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Abstract In this paper we study the multi-agent pursuit-

evasion problem, and present an extension of the Multi-

Agent Deep Deterministic Policy Gradient (MADDPG)

deep reinforcement learning algorithm. Previous pursuit-

evasion advancements with MADDPG have focused on

training capture strategies dependent on the restric-

tion of evader movement with environmental features.

We demonstrate a method to train pursuer agents to

collaboratively surround and encircle an evader for re-

liable capture without a strategy rooted in environ-

ment entrapment (i.e. cornering). Our method utilizes a

novel two-stage, variable-aggression, continuous reward

function based on geometrical inscribed circles (incir-

cles), along with a corresponding observation space,

with agents operating in an entrapment-disadvantaged

environment. Our results show reliable capture of an
intelligent, superior evader by three trained pursuers in

open space with our encircling strategy. A key novelty of

our work is demonstrating the ability to transition be-

haviors learned using deep reinforcement learning from

a simulated robotic system with imperfect world as-

sumptions to a real-world robotic agents.
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1 Introduction

The capability for multiple entities to collaborate to

achieve a singular goal is studied in the field of swarm

robotics, where many homogeneous agents must work

together to accomplish complex tasks which cannot be

done alone. Such collaborative behavior is prevalent in

nature - such as honeybees working together in a hive

or sharks teaming up to hunt prey. The multi-agent

pursuit-evasion problem (also known as predator-prey),

where a swarm of pursuers are tasked with the goal of

capturing an adversary, is extremely applicable in many

real-world situations. One such application is search-

and-rescue, where the exact position of the target may

be elusive and constantly changing. Other applications

include time-sensitive interception of adversarial com-

batants, where the primary goal of the pursuers is effi-

cient capture of an opponent trying to escape.

Many of these pursuit-evasion tasks are currently

carried out by humans, although unknown environments,

unsafe conditions, and response time are some of the

many factors that contribute to a need for robot swarms

to be deployed to take on these challenges instead. In or-

der for a swarm of robot pursuers to be effective against

an evader, they must be able to work collaboratively to

execute a dominant strategy. In a collaborative swarm

of agents, each agent must be decentralized, making de-

cisions and carrying out actions without commands or

information from any central controller. The decentral-

ized nature of swarms allows the success of the swarm

to not be dependent solely on one or a few individual

agents, but upon the collective whole instead. There-

fore, each action is carried out without explicit knowl-

edge of simultaneous actions by other agents. Each pur-

suer agent relies only on its own observations when se-

lecting actions.
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The evader strategy is a key determinant in the pur-

suers’ success. Successful evaders must be intelligent in

avoiding pursuers. While fast pursuers with simple au-

tonomies can be effective against a slow evader (i.e.

directly following the evader), intelligent autonomous

collaboration between pursuers is a necessity to ensure

fast and reliable capture against superior evaders.

In real-world pursuit-evasion there are many com-

monly known capture strategies. One such strategy is

cornering, extremely effective when the evader is not ac-

tively aware of the strategy or does not have substantial

knowledge of its environment. Another strategy is sur-

rounding and encircling. Here pursuers initially move

to establish a wide perimeter around an evader before

seeking inwards towards the evader. This strategy does

not require the use of boundaries to entrap the evader.

Instead, precise collaboration between pursuers is nec-

essary to completely encircle the evader. While the lack

of environmental assistance shapes this strategy to be

more difficult, especially with an intelligent and supe-

rior evader, it is promising as a reliable strategy in open

areas. We believe it is possible to train a swarm of pur-

suers to quickly and reliably capture a superior evader

in an entrapment-disadvantaged environment with an

encircling strategy.

We take a reinforcement learning approach to train

the capture strategy of our pursuer agents. Many diffi-

culties arise when training collaborative behavior, such

as continuous-control action spaces, where each agent

is not limited to a discrete set of actions. When train-

ing multiple agents independently, the environment is

not stationary from the perspective of any single agent,

hindering training efficiency. To combat these issues we

implement the Multi-Agent Deep Deterministic Policy

Gradient (MADDPG) algorithm [7]. This algorithm,

based in actor-critic reinforcement learning, builds off

of Deep Deterministic Policy Gradient (DDPG) [6] with

multiple actor and critic networks to train multiple

agents simultaneously. With MADDPG, training for all

agents is centralized but agent actors execute actions in

a decentralized manner. Note: This work is based off of

our previous work Wu et al. [18].

