
EasyChair Preprint
№ 7903

Revisiting Facial Key Point Detection - an
Efficient Approach Using Deep Neural Networks

Prathima Dileep, Bharath Bolla and Sabeesh Ethiraj

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

May 4, 2022

REVISITING FACIAL KEY POINT

DETECTION - AN EFFICIENT APPROACH

USING DEEP NEURAL NETWORKS

Abstract Facial landmark detection is a widely researched field of deep

learning as this has a wide range of applications in many fields. These key

points are distinguishing characteristics points on the face, such as the eyes

center, the eye's inner and outer corners, the mouth center, and the nose tip

from which human emotions and intent can be explained. The focus of our

work has been evaluating transfer learning models such as MobileNetV2 and

NasNetMobile, including custom CNN architectures. The objective of the

research has been to develop efficient deep learning models in terms of model

size, parameters, and inference time and to study the effect of augmentation

imputation and fine-tuning on these models. It was found that while

augmentation techniques produced lower RMSE scores than imputation

techniques, they did not affect the inference time. MobileNetV2 architecture

produced the lowest RMSE and inference time. Moreover, our results

indicate that manually optimized CNN architectures performed similarly to

Auto Keras tuned architecture. However, manually optimized architectures

yielded better inference time and training curves.

Keywords: Inference Time, Efficient Transfer Learning, Deep Learning,

MobileNetV2, NasNetMobile, Custom CNN, Keras-autotuner

1 Introduction

The face is critical in visual communication. Numerous nonverbal messages, such

as human identity, intent, and emotion, can be automatically extracted from the face.

Localizations of facial key points are required in computer vision to extract

nonverbal cues of facial information automatically. The term "facial appearance"

refers to the distinct patterns of pixel intensity around or across facial landmarks or

key points. These key points represent those critical features on a human face, such

as the eyes, nose, eyebrows, lips, and nose from which information about a person’s

emotion or intent can be identified. Once correctly identified, they can be used to

train deep learning algorithms to perform various classification tasks. Their

applications include computer interaction, entertainment, drowsiness detection,

biometrics, emotion detection, security surveillance, and a range of medical

applications. However, the practical applications of these models depend on the

2

speed of inference of these models and their deployability on Edge and mobile

devices that have lower computational powers. This research aims to evaluate

various transfer learning and custom models in terms of inference time, model size

to test their deployability on Edge / mobile devices.

In this work, we used the Facial Key Point Detection dataset from Kaggle. The

dataset consists of the training variables and 15 target variables, the facial key points

representing various facial features. Deep learning models using custom and

transfer learning architectures such as Resnet50, MobileNetV2, NasnetMobile have

been built using baseline and also combining various augmentation techniques to

identify the ideal model. Additionally, the architectures have been evaluated in

terms of parameter count, disc requirements, and inference timings to determine

their suitability for deployment on computationally less intensive devices. We have

compared our results with other state-of-the-art architectures and found that our

models have higher efficiency, hence achieving the objective of this research.

2 Lıterature Review

Facial landmark detection algorithms can be classified into three broad categories

[1] based on how they model the facial appearance and shape: holistic, Constrained

Local Model (CLM), and regression-based. Holistic methods mainly include Active

Appearance Models (AAM)[2] and fitting algorithms. AAM works on the principle

of learning from the whole face patch and involves the concept of PCA, wherein

learning takes place by calculating the difference “I” between the greyscale image

and an instance of the model. The error is reduced by learning the parameters like

any conventional machine learning algorithm. CLM methods are slightly better than

the holistic approaches as they learn from both the globalized face pattern and the

local appearance from the nearby facial keypoints. They can be probabilistic or

deterministic. They consist of two steps [3], the initial step where the landmarks are

located independent of the other landmarks. In this second step, while updating the

parameters, the location of all the landmarks is updated simultaneously. In

regression based approaches, there is no initial localization of the landmark; instead,

the images are mapped directly to the co-coordinates of these landmarks, and the

learning is done directly. These methods may be direct or cascaded. However, with

the advent of deep learning algorithms, convolutional neural networks have

replaced conventional regression methods with state-of-the-art results. These

methods are faster and more efficient. Convolutional neural networks using LeNet

have been used in many state-of-the-art works. The principles of LeNet have been

3

used to build many custom architectures, which have shown reduced training time

[4] and reduced RMSE scores.

