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Abstract—Eye detection is an essential feature for driver moni-
toring systems acting as a base functionality for other algorithms
like attention or drowsiness detection. Multiple methods for eye
detection exist. The machine learning based methods involve a
manual labeling process in order to generate training and testing
datasets. This paper presents an eye detection algorithm based
on convolutional neural networks trained using automatically
generated ground truth data and proves that we can train very
good machine learning models using automatically generated
labels. Such approach reduces the effort needed for manual
labeling and data preprocessing.

Index Terms—labeling automation, infrared camera, driver
monitoring, eye detection, convolutional neural networks

I. INTRODUCTION

Eye detection is the base functionality required for multiple
driver monitoring features like attention or drowsiness detec-
tion. A good eye location is required to continue the pupil and
eye opening analysis. The algorithms must be fast enough to
be used for real time processing in real life scenarios.

For machine learning models a good quality training and
testing dataset must exist. There are specific tasks where
datasets exist or can be obtained automatically from the
internet without too much processing required. For example,
a price prediction model dataset containing the history of
product prices exists by default or can be obtained in time by
observing the price evolution. In this paper, the eye labels on
the infrared images with drivers are not automatically available
and usually it requires manual effort for marking locations of
the eye.

In [1] we proposed a ground truth data generation algorithm
created specific for labels on infrared driver recordings. This
paper proposes the usage of such automatically generated
datasests for training machine learning models in order to
completely remove the manual labeling effort. When datasests
with millions of frames need to be labeled, the effort for
creating a labeling team and organizing it becomes long,
complex and expensive. The effort needed for a few developers
to implement an automatic algorithm is more feasible.

In 1960s was the start for eye detection algorithms [3]. In
this section we aim to learn about some of these useful models
with large learning capacity, able to handle the complexity
of tasks involving problems that are too large to be fully
specified in any dataset [4]. Convolutional neural networks
for eye tracking is a newer algorithm that has been researched
[5] in the last years. Because of how little has been done in
this area, our project focuses on this eye tracking algorithm in
order to add knowledge to the development of convolutional
neural networks for eye tracking and gaze.

The aim of this work was to develop a convolutional neural
network based eye zone estimation for automotive applications
that monitors the driver during his trip from one location to
another, ensuring a safer driving environment for him and
other traffic participants. In the early 2000’s, A. T. Duchowsky
[6] points that eye detection tracking could be the basis for
one of the most promising type of Human Machine Interface
(HMI).

From the beginning, lots of time and effort were put into
the research of eye tracking using different head-mounted
systems to be able to measure the eye more accurately.
However, this kind of systems are not of interest anymore for
consumers in general or for the automotive industry because
it is impractical to wear inaccurate and uncertain head wear.
The problems generated by the head pose and orientation in
regard with eye tracking were tackled using either model based
or appearance based methods, e.g. the work of J. G. Wang
[7] or Y. Sugano [8]. Other researches have opted to use
near-infrared (NIR) cameras [9], stereo imaging [10], zoom
cameras in combination with wide-angle cameras [11], or a
combination of these to increase coverage, so that they will
be able to allow a larger head movement.

Due to the remarkable performances of Deep Neuronal
Networks (DNNs) in visual computing tasks, the deep learning
based solutions for gaze estimation have gained an increased
popularity. For example, S. Vora et. al. compared the perfor-
mances of several convolution neural network (CNN) archi-
tectures: AlexNet, VGG16, ResNet50 and SqueezeNet in pre-



dicting 6 gaze zones plus eyes closed case [12]. A Recurrent-
CNN network architecture that combines appearance, shape
and temporal information for video based gaze estimation is
introduces in [13]. In order to overcome the problem of head
rotation, H. S. Yoon et. al. are proposing a combination of
single image and dual near-infrared cameras [14].

In the last years, due to the remarkable performances
of Deep Neuronal Networks (DNNs) in visual computing
tasks, the deep learning based solutions gained an increased
popularity [15], [16].