2 Background

2.1 Previous Research

Previous research on variable, multi-objective re-

ward functions for similar multi-agent reinforcement

learning tasks has also yielded promising results. In

the VIP-bodyguards problem defined in Sheikh et al.

[11], each bodyguard agent receives an exponential re-

ward based on the proximity of threats to a VIP. With

multiple distinct factors contributing to the final to-

tal reward, complex behaviors can emerge in the final

learned strategy. This reward function proved effective,

encouraging aggressive, collaborative attempts from the

agents to achieve their goal of maximizing VIP safety.

Decentralized fuzzy control reinforcement learning

actor-critic algorithms have also been studied, based

on the Circles of Apollonius created by multiple pur-

suers and a single evader [2]. This study focused on

an evader with multiple objectives: reaching a desig-

nated location in the environment as the primary goal,

and avoiding capture as a secondary objective. Evaders

were also trained via reinforcement learning, and could

learn a non-ideal evasion strategy. The evader is supe-

rior only in linear speed, and the evader starting posi-

tion is constant, in the center of the environment. This

could contribute to less adaptable strategies learned by

the pursuers, which likely spawn already encircling the

evader.

A similar problem of multi-agent robotic swarm 2D

construction [1] has also been considered, where large

swarms of robots must form structures from many prepo-

sitioned building blocks in a planar environment. Here,

a wide number of simple, real-world robotic agents are

mechanically programmed and a hardware setup for

monitoring the interactions and collaborative behavior

of agents is introduced.

In pursuit-evasion problems, appropriate formation

control of pursuers is necessary to ensure that pursuers

are spread out in a uniform angular distribution around

an evader [15], allowing pursuers to complete the en-

circling task of surrounding an evader evenly from all

directions.

With respect to environment observability, various

experiments with partial visibility have been highlighted

in discussion [16]. However, studying the learning be-

haviors of pursuers is simplified in a full-visibility en-

vironment, where pursuers can train more efficiently

without restrictions on knowledge about the environ-

ment or the evader.

2.2 Reinforcement Learning

The field of reinforcement learning (RL) has widely

progressed over recent years with advancements in com-

puting technology capable of running many episodes,

e.g. examples, to train more complex and functional

behaviors in agents.

In the general reinforcement learning environment,

agents view a state si, determine an action ai to exe-

cute, and receive a reward ri from the environment. The

agent then progresses into state si+1, where the pro-

cess continues until the episode terminates. The agent’s

decision-making process can be described as a policy π,

and the whole of the environment that the agent oper-

ates in can be represented by a Markov Decision Process
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(MDP) with transition probabilities of P (si+1|si, ai)
between subsequent states given possible actions. Pol-

icy π must determine the best possible action for an

agent to take at a given state. An optimal RL policy

will maximize an agent’s total expected future reward.

Many advancements in RL, specifically in continuous-

control actor-critic methods, have paved the way for

collaborative training algorithms.

2.3 DDPG

Deep Deterministic Policy Gradient (DDPG) [6] in-

troduced by Lillicrap et al. extends the commonly known

deep reinforcement learning pioneer Deep-Q Network

(DQN) [9] with a Deterministic Policy Gradient (DPG)

[12] for use on continuous-control problems. An actor-

critic algorithm, DDPG is composed of two neural net-

works, a critic network which predicts a state-action

value from a given state si and action ai taken at si,

and an actor network, the agent policy returning ac-

tions a given states s. This state-action value, Q, can

be represented by Q(s, a|θQ). The actor network, which

predicts a continuous action from s, is given as µ(s|θµ).

The critic network is updated with the loss:

Lcritic =
1

N

∑
i

(yi −Q(si, ai|θQ))2 (1)

The actor network is subsequently updated by the sam-

pled policy gradient:

∇θµJ ≈
1

N

∑
i

∇aQ(s, a|θQ)|a=µ(si)s=si ∇θµµ(s|θµ)|si (2)

To increase the long-term stability of the actor and
critic networks during training, target networks with a

soft target update are used. The target networks are ini-

tialized identical to their counterparts, but their weights

are updated gradually over time as the networks train.

