
EasyChair Preprint
№ 4808

Essential Context Free Expression (part 1)

Charles Qiuen Yu

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

December 25, 2020

Essential Context Free Expression (part 1)

Charles Qiuen Yu[0000−0002−0347−0724]

Pleasanton, CA 94566, USA
charlesyuq@gmail.com

https://scholar.google.com/citations?hl=en&user=pcgAq3QAAAAJ

Abstract. We introduce a system of string pattern specification, nota-
tion ECFX for Essential Context Free Expression, as an extension of
CFX, notation for Context Free Grammar.
The approach of ECFX is seen in three methodological principles: us-
ing CFX rules for syntax kernel, allowing arbitrary means of semantic
condition for extra control, subject only to a complexity limit, apply-
ing the proper complexity of CFX as uniform constraint to all semantic
conditions.
The rule format of ECFX is X → x[c] where X → x is a usual CFX
rule, and c is an optional semantic condition on the strings that would
match x. Let CFTIME stands for the time complexity of CFX for fixed
pattern. A pattern X is in ECFX if X is equivalent to a finite set of
ECFX rules where all semantic conditions involved are in CFTIME.
For characteristics of ECFX:
ECFX imposes CFX structure on all its member patterns;
ECFX is complexity complete in the sense that for any pattern X, X

is in ECFX if and only if the fixed pattern decision problem for X
is in CFTIME;

ECFX as language class is a full trio as it is closed on all full trio
required operations [8];

ECFX is in O(n3) for fixed-pattern complexity;
ECFX is closed on the following operations: a. constrained concate-

nation as a generalization of back referencing with a restriction, b.
constrained iteration for an extension of Kleene star with arbitrary
number of iterations synchronized and crossed, and c. permutation
for casting any ECFX pattern as a permutation pattern of base
patterns.

Keywords: String pattern match · Pattern specification · Stringology
· Context free grammar · Back referencing · Semantic condition · Semi
syntactic · Cumulative time

https://scholar.google.com/citations?hl=en&user=pcgAq3QAAAAJ

2 Charles Qiuen Yu

1 Introduction

By a string pattern we mean a logical expression that determines a set of strings.
In this sense, any formal grammar represents a string pattern, as it determines
a set of strings, also referred to as the language of the grammar. Conversely, any
set of strings determines a string pattern, even though the same pattern may be
represented by different logical expressions. Practically, given two expressions of
the same string set, the one that is most convenient or readiest for systematic
computing may serve as pattern expression, whereas the one that is less so (or
perhaps most convenient or readiest for enumerating sample members) may serve
as set expression.

Since we feel idiosyncratically that expression connotes better than grammar
does to emphasize that a pattern is an abstraction of a string set independent
of any concrete application areas, we develop our ideas primarily in terms of
expressions, in spite of the fact that we do use terms of expression and grammar
interchangeably when it helps.

Based on the notion of string pattern as specified, the general instance of
decision problem for string pattern match, say SPM for short, is in format
I = (X,u), where X is a pattern, u is a string, and the question is whether u is
in X. By contrast, an important variant of SPM is SSPM , short for substring
pattern match, SSPM and SPM have the same instance format I = (X,u),
but the question for SSPM instance is which positioned substrings of u if any
are in X. SSPM thus specified is a search problem; but it can also serve as a
decision problem in the sense in which the question for any instance is whether
any substring of u is in X.

SPM and SSPM have the same order of complexity, with SSPM treated
either as a decision problem or as a search one. We will focus on direct issues of
SPM only in this paper.

In terms of expression, the classical systems for string pattern specification
include the following:

1. RX for (the class of) Regular Expressions or Regular Grammars
2. CFX for Context Free Grammars
3. CSX for Context Sensitive Grammars
4. REX for Recursively Enumerable Grammars
5. REWBR for the extension of RX with back referencing

In view of the above, we introduce and explore a generalization of CFX, notation
ECFX for Essential Context Free Expression. The approach of ECFX can be
seen in its three methodological principles:

1. (syntax) maintaining context free syntax as kernel structure to organize all
components of a pattern

2. (semantics) allowing optional semantic conditions for finer logic controls
3. (complexity) imposing a universal complexity upper bound over all semantic

conditions

Essential Context Free Expression (part 1) 3

To present ECFX from a broader perspective, we start with a more general
notion: UCFX for Unrestricted (Essential) Context Free Expression.

