]⪯ l′[i];

• surjectiveness for nonempty trees: for all t ∈C \ {⊥}, there exists l such that t = tree l;

• injectiveness: for all lists of Rose trees l, l′, tree l = tree l′ implies l = l′.

In particular, the last two properties will enable us to define the forest accessor for nonempty trees
as: forest t is the (unique) list l such that t = tree l.

4.2 Towards Defining Corecursive Functions Without Corecursion

Definition 7 and its properties enables us to define corecursive functions based on some results from [7].

4.2.1 Productive Functionals and Unique Fixpoints

Assume a CPO (C,⪯,⊥). We extend the order ⪯ to functions D→C by f1 ⪯ f2 iff f1 x ⪯ f2 x for all x ∈ D.

Definition 8 A functional F : (D→ C)→ D→ C is increasing if for all f1, f2 : D→ C, f1 ⪯ f2 implies
F f1 ⪯ F f2.

Consider a functional F : (D→ C)→ D→ C as above. Let y : D→ C be the constant function
such that y x = ⊥, for all x ∈ D, and let Fn : (D→C)→ D→C be the functional inductively defined by
F0 f = f and, for all n ∈ N, Fn+1 f = F(Fn f ).

Definition 9 A functional F : (D→ C)→ D→ C is productive whenever it is increasing and for all
x ∈ D, the limit of the (increasing) sequence (Fny x)n∈N is maximal w.r.t. the order ⪯.

Theorem 1 ([7]) If a functional F is productive then lim[(Fny)n∈N] is the unique fixpoint of F.
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4.2.2 Towards Defining a Mirror Function for Rose Trees

The mirror function for Rose trees, which we intend to define via its fixpoint equation, has the following
functional: Mirror = λ f .λt. if t = ⊥ then⊥ else map f (reverse (forest t)), where reverse is the standard
function that reverses lists. For defining the mirror function via the equation mirror =Mirror mirror we
shall use Theorem 1, which requires us to prove that the functional Mirror is productive. We conjecture
that this requires us to first define mirror◦ = λt. if t = ⊥ then⊥ else map mirror◦(reverse (forest t)) for
finite trees t, and then prove by induction on n ∈ N that for all Rose trees t, Mirrorny t = mirror◦(⌈t⌉n).
The latter identity is useful because ⌈t⌉n has the property that all its ⊥ subtrees are at the same ”distance”
from the root of t, which coincides with the tree’s height. Hence, for infinite maximal trees t, the sequence
(Mirrorny t)n∈N is ascending and ”fair”, in the sense that there remain no ”undeveloped” ⊥ subtree.

Hence, in the limit, there is no ⊥ subtree, which makes the limit maximal and the function itself
well-defined: when given as input a completely defined Rose tree it returns a tree of the same nature.

5 Conclusion and Related Work

We have shown a way to build an CPO from a partially ordered set with least element satisfying a certain
assumption, and have shown that the assumption holds for finites trees. The resulting CPO of Rose trees
enabled us to extend the tree constructor of finite trees to a homonymous function on Rose trees and
to enable the possibility of defining a mixed recursive-corecursive function - the mirror function - as
the unique fixpoint of its functional. This is the most natural way to define such a function and earlier
attempts at this in [7] failed. The modified completion operation in this paper gets most of the credit for
this progress. Although we have focused in this paper on an example — Rose trees and their mirror — we
believe that the example is paradigmatic, and that understanding it opens the way to a general approach,
perhaps partially automatable, for naturally defining corecursive functions without using corecursion.

Related Work. The completion operation has similarities with the classical construction of real numbers
based on completing rationals with equivalence classes of Cauchy sequences of rationals. However,
Cauchy sequences require metric spaces, with a distance function satisfying certain properties, and it
does not seem possible to organize Rose trees and their prefix order as a metric space. The reason is that
the distance requires a ”weak totality” property that the prefix order does not satisfy. Defining corecursive
functions based on Cauchy sequences is mentioned in [6]. Using Banach’s fixpoint theorem, corecursive
functions are defined as unique fixpoints of eventually contracting functionals. However, their work is
not concerned with extending the definition of corecursive functions beyond the guarded ones.

The fixpoint theorem that we are using is a stronger version of Kleene’s theorem, stating that contin-
uous functionals over a CPO have a least fixpoint. Another classical result is completion by ideals that
transforms partial orders with least element into CPOs and monotonic functions between partial orders
into continuous functions between CPOs. This textbook result [2](Chapter 1) can be used for defining
partial (co)recursive functions in, e.g., the semantics of Haskell. By contrast, we focus on Coq and its
total corecursive functions, for which productiveness and unique, maximal fixpoints are essential.

Corecursion is present in several major proof assistants. In Coq, corecursive function definitions
have to satisfy a guardedness-by-constructors criterion. In some cases, a function that is not guarded can
be transformed into an equivalent, guarded function [3]. Their idea is to use an ad-hoc predicate stating
that the definition under study is, in some sense, productive. However, they do not handle the case where
corecursive calls are guarded by non-constructor functions, such as our mirror function for Rose trees.

Agda [9] is a proof assistant with an underlying type theory close to that of Coq. It also offers support



V. Rusu & D. Nowak 11

for corecursive function definition. In the core tool there is a guardedness checker similar to that of Coq,
but somewhat more liberal. Extensions of Agda include sized types [8] that provide users with a uniform,
automatic way of handling termination an productiveness. The implementation of sized types is currently
unsound (cf. https://github.com/agda/agda/issues/3026).

Isabelle/HOL [10] is also major proof assistant which supports corecursive functions. It accept func-
tion that go beyond guarded corecursion [4], provided the functions are friendly (a friendly function
needs to destruct at most one constructor of input to produce one constructor of output). Unguarded
corecursive calls are also accepted, provided they eventually produce a constructor of output. Like in our
case, the user needs to prove the conditions ensuring the well-formedness of corecursive functions.
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