Where θ
′

and θ are the weights of the target networks

and normal networks and τ < 1 is the target update

rate, θ
′ ← τθ + (1 − τ)θ

′
. The critic network update

utilizes a process of the Bellman Equation:

yi = ri + γQ
′
(si+1, µ

′
(si+1|θµ

′

)|θQ
′

) (3)

Here, γ is the discount factor for future reward estima-

tions and the target actor and critic networks are used

to keep predictions stable while training.

2.4 MADDPG

Multi-Agent Deep Deterministic Policy Gradient,

known as MADDPG, [7] furthers the advancement of

DDPG by introducing a framework for training multi-

ple agents simultaneously.

The MADDPG algorithm has an actor and critic

network for each agent. Each agent’s critic network is

centralized and has knowledge of every agent’s observa-

tions and actions while training. Since the critics learn

independently, differing reward functions could be used

to train unique strategies among agents. However, when

working with homogeneous agents, the critics train sim-

ilarly. The decentralized actor only has local observa-

tions as input, and during execution, only the actor’s

policy is used to predict agent actions. With MADDPG,

the critic network trains by:

yj = rji + γQµ
′

i (x
′j , a

′

1, a
′

2, a
′

3, ..., a
′

N )|a′k=µ′
k(o

j
k)

(4)

and updates with the critic loss given by:

L(θi) =
1

S

∑
j

(yj −Qµi (xj , aj1, a
j
2, a

j
3, ..., a

j
N ))2 (5)

The sampled policy gradient then updates the actor

network:

∇θiJ ≈
1

S

∑
j

∇θiµi(o
j
i )∇aiQ

µ
i (xj , aj1, a

j
2, ..., a

j
N ) (6)

where

ai = µi(o
j
i ) (7)

Both MADDPG and DDPG utilize experience re-

play buffers to train. This buffer stores past experiences

consisting of states, actions taken by all agents at given

states, the resulting rewards, and the following states.

Experience at state si with N agents:

Experience(si, N) = {si, ai1, ai2, ai3, ..., aiN ,
ri1, r

i
2, r

i
3, ..., r

i
N , si+1}

(8)

Attempts at using MADDPG (and various exten-

sions) for pursuit-evasion [13][8] have shown great suc-

cess. In Singh et al., from randomized initial positions

on a square, 2D, bounded planar simulation environ-

ment, four pursuers learned to quickly capture a su-

perior evader. While a reliable capture strategy was

learned, capture occurred frequently near the bounds

of the environment, against the sides and within the

square corners. The evader strategy used by Hüttenrauch

et al. [5] has the evader maximize its own Voronoi re-

gion area with respect to Voronoi points of all agent

positions. In contrast, our method stands out as unique

compared with these other methods in that it does not

rely upon environmental entrapment (e.g., cornering or

pinning the evader against a wall or obstacle); instead,

the agents learn to capture the evader by encircling it.
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3 Methodology

Our approach is to model the agents and the en-

vironment using the SCRIMMAGE multiagent simula-

tor. Trials and scenarios are created and simulated in

SCRIMMAGE, with the results of each (including con-

trol actions, agent positions, etc.) recorded and saved

for each run. We use the Tensorflow 2 framework to

train our pursuer agents using MADDPG. The evader

is programmed using a predefined (not learned) strat-

egy such that the evader always takes the ideal evasive

action against the pursuers. A novel reward function is

crafted in order to encourage the pursuers to encircle

the evader, thereby minimizing the dependence of the

technique on environmental features such as corners,

walls, or obstacles.

3.1 Deep RL Neural Network Training

The training and testing of the pursuer agents is

supervised by a Python3.6 program. Using the Ten-

sorflow 2 framework, along with optimized Tensorflow

functions, replay buffers, and simulation environment

wrappers provided by the Tensorflow-Agents library [4],

we created a custom program to train our three pursuer

agent MADDPG.