The format of a UCFX rule is X → x[c] where X → x is a rule of CFX, with
X as nonterminal, x as a string of terminals and nonterminals, and c represents
an optional semantic condition. A pattern X is in UCFX if X is equivalent to
a finite set of UCFX rules with a designated start nonterminal say SX = X
(allowing a bit of terminology abuse). X matches or say produces string u by x
if and only if x produces u in the standard sense of CFX and condition c holds
on u, say c(u) evaluates true.

To get ECFX from UCFX, let CFTIME stand for the proper time com-
plexity of CFX for fixed pattern; also let ECFTIME stand for the max time
complexity such that for any X in UCFX, if all semantic conditions of X are
in ECFTIME then X is in CFTIME.

Though defined differently, CFTIME and ECFTIME will be shown to be
equivalent. Now ECFX can be defined such that for any pattern X in UCFX,
X is in ECFX if and only if all semantic conditions of X are in ECFTIME.
We show that CFTIME and ECFTIME are the same. In a separate paper we
present an algorithm for ECFX in Earley scheme [5] and prove that ECFX is
in O(n3).

For expressiveness of ECFX, we show that ECFX is complexity complete
in the sense that for any pattern X, if X is in CFTIME, then X is in ECFX.
By contrast, CFX is not complexity complete.

In part to substantiate the superiority of ECFX to CFX for expressiveness
and prowess, we show that ECFX is closed under all the following pattern
operations:

1. basic Boolean operations including conjunction and negation
2. ECFX substitution as an extension of CFX substitution
3. inverse finite homomorphism as an extension of CFX inverse homomorphism
4. constrained concatenation as an extension of back referencing with a restric-

tion of sequentiality
5. constrained iteration for a generalization of Kleene star iteration
6. permutation for casting any ECFX pattern as a permutation pattern of

base patterns.

As to complexity of ECFX, to be clear first, we mean it for fixed pattern
only in this paper unless otherwise indicated. This is mainly because semantic
conditions are opaque in size in general. For pure syntactic systems, the decision
problems of SPM and SSPM both have two versions: uniform and fixed pattern;
for ECFX however, it has only one meaningful version: fixed pattern.

There are four classes in Chomsky hierarchy, all of pure syntax. REX and
CSX as the top two are complexity complete; CFX and RX as the bottom
two are complexity-incomplete. ECFX is complexity complete but not purely
syntactic. This leads to certain open questions as to wether there is a system for
pattern specification properly between CSX and CFX that is both complexity
complete and purely syntactic; more generally, wether there is any such system

4 Charles Qiuen Yu

properly below CSX, and if so which are they; whether there is a complexity
complete system which is properly below ECFX.

In our analysis, there is need in explicitly defining what may be called cu-
mulative CFTIME requirement. Briefly, for any semantic condition c, c is in
cCFTIME if for any string u, whether there is v such that v = vLuvR for some
vL, vR matches c (or say u infix matches c) can be determined in CFTIME at
size |u|. We conjecture that cCFTIME = CFTIME.

1.1 Justification

Comparing ECFX with CSX, the essence of ECFX is still in context freeness
or say context independence. It is so in the sense that, contrary to CSX patterns,
for any pattern X in ECFX, any component pattern Y of X, and any positioned
substring v of any string u, whether or not Y and v match depends only on X
and v, independent of which left or right contexts v has within u. Note that
this nature of context independence applies to any CSX pattern, but not to
any component pattern of a CSX pattern in general. Our study so far seems to
suggest strongly that many CSX patterns are actually context free in nature, in
a sense. Interestingly, UCFX and ECFX share the same essence, even though
UCFX is higher than ECFX in complexity, as shown later in the randomness
example. So it is a meta open question as to how much potential gain there is
in exploring ECFX.

Motivation and competing approaches There have long been competing
goals of string pattern computing, four of them being prominent, what we may
call a quartet contention. That is, it is desirable to have a system that has the
following simultaneously:

elegance of theoretical foundation,
extensiveness/expressiveness of pattern specification,
efficiency and convenience of pattern design and implementation,
and efficiency of pattern processing.