II. METHODS

This paper presents a system that uses two convolutional
neural networks for computing the eye locations on infrared
driver recordings. The first neural network is used as a
regression model to compute the pixel location of the bounding
box that should contain the eye and the second one is a
classification model used to confirm the computed bounding
box is a correct eye detection.

A. Base dataset

The dataset used for training the neural networks is de-
scribed in [1]. The labels are automatically computed on
infrared driver recordings with the resolution of 1280x800.
This dataset has labels for bounding boxes that must contain
the eye inside it.

Because of the automatic process for labels generation that
is not perfect, the dataset contains less than 1% of frames
where eyes are marked incorrect. There are more than 250.000
frames with eye labels. For the neural network training, subsets
for training and testing are generated using the automatic
preprocessing system described in [2]. This system reduces
the chances of encountering the wrong labels in the generated
subsets.

B. Eye detection method

The proposed method for eye detection is a system of two
convolutional neural networks as described in Figure 1. The
first one has the purpose to output 8 values representing two
bounding boxes which should correspond to the left and right
eye. The seconds one should classify each eye patch to check
if it is indeed an eye.

The main reason for the eye patch classifier is to remove
the false positive detections on frames where the driver is not
behind the steering wheel. The eye location neural network
will provide an output for any given image and it has not
been trained to directly return invalid values for frames where
eyes are not present.

C. Eye location neural network

The eye location is a convolutional neural network regres-
sion model that estimates two bounding boxes where the eyes
should be present. The architecture of the network is described
in Figure 2.

In the first part of the preprocessing we execute four consec-
utive average pooling layers in order to reduce the input image

from 1280x800 to 80x50. This drastic downsizing has been
used because of the similar performance in terms of precision
compared to networks where we start to run convolutional
layers directly on the input image. The big advantage is the
reduction of time needed to process one frame, mainly because
executing average pooling on big feature maps is much faster
that the convolution operations.

Fig. 1. Neural network system for eye detection

After the downsizing we have 2 series of convolutional,
parametric relu and max pooling layers used for the feature



extraction. In the convolutional layers, we used 3x3 kernels
initialized with random values and a stride of 1 used for
traversing the input feature maps. We also use gradients
clipping factor of 0.3 which adds more stability to the training
process and makes the model converge to a solution much
faster. The clipping of the gradients is also necessary because
we don’t normalize the input values from the image which
makes the initial phase of the training very unstable and the
model has problems in converging to a good solution.

After obtaining the last feature maps resulted from the
preprocessing of the image, we use one hidded layer with
500 neurons and L2 regularization with lambda parameter of
0.1 to avoid overfitting. The gradients clipping factor of 0.3 is
used also for the hidden layer. All values from this layer are
activated using the parametric relu activation with an alpha
factor of 0.1. The second hidden layer will compute the 8
output values that represent the output of the neural network.
For the second hidden layer the L2 regularization factor has
been removed.

For the output layer we use the mean squred error loss
function to start computing gradients in the backpropagation
process.

We used also variantions for the architecture presented
above, with less average pooling and more convolutional layers
and also tried to add one more hidded layer. The results
were very similar in terms of precision, which resulted in the
simplest and smallest version of the architecture, in order to
keep the computing performance as good as possible.

In the training of the neural network we used subsets of
data generated by the automatic system presented in [2]. We
generated subsets of training data of approxiamtely 12.000
frames and 2.000 frames for testing. These number may vary
slightly depending on the availability of frames for every
specific subject. Increasing the number of samples in the
training subset has no positive influence on the precision of the
resulted model. For each test and subset generated, we keep
the subjects in the training dataset separate from the ones used
for testing the precision of the model so there is no chance
to have a network learning a specific person and generating
misleading good performance.

D. Eye patch classification neural network

The input for the eye patch classification network is one
eye patch defined by the bounding boxes from the eye loca-
tion network. This network is used to make sure that both
bounding boxes are computed correct for the eye locations.
The architecture of the network is defined in Figure 3.