During training, noise generated using a Ornstein-

Uhlenbeck process is introduced to the output of the

actor network. This encourages exploration of the ac-

tion space - important to achieve more varied training

examples.

All layers in the agent actor networks are fully con-

nected. For the critic networks, the state observation

input runs through a fully connected layer of 256 nodes

independently. After this layer, the agent action input

is concatenated with the state layer and subsequently

run through a fully connected 128 node layer, which is

finally connected with the output layer.

During every training timestep, the experience re-

play buffer memory is updated. Once per training step,

a batch of experiences is sampled from this buffer to

train the critic networks, and subsequently the actor

networks. The training environment updates once every

0.1 seconds in simulation, and we consider each update

a simulation step, with agents reevaluating actions with

their actor networks at each of these intervals. The full

network training parameters can be found in Table 1.

Figure 1 shows an example of training graphs and the

network structures.

3.2 The SCRIMMAGE Simulator

We run training and evaluation of agents in the

SCRIMMAGE [3] simulation environment, a multi-agent

three-dimensional robotics simulator. We created SCRIM-

MAGE plugins in C++ to interface with our Python3

Table 1 Network training parameters for MADDPG

Network Training Parameters
Name Value

Replay Buffer Size 1, 000, 000
Ornstein-Uhlenbeck Noise σ 0.2
Ornstein-Uhlenbeck Noise ζ 0.15

Target Network Update Rate 0.001
Target Network Update Period 100

Batch Size 256
Actor Learning Rate 0.0001
Critic Learning Rate 0.0003
Reward Discount γ 0.99

Max Episode Length 250.0 (simulation sec)
Max Episode Steps 2500

reinforcement learning training scripts. Custom sensor

plugins for pursuer agents allow for individual sensing

and reporting of surroundings to be aggregated and fed

into the actor neural networks. Custom collision met-

rics allow for the detection of collisions between pursuer

and evader agents only, while pursuer agents are allowed

to intersect one another to streamline simulation dy-

namics. While SCRIMMAGE has the capability for 3D

simulation, our custom agent motion controllers restrict

movement to a 2D plane with the agent height locked at

z = 0. This is because we desire to observe agent behav-

ior in a 2D environment. With SCRIMMAGE, we are

able to randomize starting locations throughout the en-

vironment area for all agents - pursuers and evader - at

the beginning of each episode. We chose SCRIMMAGE

because of its flexibility in customization for agents and

environments and its robust scalability.

3.3 Pursuit-Evasion Environment

The environment model within SCRIMMAGE was
designed to maximize an evader’s escape possibilities

while still maintaining boundaries for environment lim-

its, ensuring a superior evader cannot escape from the

realm of capture possibility. Our goal is to train pur-

suers to fully encircle evaders without the assistance of

environment boundaries. Because of this, we chose to

implement a circular 2D environment to deter evader

cornering, commonly observed within polygonal envi-

ronments with sharp vertices. The environment is cen-

tered at (0, 0) in Cartesian coordinates and has a radius

of 70 meters. Attempts to move across the boundary are

restricted.

All pursuer agents are identical. All agents in the

environment operate with a unicycle model with linear

speed kept constant. Agents therefore have control only

over angular velocity. This was done to simplify the out-

put of the actor neural networks with only one output

variable to control the pursuer behavior. We define an

evader as superior if it has both a greater maximum

linear speed and maximum angular velocity than its
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Fig. 1 Training Overview: (LEFT): Reward over training steps, (RIGHT): network structure for single agent. Converges at
around 2M steps (7000 episodes). Graph shows a rolling average of total episode reward over a 10-episode frame. Blue graph
indicates training episode results (with noise), orange graph indicates intermediate testing episodes (no noise). Note: The data
transferred from the “Agent i Critic” to the “Agent i Actor” is the critic error from the previous epoch.

respective pursuers. We define a collision between the

evader and any pursuer (see 3.2) as a successful cap-

ture. Each agent’s pose is defined by a yaw orientation

and x/y position. Agents are simulated as a spherical

model with a radius of 2.5 meters. This gives the pur-

suer agents a capture reach of 5 meters directly from

pursuer to evader location.