There have also been competing approaches towards systems of string pattern
specification. Those for our concerns here may be aptly labelled pure syntactic,
semi syntactic, and non-syntactic. Roughly, for any class X of pattern expres-
sions with its own base syntax, if all possible components and aspects of X
can be defined by means of its base syntax, then X is pure syntactic, otherwise
semi syntactic. If syntax issues and restrictions are mostly ignored, then it is
non-syntactic.

Our motivation is to pursue the semi syntactic to strike a good balance of
the quartet contention. With hindsight, the guideline for reaching out ECFX
is that in order to achieve an attractive tradeoff between competing goals and
approaches, it is better to factorize them out first to certain extent; and then
recombine some of them as a clear choice.

Essential Context Free Expression (part 1) 5

Practical advantages There are big advantages of ECFX on all three prac-
tically oriented goals in the competing goal quartet contention, or so we claim.
For extensiveness/expressiveness of pattern specification, we mention particu-
larly that many results in stringology commonly viewed as non-syntactic can
be aptly represented and integrated in ECFX. Related to this, many sequence-
oriented computing problems including those regarding super/sub sequencing,
sequence alignment, and approximate pattern match can be cast as ECFX pat-
tern match problems.

For efficiency and convenience of pattern design and implementation, we
claim that there are huge variety of patterns which are very difficult or intellec-
tually challenging to design but can become easy and trivial with ECFX. Our
collection of string pattern operations in our subsequent paper helps show this. In
particular, ECFX encourages pattern library building. We imagine that ECFX
may play big role in building next generation high quality pattern libraries.

For efficiency of pattern processing, it is fair to say that ECFX as a pat-
tern specification system does not auto lead to faster algorithms. But we think
that the framework of ECFX offers unique help in better organizing existing
algorithms for pattern match, and in composing new algorithms out of existing
ones.

For special application areas, we mention bio computing, especially bio se-
quence analysis and alignment, and text computing.

Theoretical importance and elegance ECFX has the following character-
istics: ECFX is having all its member patterns based on CFX structure, semi
syntactic, complexity complete as the least superclass of CFX, qualified as full
trio and closed on many other important operations.

1.2 Related work

Chomsky Hierarchy Chomsky Formal Language Hierarchy consists of four
classes: from type-0 to type-3, or REX,CSX,CFX, and RX, in our jargon. [4]
All the four classes are pure syntactic but only REX and CSX are complexity
complete in the sense that any string pattern that has complexity in that of CSX
or REX can be expressed by means of CSX or REX. By contrast, ECFX is
semi syntactic and complexity complete. To our knowledge and understanding,
ECFX is the first pattern class characterized as such. By the way, a huge variety
of results in stringology, which may be meaningfully viewed as non-syntactic,
may be representable as semi syntactic within ECFX.

Mildly context sensitive grammars Let MCSX stands for (the class of)
mildly context sensitive grammars. MCSX was introduced by Aravind Joshi in
1985 [?], for the sake of covering all polynomial extensions of CFX. For major
representatives of MCSX, see [17] The variety of representatives of MCSX
highlights a dichotomy between pure syntactic and semi syntactic. Perhaps a
majority of proposals in MCSX are pure syntactic, or so as we are impressed. A

6 Charles Qiuen Yu

few of semi syntactic include RCX for Range Concatenation Grammar [2] and
GCFX for Generalized context-free grammar [15], [16]. We think so because
RCX and GCFX allow use of unlimited sets of predicates or functions which
are undefinable in their base syntaxes respectively.

A special one of the pure syntactic category is BCFX, for Boolean Exten-
sion of CFX, due to Pierre Boullier 2000 and Alexander Okhotin 2001 [3], [12]
[13]. To our knowledge, this is the only one in MCSX (though unmentioned in
[17]) shown to be in n-cube and likely in CFTIME. We wonder whether there
are other pure syntactic extensions of CFX which are in n-cube and likely in
CFTIME.

REWBR Back Referencing as an extension of RX is proposed as part of pro-
gramming language SNOBOL in about 1964 [6]. To our attention there, a dis-
tinction of SNOBOL is to have (string) patterns treated as ”first class data types
whose values can be manipulated in all ways”.