In the preprocessing part of the neural network there are two
series of convolutional, parametric relu and max pooling layers
used for feature extraction. The parameters of these layers
are the same as for the previous network. The preprocessing
results in a flatten array of 1024 inputs for the hidden layer.

The first hidden layer has 100 neurons and the same
L2 and gradients clipping parameters like in the previous
network. The parametric relu activation is also present here.
The second hidden layer will output 2 neurons representing

the classification of the eye patch. The softmax activation
function is used to normalize the outputs of the network before
the mean squared error loss function starts to compute the
gradients in the training phase.

Fig. 2. Convolutional neural network for eye location

The dataset used for training this classification neural net-
work is generated based on the eye labels from [1]. Using
these location, we used the eye patches from the generator as
positive samples that should be classified by the network as



valid. We also take the original bounding boxes and shift them
in all directions by maximum 20% of the patch size in order
to make the valid patches more varied. A shift of 20% is small
enough to keep the eye inside the bounding box and use it as
a valid training sample.

To generate invalid eye patches we move the base bounding
box from the existing valid labels in all directions by 60%
of the patch size. Random locations of the moved patches
are selected. We also generate some invalid eye patches from
random locations for frames where the eye labels were not
detected in order to have various invalid cases available(e.g.
when driver is not behind the steering wheel, has the head
rotated or when the eyes should have been detected but the
generator missed that frame).

Fig. 3. Convolutional neural network for eye patch classification

Because of the big variety especially for the invalid eye
patches generated, we use approximately 40.000 patches for
training subsets and 6.000 frames for testing.

E. Eye patch searching process

In order to improve the number of detections from the
neural network system described above, we use the eye patch
classification network with a search mechanism around the
bounding box locations given by the regression network.

This system is used because the location of the bounding
boxes for multiple subjects have a constant shift in one
direction which makes the classification of the patches to
become invalid. To solve this problem, we do a search around
the given patch location, and and run the classification network
on each one.

The search is characterized by a percent defining how much
around the input location the program should iterate and a
stride used for traversing the entire window. All locations for
the patches that are classified as valid by the second neural
network are saved, and the median value for both x and y
coordinate will be the resulted location of the eye.

Another safety feature is to use the median value only if we
have at least two possible patches classified as valid. This helps
avoiding some false positive outputs given by the classifier for
various random patches.

This process is performed separately for each eye. We
output the location only if both eyes were found using the
search described above.

III. OBTAINED RESULTS

In this section we will present the results obtained for each
individual component of the system and for the system as a
whole.

The KPI we consider here are the same as in [2]. The focus
in on the overlap between the detected bounding boxes resulted
from the neural networks and the bounding boxes from the
base dataset generated with [1]. The definition of a correct
bounding box is to have the eye contained in it.

For the eye location regression neural network the average
overlap obtained on multiple tests is maximum 65%. This
percent is the result of the processing for multiple testing
subjects. For some of the subjects the overlap percentage goes
up to 90% but for other it can be as low as 10%. This means
for some subjects the overlap is too small to have the eye
contained within the generated bounding box. If we consider
a correct bounding boxed moved with 20% of the patch size
for both x and y coordinate that remains a valid detection,
we would have an overlap of 64% between the two. For the
resolution of 1280x800 and the eye patch size of 70x70 from
the base dataset, it means a detection shifted with 14 pixels
from the original ground truth bounding box is still valid. This
is not necessarily true for all bounding boxes, because if one
of them is already at a limit and gets shifted even more it may
not contain the eye anymore.

Considering all these, the eye location neural network is
used to get an approximate location of the eyes on the image,
in some cases with a very good precision but for some subjects
with the bounding box close to the eye or containing the eye
only partially. The network also outputs two bounding boxes
for any image, even if the driver is not behind the steering



wheel or the eyes are not in the image because of various
movements of the head.

The eye patch classification neural network testing precision
is usually around 99%, with the worst cases around 96%.
Performance is mostly influenced by the subjects with glasses
in the testing data. The types of glasses in the base recordings
dataset are very diverse, with various frame patterns for each
individual subject. The reflections from the frame makes the
neural network to generate false positive detections.