During training, evader abilities are temporarily weak-

ened (max angular velocity limited to 50% of actual

value) while pursuers learn to capture. This is done to

provide more initial training examples of the evader be-

ing within the control circle, speeding up the overall

training process. Testing and evaluation is done with

the evader at full strength, with no restriction on max-

imum abilities.

3.4 Evader Autonomy

We created a predefined evader autonomy that uti-

lizes Voronoi regions to determine actions. Voronoi re-

gions in 2D space are areas Ai defined by Voronoi points

vx,y where all points px,y ∈ Ai given the Euclidean

distance between px,y and vx,y is less than the dis-

tance to any other vx,y. Using the Voro++ library[10],

Voronoi tessellations are calculated in the environment

at each timestep. The positions of the evader and pur-

suers are given as Voronoi points, and the final diagram

is bounded by the circular environment boundary. The

evader defines its ideal target position as the centroid

of the Voronoi region it occupies. By seeking towards

the centroid, the evader moves to increase its distance

from pursuers.

Since this evader autonomy is a predefined func-

tion and not learned, it is reliable and infallible to-

wards previously unseen environment state examples.

The Voronoi regions are calculated with full observabil-

ity, and the evader is guaranteed to be taking its most

ideal evasive action.

After initial testing, we observed that pursuers would

consistently use the circular wall of the environment to

restrict evader movement, leading to simpler capture.

To discourage this behavior, we modified the evader

autonomy to recognize a virtual set of Voronoi points

on the entire boundary circumference, along with the

previously considered points from all agent positions.

This final autonomy successfully discouraged the evader

from nearing the environment boundary unnecessarily.

3.5 Novel Reward Function

To encourage encircling behavior by pursuers, we

designed a two-stage, variable-aggression, continuous

reward function for pursuers based on geometrical in-

circles. The three pursuers that we implement can be

viewed as vertices that form a triangle. We consider this

triangle’s inscribed circle to represent a ”control circle”

for the pursuers. This control circle can also be regarded

as a search perimeter set by the pursuer positions.

Inspired by real-life search tactics, we aim to cre-

ate a strategy for the pursuers that works in multiple

stages to achieve eventual capture. First, the pursuers

establish a wide perimeter around the evader by quickly

seeking outwards in a strategic manner until the evader

is encompassed within the control circle. Afterwards,

the pursuer strategy aims to shift the control circle to

center the evader. At the same time, the pursuers move

inwards, contracting the perimeter. As the evader tries

to escape and create distance, the pursuers dilate and

contract the perimeter accordingly to keep the evader

within the bounds of the control circle while still at-

tempting to close the gap. To capture the evader, the

pursuers must shrink the control circle enough for at

least one agent to make contact with the evader. The

success of the pursuers depends on balancing the ag-

gressiveness in shrinking the perimeter with the relia-

bility of keeping the evader within control.
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Fig. 2 (LEFT): Example of pursuer agents (green) encircling evader (red) within control circle. (MIDDLE): Real-time
overhead view of Vector robots from external tracking camera, tracking robots via AprilTags. (RIGHT): Anki Vector robots
in testing environment. The Vector robots are used to test our algorithm in the real-world in real-time.

Table 2 Parameters used to shape the pursuer agent reward.

Reward Parameters
Name Description
∆ic→e Distance between evader and incircle center
∆max Maximum possible distance between two

points in the environment
wc Weight of evader centering while pursuing

perimeter contraction
∆pi→ic Pursuer pi’s distance to incircle center
∆avg Average distance to incircle center for all

pursuers
N Number of pursuers
∆in→e Normal distance between evader and closest

point on incircle circumference
∆maxic→pi

Maximum possible distance between pur-
suer and incircle center (all pursuers are
widely spread out)

α Variable aggression modifier constant

If pursuers lack aggression in shrinking the perime-

ter (”playing it safe”), capture would be slow and infre-

quent. However, if pursuers are too aggressive, evader

control could be sacrificed needlessly if pursuers are too

willing to attempt capture in risky situations. If the

evader does manage to escape the control circle, pur-
suers must immediately recognize the fault and tran-

sition back into the behavior of rapidly expanding the

search perimeter to include the evader. Table 2 shows

the parameters used to shape the pursuer agent reward.