While REWBR has been widely respected, there have been issues over the
completeness of its definition. Some researchers, D. D. Freydenberger for one,
pointed out that there are defects in its standard definition, as some aspects of
it are left ”under specified” [7] (2013). For complexity status, since REWBR is
pure syntactic, its decision problem has two versions: uniform and fixed pattern.
Alfred V. Aho proved in 1990 that the uniform decision problem for REWBR
is NP complete [1]. We will show in our paper (part 2) that the exact type of
back referencing in REWBR may be more properly called identity referencing;
a wild generalization of identity referencing, named constrained concatenation,
is supported in ECFX with a natural restriction. called sequentiality; and NP
completeness of REWBR is rooted in violation of sequentiality by virtual dis-
junction.

CFX inner hierarchy Let ES denotes the Earley algorithmic scheme. ES has
a nice auto-switch property to the effect that, for fixed pattern, ES is in O(n3) for
all CFX, in O(n2) for all unambiguous CFX, and in O(n) for all deterministic
CFX [5]. On the other hand, there have been a series of asymptotic upper

bounds on CFTIME, the best so far is near O(n2.373), approaching O(n2 1
3),

thanks to Leslie GValiant 1975 for initiating the approach [14], and to François
Le Gall 2014 for a latest [10]. These results prompt us to consider a complexity
incomplete hierarch in CFX, and in turn to consider a corresponding complexity
complete hierarch in ECFX.

2 UCFX and ECFX

In this section, we first define UCFX as a superclass of CFX, with the notion of
semantic condition being used but unspecified. Next we expand on the roles and
meanings of semantic condition in detail. Then we define the notion of match
(or production) for UCFX without applying complexity constraints. Finally we
define ECFX as a subclass of UCFX with a uniform complexity constraint.

Essential Context Free Expression (part 1) 7

2.1 UCFX

Definition 21 A UCFX is a system say X = 〈T ,N ,R, C, S〉 where

T is a finite set of symbols called terminal characters or simply terminals;
N is a finite set of symbols called nonterminal characters or nonterminals;
S = SX is a special nonterminal in N designated as the starting nonterminal

of X;
C is a finite set of predicate symbols, each representing a semantic condition;
T ,N , C are mutually disjoint; U = T ∪N is referred to as expression alpha-
bet;

R is a finite set of (production) rules in the format of r : N → x[c] where

r (optional) is a symbolic token for easy reference, unique across R;
N is in N , referred to as the rule head of r;
x is a string out of U , referred to as the rule body of r;
kr : N → x is referred to as the kernel rule of r, notation kr = KR(r);

accordingly, notation XK = KR(X) = KR(X.R), called the kernel ver-
sion of X, denotes the set of all kernel rules of X, with the same start
nonterminal as that of X;

c is the semantic condition of r, possibly empty.

Below we make certain explanatory notes, all with reference to X and its
components as of the definition.

For notational convenience, we will equate X with its starting symbol S =
SX . Thus saying that x matches X is equivalent to saying that x matches S.

For simplicity, we assume that all elements in T ,N , C are actually used in
R; so a full listing of all rules in R is equivalent to X.

The necessary non empty components of X are T ,N ,R, S. C is optional. If
it is empty, then each rule of X is a kernel rule, and X is a CFX.

From the above, given any pattern X in UCFX, Y = KR(X) as set of all
kernel rules of X represents a pattern in CFX. In a special case, if X is in CFX,
then X = KR(X).

Finally, we assume that all nonterminals are reachable from S and terminable.
From this assumption, for any nonterminal Y in X, a pattern as represented by
Y can be induced from X, notation Y = CP (Y,X), and will be referred to as a
component pattern of X.

2.2 Semantic conditions

As to what may qualify as a semantic condition for UCFX, the general answer is
that any constraint may qualify so long as it represents a computable constraint
on a set of strings that can be matched by a CFX kernel rule. More specifically,
a semantic condition c can be viewed as a predicate with its unary argument on
a set of strings. Given rule r : N → x[c], the domain of c is the set of strings
that match x.

8 Charles Qiuen Yu

Because of this, if the kernel of r is a terminal rule, that is, x is a terminal
string, then c should be empty, meaning that it always evaluates to true, as a
terminal rule can only match a single string.

It is possible that certain patterns can be achieved either by pure CFX rules
or by proper UCFX rules. For example, pattern X = aibai is representable in
CFX, but it can also be represented by a rule like X → aibaj [c] where c requires
that i = j.