The two neural networks with their individual performance
described above work together in a system like in Figure 1.
There are further analysis we can extract to understand the
performance of the entire eye detection system.

Using the second neural network with the searching mech-
anism for eye patches from II-E we obtain an average overlap
on all the recordings with the testing subjects of 80%. The
main problem with the glasses for the eye patch classification
network has an important influence on the KPI. If we remove
from the resulted KPI the recordings with glasses, the aver-
age overlap between the ground truth labels and the system
detections goes up to 87%. Used together as a system, we
have major overlap improvement compared to the single eye
location neural network that was 65%.

Another important analysis is the availability of the eye
dections from the neural networks system compared to the
availability from the ground truth dataset. The ground truth
data generator described [1] is a very precise but not neces-
sarily a constant eye detection algorithm. It’s purpose is to
generate correct labels even with the risk of missing multiple
frames from a processed recording.

The availability of detections from the neural network
system has increased significantly compared to the automatic
ground truth data. An analysis for 90 recordings with testing
subjects never seen by the neural networks in the training
phase is presented in Figure 4.

For almost all recordings there are more detections from
the neural networks compared to the dataset that was used to
train them. Except for the glasses recordings where detections
can jump from the eyes to the frame and additional to the
average overlap KPI that is computed for the common frames
between the ground truth and the neural network detections
we can estimate that eyes are located inside the computed
bounding boxes in more than 93% of the cases.

The system works well on recordings with drivers from
different ethnicities and is very flexible, not being affected by
different heights in the seating position. The neural network
outputs correct eye locations for various scenarios especially
when the driver gets in the car and very unusual head positions
occur. There are also multiple recordings with drivers wearing
surgical masks. In these cases the eye detection works very
well.

IV. FUTURE WORK

The future work of this project will first focus on detection
of mouth and nostrils. The procedure will remain the same,
but there will be some small adjustments. First we will update

Fig. 4. Number of eye detections comparation between the automatic ground
truth generator and the neural network system



the automatic ground truth data generator to include a mouth
and nostrils detection algorithm and the resulted labels will be
used to train neural networks.

The neural network architecture from Figure 2 will probably
be updated to include eight additional output values, repre-
senting two new bounding boxes. Once the regression neural
network is functional, a new classification neural network for
mouth and nostril confirmation will be trained in similar way
with the one for eyes.

In this point we expect to prove that we can train a
complete face feature detection neural network system using
only automatically generated ground truth data. Once this
is achieved, we can continue with other driver monitoring
algorithms for pupil and eye opening analysis used in attention
or drowsiness detection.

As possible further improvements and research directions
we could mention:

• Dealing with occlusions and images that contain only
partial data by employing better face detectors.

• Speeding up inference time using ML accelerators.
• Experiments on more near infrared higher resolution.

V. CONCLUSIONS

This paper presented the improvements obtained using a
convolutional neural networks system trained with automatic
ground truth data. Eye tracking is one of the key technologies
for future driver assistance systems since human eyes contain
much information about the driver’s condition such as gaze,
attention level, fatigue level and drowsiness. One problem
common to many eye tracking methods proposed so far is
their sensitivity to lighting condition change. This tends to
significantly limit their scope for automotive applications. This
paper describes eye detection that works under variable and
realistic lighting conditions. It is based on a hardware system
for the real-time acquisition of a driver’s images using IR
illuminator and the software implementation for monitoring
eye that can avoid the accidents.

Without any human labeling effort and using inconstant
ground truth data, we managed to train convolutional neural
networks that offer a very good precision and improved
availability for eyes location than the data used to train them.

The main advantage is the automatic nature of this system
which allows development to go on and remove all the human
effort needed for labeling and selection of the data.
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PointNet-Based Solution for 3D Hand Gesture Recognition”, Sensors,
vol. 20, no. 11, 2020, [online] Available: https://www.mdpi.com/1424-
8220/20/11/3226.

[16] R. Mı̂rs, u, G. Simion, C.-D. Căleanu and O. Ursulescu, ”Deep Neural
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