From these parameters, β, the reward behavior mod-

ifier, can be calculated. β is derived from the sign of

∆in→e, and β = 1 if the evader is outside the pursuers’

control circle, and β = −1 if the evader is within con-

trol.

The reward is composed of three main factors: a

formation position metric, a formation evenness metric,

and a measure of pursuer closeness to the evader.

The formation position metric Pr, meant to encour-

age the pursuers to move the control circle center near

the evader, is calculated as:

Pr =
∆ic→e

∆max
· wc (9)

The formation evenness metric keeps pursuers in

even separation and direction around the evader through

an incentive for equidistant spacing to the control cir-

cle center relative to the average spacing of all pursuers.

This metric, Er is calculated as:

Er =
|∆pi→ic −∆avg|
∆avg · (N − 1)

(10)

The pursuer closeness metric, a variable factor de-

pending on the state of the evader location relative to

the control circle, encourages pursuers to close the gap

to the evader by tightening the perimeter and is calcu-

lated as Cr:

Cr = 1− ∆pi→ic

∆maxic→pi

(11)

This closeness metric is implemented in an expo-

nential manner to increase motivation to capture the

evader as the pursuers close in, even if a tightened con-

trol circle results in more risk for losing control of the

evader. If a pursuer succeeds in capture, an additional

bonus of 100 is added onto the final reward.

Where c is a constant that ensures the total base

reward is negative, this reward R for each pursuer is

therefore given by:

R = −Pr − Er − c

{
+0, if β >= 0.

+α(Cr · eCr ), otherwise.
(12)

3.6 Observation/Action Space
During the training phase the observations of each

pursuer are aggregated into an input for the MADDPG

critic networks. These same observations are fed inde-

pendently to each pursuer’s actor network to determine

their specific actions. During testing and evaluation,

only the actor network is used, and therefore each pur-

suer operates with knowledge of only its own observa-

tions.

The observation taken by each pursuer from its en-

vironment surroundings is as follows. For a pursuer pi
against evader e with incircle center ic:

Obs(pi, e, ic) = (xselfi , yselfi , θselfi , xe, ye, θe, xic, yic,

∆avg, ∆pi→ic, ∆in→e)
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(13)

The action space for the actor network of each pur-

suer agent is a single output of angular velocity, limited

from −1 to 1, scaled to the agent’s max angular velocity

in the simulation environment.

4 Experimentation
4.1 Simulation

Through our experiments we aim to evaluate the

learned coordinated capture strategy, and thereby the

training algorithm. A total of 500 testing episodes are

run per condition. All episodes are run and recorded in

the SCRIMMAGE simulation environment, with cus-

tom output statistics for our testing metrics. With the

exception of removing the output noise on the pursuer

actions (implemented during training), all network and

environment features remain constant between train-

ing and testing episodes. Any episode where capture is

not achieved within the time limit is terminated, pro-

gressing to the next testing episode. We do not count

aforementioned episodes in our average episode length

metric, but these episodes are considered in our capture

success metric.

Trials on three conditions are run. Each condition

has varying pursuer and evader max speeds. Condition

1 pairs pursuers against evaders with equal strength,

while Conditions 2 and 3 challenge the pursuers with

evaders of superior ability.

To establish a baseline, another MADDPG model

is trained in the same environment, with a observation

method and reward function as presented in a previous,

non-encircling implementation of MADDPG [13], which

we will refer to as a standard solution to compare with
our encircling solution.

4.2 Hardware
Trials were also run in the real world (discussed in

Results section below), with robot pursuers implement-

ing the trained simulation policy deployed in a closed

ground environment. The robots we use are COTS Anki

Vector robots. An AprilTag [14] tracking marker is at-

tached to each robot for localization, and an external

overhead camera is used to determine the position and

orientation of each robot within the environment, as

seen in Figure 2. This setup is similar to [1], and a full

overhead view allows for accurate tracking of all agents

simultaneously.