Examples For possible uses of semantic condition, we give a few examples
below: all with reference to generic rule r : N → x[c].

1. (conjunction) x can be any CFX rule body, c requires that any string that
matches x match y where y is another string pattern, possibly in CFX.
This example shows that logical conjunction can be implemented by a se-
mantic condition.

2. (negation) x = Y is a match-all nonterminal, c requires that any string
that matches x not match nonterminal A with any rule of A. Thus x[c] is
equivalent to the negation of A.
This example shows how logical negation can be implemented by a semantic
condition.

3. (back referencing) x = Y x0Y [c], where x0 is an arbitrary component
pattern, Y is a nonterminal having multiple matches and c requires that any
string u that matches x be representable as u1u2u3 such that u1, u3 match
Y , u2 match x0, and u1 = u2 (for identity).
This example shows how back referencing as of REWBR may be imple-
mented by a semantic condition; and it is more aptly called identity refer-
encing for two reasons: 1. nonidentity referencing can be easily supported;
2. the phrase ’back’ lost its logical basis.

4. (constrained concatenation) x = Y1X1Y2X2Y3[c], where X1, X2, Y1, Y2, Y3

are all arbitrary component patterns such that each matches multiple strings,
and c requires that for any string u that matches x, u be representable as
u1v1u2v2u3 such that u1, u2, u3 match Y1, Y2, Y3 respectively in the order,
v1, v2 match X1, X2 respectively in the order, u3 be a common super se-
quence of u1, u2 with an additional length requirement. v2 be the reverse of
v2.
This example helps show how identity referencing (above), may be general-
ized. Largely, if, in question, the main pattern consists of multiple sequential
(so to speak) component patterns, and the semantic condition requires that
for any target string u to match the main pattern, u consist of substrings
which, while matching those sequential component patterns respectively, sat-
isfy certain additional constraints (multiple in general) in terms of those
substrings as referenced.

5. (constrained individual iteration) x = ai[c], where c requires that for
integer n i = f(n) for a number function f with TIME(f(n)) being in
O(poly log n).

Essential Context Free Expression (part 1) 9

This example shows how ingenuity demanding it might be to implement
certain seemingly simple functionalities without using semantic conditions,
and how individual free iteration may be generalized.

6. (constrained iteration) x = xi1
1 xi2

2 xi1
3 x

f1(i2)
4 xi1

5 x
f2(i2)
6 [c], where c requires

that x1, x3, x5 be iterated by the same number i1, x2, x4, x6 be iterated
by numbers i2, f1(i2), and f1(i2) respectively where f1, f2 are two number
functions in O(poly log n).
This example shows how multi iteration crossing, nesting, synchronizing and
interdepending may be implemented with semantic conditions.

7. (MIX counting) x = Y [c], where Y is a match-all nonterminal and c
requires that the total numbers of occurrences of characters a, b, and c re-
spectively be equal.
This pattern is known as MIX in a context of demonstrating the power of
RCG. It was unclear but suspected that MIX is outside of indexed gram-
mar and Linear Context-Free Rewriting Languages [9], p.10, p.162. So this
example helps show how huge differences in complexity may result in the
implementation of certain patterns between with and without allowance of
using semantic conditions.

8. (resource bounded randomness) x = Y [c] is a match-all nonterminal
and c requires that any string that matches Y be R random where R is a
computational resource bound. (See [11] for resource bounded complexity.)
This example helps show several things: first, complexity pertinent con-
straints are allowed to serve as semantic conditions; second, the complexity
of UCFX can be above any recursive bound.

In view of the above, we emphasize that there are abundant scenarios in
which the complexities of semantic conditions involved in the above examples
except the last one are very low, say in pseudo square time or even lower.

Meta syntax stipulations The integration of semantic condition in UCFX
incur certain stipulations, or say meta syntactic rules. These rules are mainly for
promoting simplicity, and reducing ambiguity and misunderstanding, all without
loss of generality. We specify those stipulation rules below, some with explana-
tions:

1. each kernel rule has at most one semantic condition. (if there are more, they
can be disjuncted into one)

2. if a nonterminal has multiple kernel rules, each one may have its own seman-
tic condition; and all semantic conditions associated with the same nonter-
minal may or may not be different.

3. two different kernel rules of the same or distinct nonterminals may have the
same or different semantic conditions. in other words, the same semantic
condition may be imposed on multiple kernel rules, of the same or different
nonterminals.

4. it is allowed but not to be abused that the same semantic condition may
assume different names, as associated with different kernel rules; by default,

10 Charles Qiuen Yu

different semantic condition names mean different semantic conditions, with
exceptions allowed.

Note that if any semantic condition is ever used in an expression, its symbolic
notation will be treated as an ad hoc syntactic element for the entire pattern
expression and the system, as if it is a built-in function integrated within a
programming language and gets used in a program.

Specification and implementation issues With reference to any rule r :
N → x[c] and a string u to match rule r, the ultimate input of semantic con-
dition c is the very string u that matches x as rule body. But depending on
concrete situations, the salient values of the input, so to speak, may be just
one or more derivable attribute values of u, such as length of u, iteration num-
bers of component iterations of x, a prefix, suffix, or infix of u with a specific
qualification, one or more positioned substrings of u, etc..

In case x = x1 . . . xk for some k > 1 is a concatenation of certain indicated
component patterns, if string u matches x, then u = u1 . . . uk is a concatenation
of certain indicated substrings in due order, so it is required that ui match xi for
all 1 ≤ i ≤ k. In this scenario, some of the salient attribute values of u for c can
be viewed as being derived directly from a subset of these indicated substrings
of u rather than from u directly.

Although the set of semantic conditions for each UCFX pattern is finite, the
variety of potential semantic conditions under any nontrivial complexity bound
is infinite. In order to have a descent set of semantic conditions (or their pro-
totypes) to implement for practical purposes, it is desirable and beneficial to
prepare growing sets or say libraries of a. instrumental functions for derivable
attribute values, b. internal data types and structures to hold intermediate deriv-
able values and support intermediate computing tasks, and c. index mechanisms
for performance reasons. It is reasonable to anticipate that such a preparation
process will be on going indefinitely. So a distinction between the endeavor of
CFX computing and that of UCFX computing is that the latter has to maintain
and extend a library for semantic condition computing on needs.

2.3 UCFX match and production sequence

From now on, we will equate the notions of production and match, and conduct
discussion mainly in terms of match. The definition of UCFX match is below:

Definition 22 Given X = 〈T ,N , C,R, S〉 in UCFX, any nonterminal N in
X, any rule r : N → x[c] of X, and any string u,

1. u matches N by rule r if x is terminal and x = u, or the two conditions
below both hold
syntactic for some k > 0, x = x1 . . . xk, u = u1 . . . uk, and ui matches xi

for all 1 ≤ i ≤ k.
semantic c is empty, or c(u) = 1 (say u matches c or c(u) holds).

Essential Context Free Expression (part 1) 11

2. u matches N if u matches N by at least one rule of N , notation u ∈ L(N);
if u matches N and N = S = SX , u is said in the language of X, or simply
u is in (pattern) X, notation u ∈ L(X).

The above definition is for a natural extension of CFX match to UCFX
match. The notion of production sequence for UCFX can also obtain.

Largely, for any X in UCFX and any string u, there is a production sequence
PS of u from X if and only PS meets the following conditions:

1. Syntactic: PS is PS : y0, y1, . . . , yk for some k ≥ 0 such that (start) y0 =
SX = X, (end) yk = u, (production) for each 0 ≤ i < k, there are yL, yR
and a kernel rule say kri : N → x of X such that yi = yLNyR (the position
of N in yi is referred to as the production position of yi), yi+1 = yLxyR.

2. Semantic: From PS, there is a unique kernel rule sequence KS : kr0, . . . , krk−1

such that kri is used to produce yi+1 from yi; the nonterminal at the pro-
duction position p of yi maps to a unique positioned substring say v = vi,p
of u; and if kri has nonempty semantic condition c, then c(v) = 1.

So much for this (in view of space).

2.4 ECFX and its inner hierarchy

We have introduced the ideas of CFTIME and ECFTIME, unambiguous
CFX, and deterministic CFX based on CFX syntax and complexity. We can
now use them to define ECFX and its inner hierarch.