This observation is fed into a controller that eval-

uates the trained policies of each pursuer agent inde-

pendently, retaining the decentralized behavior of all

agents. Robots are controlled via the Anki Vector Python

SDK. Each robot has two tank treads and a maximum

speed of 220 mm/sec. The angular velocity output of

Fig. 3 Sample trials from Conditions 1, 2, and 3 (shown in
respective rows). Each frame is a snapshot from an episode.
Graphs are taken from the SCRIMMAGE simulator and
edited for clarity. Green and red trails are drawn to clarify
pursuer and evader motion.

the pursuer policy is translated to fit the differential

drive capability of the robots. The robots respond sim-

ilarly to the simulation agents, only with constant linear

speeds scaled down to match their physical limitations.

5 Results

Results from trials on all three simulation condi-

tions with our encircling solution can be seen in Table

3. The validation condition for pursuer efficacy, Condi-

tion 1, where the pursuer and evader abilities are equal,

yielded a capture rate of 100%. Capture was also fully

successful on Condition 2 trials, and capture in Condi-

tion 3 remained reliable, with a capture rate of 93.2%

against a very superior evader.

The average time to capture increases as the condi-

tions progress in difficulty, resulting from multiple at-

tempts at capture within a single episode and a slower

initial control circle formation process. As the evader

becomes more superior, the pursuers are able to recog-

nize and rebound from failed capture attempts to im-

mediately reset and try again with their capture strate-

gies.

As seen in Figure 3, the pursuers initially position

and orient themselves in a wide perimeter around the

evader, before proceeding to move inwards, collabora-

tively shrinking the perimeter to surround the evader

and achieve capture. Through the simulation episodes

we observed, there was no direct evidence of capture

where pursuers directly utilized environment bounds to

restrict movement or block the evader. All captures we

observed occurred in open space. It is possible that the

environment bounds were used to restrict movement or

block the evader even though there was no direct evi-

dence of such events occurring. This remains open for

further study.

In comparison, the results from these trials in the

same simulation environment and environmental setup

evaluated on the standard solution MADDPG model
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Table 3 Results and statistics from trials with the encircling
solution: Where C# is the Condition #, Vp - Pursuer’s max-
imum translational velocity (m/s), ωp - Pursuer’s maximum
rotational velocity (rad/s), Ve - Evader’s maximum trans-
lational velocity (m/s), ωe - Evader’s maximum rotational
velocity (rad/s), Cr - Capture Rate (%), and ta - Average
Time to Capture (sec). Each of these statistics were gathered
for each of the three conditions.

C# Vp ωp Ve ωe Cr ta
(m/s) (rad/s) (m/s) (rad/s) (%) (sec)

1 10.0 1.0π 10.0 1.0π 100 22.33
2 10.0 1.0π 11.0 1.1π 100 34.74
3 10.0 1.0π 12.5 1.25π 93.2 78.22

can be seen in Table 4. While the average time to cap-

ture for each of the three conditions is lower than its

counterpart with the encircling solution due to the ad-

ditional time required to position and maintain a con-

trol circle, the standard solution exhibits a degradation

in capture rate as the conditions progress in difficulty

and the evader gains more superior abilities. In Condi-

tion 3, the standard solution’s capture rate of 79.8%,

when compared to the encircling solution’s 93.2% cap-

ture rate, highlights the increased efficacy of the encir-

cling strategy against superior evaders in this environ-

ment.

The encircling approach is of course limited by the

relative maneuverability of the evader with respect to

that of the pursuers. For evaders with a significantly

higher maximum translational velocity, when compaired

to the pursuers, in an open arena we expect that the su-

perior evader, using an idealized evasion strategy, will

always succeed regardless of what pursuit strategy is

employed. In our work we determined that if the evader’s

translation and rotational velocities are 125% faster

than the pursuers then the pursuers will achieve a cap-

ture rate of 93.2%. If the evader’s translation and rota-

tional velocities are 110% faster than the pursuers then

the pursuers will achieve a capture rate of 100% (see

Table 3).

Due to space constraints and latency introduced

from a remote, virtual test setting, it was difficult to

run capture trials to scale within the limited testing en-

vironment, and full scale real-world tests were unable

to be completed. However, initial observations of the

Vector robots running the implemented, scaled-down

pursuer autonomy were promising, with the agents ex-

hibiting the same control circle formation behavior as

seen in successful simulations. This encouraging reflec-

tion paves the way for more complete and complex trials

to be carried out in the future with the Vector robots

and their constructed testbed.

6 Conclusion

We have shown that our extension of the MADDPG

deep reinforcement learning algorithm with a novel en-

Table 4 Results and statistics from trials with the standard
solution. Where C# is the Condition # [13].

C# Vp ωp Ve ωe Cr ta
(m/s) (rad/s) (m/s) (rad/s) (%) (sec)

1 10.0 1.0π 10.0 1.0π 100 13.02
2 10.0 1.0π 11.0 1.1π 99.2 30.22
3 10.0 1.0π 12.5 1.25π 79.8 59.48

circling reward function is effective in training pursuer

agents to capture a superior evader. Our reward func-

tion allows pursuers to learn to succeed with capture

in a circular, entrapment-disadvantaged environment

against an intelligent evader with a predefined algorith-

mic autonomy actively avoiding environment bounds.

We tested against evaders of varying superiority, all re-

sulting in efficient capture with only three pursuers.

When compared to a standard solution, the encircling

solution demonstrates greater reliability in capturing

increasingly superior pursuers, despite this capability

leading to a longer average time to capture.

Through our testing, no form of pursuers cornering

or using the bounds of the circular environment was

observed. Instead, capture was achieved in open space.

In conclusion, unlike previous pursuit-evasion strate-

gies trained using MADDPG, we have found that our

method is an adaptable solution that encourages pur-

suers to collaboratively establish a search perimeter

and precisely encircle an intelligent evader. Addition-

ally, though our method is tested on groups of three

pursuing agents, it will work with N number of agents

where N ≥ 3 and cause the agents to form a crystalline

structure around the evader. Each of the N agents will

not have to be trained individually and only needs to

behaviors obtained from the three on one training de-

scribed in this work. Finally, a key novelty of our work is

demonstrating the ability to transition behaviors learned

using deep reinforcement learning from a simulated robotic

system with imperfect world assumptions to real-world

robotic agents.

Future works could involve different metrics to de-

termine a control circle or expand the actions of the pur-

suers and evader to allow for controlled speeds. Applica-

tions of this encircling algorithm to 3D spaces (where

agents would have to spherically encircle) and other

real-world robotic platforms could also be explored.
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11. Sheikh, H.U., Bölöni, L.: Designing a multi-objective re-
ward function for creating teams of robotic bodyguards
using deep reinforcement learning. ArXiv (2019)

12. Silver, D., Lever, G., Heess, N., Degris, T., Wierstra,
D., Riedmiller, M.: Deterministic Policy Gradient Algo-
rithms. In: ICML (2014)

13. Singh., G., Lofaro., D., Sofge., D.: Pursuit-evasion with
decentralized robotic swarm in continuous state space
and action space via deep reinforcement learning. In: Pro-
ceedings of the 12th International Conference on Agents
and Artificial Intelligence - Volume 1: ICAART,, pp. 226–
233. INSTICC, SciTePress (2020)

14. Wang, J., Olson, E.: Apriltag 2: Efficient and robust fidu-
cial detection. In: 2016 IEEE/RSJ Intl. Conference on
Intelligent Robots and Systems (IROS) (2016)

15. Wang, X., Cruz, J., Chen, G., Pham, K., Blasch, E.: For-
mation control in multi-player pursuit evasion game with
superior evaders. Proceedings of SPIE - The International
Society for Optical Engineering (2007)

16. Weintraub, I.E., Pachter, M., Garcia, E.: An introduction
to pursuit-evasion differential games (2020)

17. Wu, C., Lofaro, D., Sofge, D.: A Learned Encircling Strat-
egy for Robot Swarm Pursuit-Evasion Against a Superior
Evader. In: The 4th International Symposium on Swarm
Behavior and Bio-Inspired Robotics (2021)

18. Wu, C., Lofaro, D., Sofge, D.: A learned encircling strat-
egy for robot swarm pursuit-evasion against a superior

evader. In: The 15th International Symposium on Dis-
tributed Autonomous Robotic Systems (DARS) (2021)