Definition 23 For any pattern X in UCFX,

X is in ECFX if and only if all semantic conditions of X are in CFTIME;
X is in unambiguous ECFX or ECFX[n2] if and only if all semantic condi-

tions of X are in the minimum of CFTIME and O(n2);
X is in deterministic ECFX or ECFX[n] if and only if all semantic conditions

of X are in O(n).

From the above, we get an ECFX hierarchy

ECFX[n] ⊆ ECFX[n2] ⊆ ECFX ⊂ UCFX

As to why the first two relations are non-proper, note that CFTIME is not
proven to be above O(n2) or even above O(n). Pseudo versions of ECFX[n], ECFX[n2]
defined by adding a log or polylog factor to the principle complexity functions
as used can also be defined and may be of interest. But we stop here.

For the relation between CFTIME and ECFTIME, we have

Lemma 21 CFTIME = ECFTIME.

Proof. (ideas only) All CFX patterns can be used as semantic conditions, so
CFTIME ≤ ECFTIME. But if CFTIME < ECFTIME, ECFX would not
be in CFTIME. ut

12 Charles Qiuen Yu

For complexity completeness of ECFX, the formal claim is below:

Lemma 22 ECFX is CFTIME complete.

Proof. (ideas only) It is almost by definition. For any pattern X in CFTIME,
if X is not already in X, X can be defined in ECFX by using a match-all rule
with a semantic condition equivalent to X. ut

Of course we can have similar results regarding the proper time complexities
of CFX[n2], ECFX[n2], CFX[n] and ECFX[n], and their pseudo versions.

2.5 Cumulative match and cumulative time

For patterns in CFX and hence in ECFX, it is interesting and may be impor-
tant to expand on the cumulative (or say online) nature of CFTIME. Largely,
if u is a substring of v, which is in X of ECFX, then u is expected to be rec-
ognized as such in time CFTIME at size |u|.rather than |v| We formalize this
idea below:

Definition 24 For any pattern X and string u, u is said to infix match or
cumulatively match X, u C-match X for short, if there are uL, uR (either or
both being possibly empty) such that v = uLuuR matches X.

For any complexity function f and any string pattern X, X is said to be cu-
mulatively f computable, notation X ∈ CumO(f), if for any string u, whether
u C-matches X is computable in f(|u|). In particular, X is said to be cumula-
tively CFTIME computable, or say in cCFTIME for short, if for any string
u, whether u C-matches X can be computed in CFTIME at |u|.

The notion of C-match subsumes prefix match and suffix match as may
be properly interpreted. Informally, cCFTIME behaves like a kind of online
processing complexity, not necessarily linear online, but CFTIME online. Note
that cCFTIME may be stringer than CFTIME as a complexity constraint,
as some string patterns in CFTIME might not be in cCFTIME; but not vice
versa.

For motivation of this concept, we add that it is very useful and relatively
easy to prove results of the format: if X, etc., are in cCFTIME (rather than
CFTIME), then so is Y . To see roles of cCFTIME, we first introduce the
following:

Definition 25 A string pattern X is said to be prefix/suffix/infix-saturated if
for any string u, if u is in X, then any prefix/suffix/infix v of u is in X. For any
string pattern X, the prefix/suffix/infix-saturated pattern of X, notation Y =
PREFIX(X)/SUFFIX(X)/INFIX(X), is such that for any u, u matches Y
if and only if u is a prefix/suffix/infix of some v that matches X.

With the above definition, each of PREFIX, SUFFIX, INFIX is a pattern
operation, namely, a function from patterns to patterns. That is, among others,
for example, PREFIX(X) is unique for any legitimate pattern X. The following
are obvious:

Essential Context Free Expression (part 1) 13

Lemma 23 For any pattern X, in the sense of language subsumption,

X ⊆ PREFIX(X) = PREFIX(PREFIX(X));
X ⊆ SUFFIX(X) = SUFFIX(SUFFIX(X));
X ⊆ INFIX(X) = SUFFIX(PREFIX(X)) = PREFIX(SUFFIX(X)).

Finally, we have the following regarding CFX and cCFTIME:

Lemma 24 For any pattern X in CFX, X is in cCFTIME.

Proof. By definition, we need only show that if X is in CFX, then Y = INFIX(X)
is in CFX. From [8] p. 282, a full trio is closed on PREFIX, and hence
SUFFIX and INFIX; and CFX is a full trio, so X in CFX implies Y =
INFIX(X) in CFX. That means X is in cCFTIME. ut

For ECFX, we will show later elsewhere that ECFX is also a full trio,
and hence ECFX is in cCFTIME. That result would equate CFTIME and
cCFTIME. We expect that result helps our further exploration of ECFX.

3 Summary and next plan

We introduced many new concepts and briefly explored their relations between
themselves and with existing ones. We reviewed related work for a better his-
torical background of our main ideas. We raised some open questions along the
way, including one concerning understanding of context freeness. We suggested
evaluation perspectives and made analysis to justify our innovation efforts. We
also made certain technical results near the end of our paper.

For next plan, we try to present our work on the following points: ECFX is
closed on many important and powerful operations, including those that ensures
the trio status of ECFX; ECFX is in O(n3).

14 Charles Qiuen Yu

References

1. Alfred, V.: Algorithms for finding patterns in strings. Algorithms and Complexity
1, 255 (2014)

2. Boullier, P.: A generalization of mildly context-sensitive formalisms. In: Proceed-
ings of the fourth international workshop on Tree Adjoining Grammars and Related
Frameworks (TAG+ 4). pp. 17–20 (1998)

3. Boullier, P.: A cubic time extension of context-free grammars. Grammars 3(2-3),
111–131 (2000)

4. Chomsky, N.: Three models for the description of language. IRE Transactions on
information theory 2(3), 113–124 (1956)

5. Earley, J.: An efficient context-free parsing algorithm. Commun. ACM 13(2), 94–
102 (Feb 1970). https://doi.org/10.1145/362007.362035, http://doi.acm.org/10.
1145/362007.362035

6. Farber, D.J., Griswold, R.E., Polonsky, I.P.: Snobol, a string manipulation lan-
guage. Journal of the ACM (JACM) 11(1), 21–30 (1964)

7. Freydenberger, D.D.: Extended regular expressions: Succinctness and decidability.
Theory of Computing Systems 53(2), 159–193 (2013)

8. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to automata theory, lan-
guages, and computation, vol. 2. Addison-wesley Reading, MA (1979)

9. Kallmeyer, L.: Parsing beyond context-free grammars. Springer Science & Business
Media (2010)

10. Le Gall, F.: Powers of tensors and fast matrix multiplication. In: Proceedings of
the 39th international symposium on symbolic and algebraic computation. pp.
296–303. ACM (2014)

11. Li, M., Vitányi, P., et al.: An introduction to Kolmogorov complexity and its
applications, vol. 3. Springer (2008)

12. Okhotin, A.: Conjunctive grammars. Journal of Automata, Languages and Com-
binatorics 6(4), 519–535 (2001)

13. Okhotin, A.: Boolean grammars. Information and Computation 194(1), 19–48
(2004)

14. Valiant, L.G.: General context-free recognition in less than cubic time. Journal of
computer and system sciences 10(2), 308–315 (1975)

15. Weir, D.J.: Characterizing mildly context-sensitive grammar formalisms (1988)
16. Wikipedia contributors: Generalized context-free grammar — Wikipedia,

the free encyclopedia (2019), https://en.wikipedia.org/w/index.php?title=

Generalized_context-free_grammar&oldid=918417045, [Online; accessed 18-
December-2020]

17. Wikipedia contributors: Mildly context-sensitive grammar formalism — Wikipedia,
the free encyclopedia (2019), https://en.wikipedia.org/w/index.php?title=

Mildly_context-sensitive_grammar_formalism&oldid=912302365, [Online; ac-
cessed 12-August-2020]

https://doi.org/10.1145/362007.362035
http://doi.acm.org/10.1145/362007.362035
http://doi.acm.org/10.1145/362007.362035
https://en.wikipedia.org/w/index.php?title=Generalized_context-free_grammar&oldid=918417045
https://en.wikipedia.org/w/index.php?title=Generalized_context-free_grammar&oldid=918417045
https://en.wikipedia.org/w/index.php?title=Mildly_context-sensitive_grammar_formalism&oldid=912302365
https://en.wikipedia.org/w/index.php?title=Mildly_context-sensitive_grammar_formalism&oldid=912302365