The performance of a machine learning model also depends mainly on the type of

algorithm being used. Some of the popular datasets [1] on which deep learning

algorithms have been used with promising results are BU-4DFE with 68 landmark

points (RMSE – 5.15), AFLW with 53 landmark points (RMSE-4.26), AFW with

five landmark points (RMSE – 8.2), LFPW with 68 landmark points (RMSE – 5.44),

Ibug 300-W with 67 landmark points (RMSE – 5.54). Most of the deep learning

algorithms have utilized methods such as Task constrained deep convolutional

network (TCDCN) [5], Hyperface[6], 3-Dimensional, Dense Face Alignment

(3DDFA) [7], Coarse to Fine Auto Encoder Techniques (CFAN) [8] in achieving

relatively higher accuracies.

Inception architecture [9] has been used on the similar kaggle dataset achiveing a

RMSE score of 2.91. Resnet have also been used in the work done by [10] achieving

a RMSE of 2.23. A similar work done using the LeNet architecture [4] achieved a

RMSE score of 1.77. As more and more evidences were being produced in favour

of custom architectures, focus was then directed on the bulding of Custom CNN

networks for facial key point detection. A comparative study was done [11]using

both custom and transfer learning architectures. Custom architectures were able to

achieve lower RMSE scores(1.97). A similar custom model consisting of 14 layers

[12] produced an RMSE score of 1.75. As evident above, achieving higher accuracy

with lesser errors by making deep learning algorithms more efficient and precise

has been the target of various studies.

Tuning of deep learning models is also critical in achieving high accuracies. The

keras tuner library[13] has been widely used to achieve this. Fine-tuning efficiency

has been further established in the classification plant leaves disease [14] where

fine-tuning architectures such as Resnet50, DenseNet121, InceptionV4 and VGG16

have been used .

Lightweight models such as Mobilenet and NasnetMobile have been gaining

popularity recently due to the ease of their deployability. Mobilenet [15] utilizes the

concept of depth-wise separable convolution to reduce the number of training

parameters without affecting the accuracy of a model. They are ideal for tasks such

as recognition of palm prints [16], breast mammogram classification[17], and the

identification of proper wearing of facemask[18]. Similar models like Mobilenet

have also been built to achieve similar accuracy with fewer parameters, as in the

case of PeleeNet[19].

4

3 Research Methodology

3.1 Dataset description

The dataset for this paper has been taken from the Kaggle competition[20]. There

are 7049 images in this dataset and 15 facial key points representing various parts

of the face such as eyebrows, eyes, nose, and lips in the training dataset. These facial

key points represent the target variables. The test dataset consists of 1783 images.

The dataset consists of images of 96x96 size with a one-channel dimension

(grayscale images). The distribution of null values is shown below in Figure 1.

69.64% of the data points contain alteast one null value in the facial key points,

while 30.36% of the images consists of all key points

Figure 1. Class Imbalance

3.2 Image Preprocessing

As mentioned below in the models’ section, transfer learning architectures such as

MobileNetV2 and Nasnet are used on this dataset and custom-designed CNN

architectures. These pre-trained networks require the input image to be a three-

channel dimensional image and the image size to be 224x224x3 in the case of

Nasnet. Hence the images are converted to three-channel images and resized

accordingly before model training. The raw image, along with the corresponding

facial key points, is shown in Figure 2.

4909

69.64

2140

30.36

1

100

10000

Total Percentage

Distribution of dataset

Null value Non null value

5

Figure 2. Visualization of Images

3.3 Imputation techniques

Two different types of imputation strategies have been implemented here.

Forward fill & K-Nearest Neighbour (KNN) imputation Forward fill is an

imputation technique where the subsequent null values are fileld with the previous

valid observations. KNN works on imputing the missing value by predicting the

nearest neighbor to a particular datapoint.

3.4 Data Augmentation

Figure 3 depicts the many types of augmentation. The images have been augmented

with random rotation, brightness, shift, and noise. These procedures were applied

offline on the dataset's non-null subset.

Figure 3. Rotation, Brightness, Shift and Random noise augmentation

3.5 Inference Time

The Inference times of various models have been calculated on 100 images. It can

be defined as shown in Equation 1

𝐼𝑛𝑓 𝑡𝑖𝑚𝑒 𝑜𝑛 100 𝑖𝑚𝑎𝑔𝑒𝑠 =
𝐼𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑇𝑜𝑡𝑎𝑙 𝑡𝑒𝑠𝑡 𝑑𝑎𝑡𝑎𝑠𝑒𝑡

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑠𝑡 𝑖𝑚𝑎𝑔𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑡𝑒𝑠𝑡 𝑑𝑎𝑡𝑎𝑠𝑒𝑡

Equation 1. Inference Time Calculation

6

3.6 Loss functions

The current problem is framed as a regression model where the target variable is a

continuous numeric variable, the loss function used here is mean squared error.

Mean squared error is defined by the following equation.

𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝐸𝑟𝑟𝑜𝑟 =
1

𝑛
∑(𝑦𝑖 − 𝑦�̂�)

2

𝑛

𝑖=1

Equation 2. Mean Squared Error - Loss function

3.7 Evaluation metrics

The evaluation metric used in this regression problem is the root mean squared error

(RMSE) as shown in Equation 3

𝑅𝑜𝑜𝑡 𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝐸𝑟𝑟𝑜𝑟 = √
1

𝑛
∑(𝑦𝑖 − 𝑦�̂�)

2

𝑛

𝑖=1

Equation 3. Root Mean Squared Error

3.8 Model Architecture

Two different models have been built here, Custom models and Transfer learning

models, namely MobileNetV2 and NasnetMobile. Tuning is done use Keras tuner

library.

Table 1. Parameter / Model size comparison of all architectures

Custom Models Total parameters Model size (MB)

Baseline CNN model 1,890,366 7.6

Manually Optimized CNN 235,834 1.0

Keras Optimized CNN- No imputation 306,750 1.27

Keras Optimized CNN - Forward fill 246,478 1.03

Keras Optimized CNN - KNN imputed 246,062 1.58

Keras Optimized CNN - Augmentation 364,318 1.50

MobilenetV2 2,257,984 9.66

NasNetMobile 4,301,426 18.48

Custom Models. The custom models are tuned sequentially to arrive at the best-

performing model in terms of RMSE scores. Three different custom models have

7

been built using baseline architecture, manual tuning, and Keras auto-tuning. The

number of parameters in the model is shown below in Table 1. Complete fine-tuning

of transfer learning architectures has also been done. Tuning of the model results in

a reduced number of parameters. Manually tuned Custom models have the least

parameters with an insignificant difference in RMSE scores, as seen in Figure 7.

Further, the tuned model's size is lesser than non-tuned models, with manually

tuned models having the least size (1.0 MB). The model architecture of the manual

tuned and the Keras tuned model is shown below in Figure 4.

Figure 4. Manually Tuned CNN (Left) and Keras Tuned CNN architecture (Right)

MobileNetV2 and NasNetmobile. Transfer learning architectures such as

MobileNetV2 and Nasnetmobile have been customized to solve our regression

problem. The original weights from the Imagenet classification have been used. The

topmost softmax classification has been replaced with a GAP + Regression (Dense

Layer) to predict the facial key points. The models are experimented with using the

original baseline weights of imagenet and by completely fine-tuning all the layers

of the architecture to evaluate the RMSE scores and inference time on prediction.

The model architectures are shown in Figures 5 and 6

8

Figure 5. MobilenetV2 (left) and NasnetMobile architecture (right)

4 Results

The results of the experiments have been explained in the following subsections

consisting of Evaluation of RMSE scores, model size, and number of parameters

4.1 Evaluation of RMSE scores

RMSE scores on the test dataset have been calculated for both custom and transfer

learning models, as shown in Figure 7 and Figure 8.

Huge Parameters of Baseline models. The initial baseline model was created

using the conventional architecture without any tuning of the layers among the

custom models. Figure 7 show that the Custom baseline model outperformed the

manually optimized and Keras fine tuner optimized models; however, manually

optimized models performed similarly to Keras fine tuner optimized models.

Figure 6. RMSE scores of Custom CNN models

9

It's worth noting that both fine-tuned Mobilenet and Nasnet trained on augmented

data exhibit a 4-5x improvement in RMSE scores compared to their non fine-tuned

counterparts (Figure 8). Surprisingly, compared to its non-finetuned counterpart,

fine-tuned Mobilenet demonstrated a 2x improvement in RMSE on KNN imputed

data.

Figure 7. RMSE scores of Transfer Learning Models

Supremacy of models trained on Augmented Data. As seen in the evaluation

of custom models in Table 2 and Table 3, that augmentation results in a significant

increase in the performance of the models. A sharp decrease in the RMSE scores on

the fine-tuned model shows that augmentation performs better than any imputation

technique.

Table 2. Comparison of RMSE performance of transfer learning models

Models No

İmputation

Forward fill

İmputation

KNN

imputation

Aug

MobileNetV2 baseline model Similar

performance

Similar

performance

+ +

MobileNetV2 fine tuned ++ +++

NasNet baseline model Similar

performance

Similar

performance

Similar

performance

+

NasNet Model fine-tuned +++

4.2 Evaluation of Model size and parameters

Among all the models built, manually tuned custom models have the least number

of parameters (235K) and least model size against Keras autotuned custom models

that are trained on different kinds of imputation techniques and augmentation.

However, in the case of augmentation, Keras autotuned models slightly outperform

custom models at the cost of increasing the number of parameters and model size.

10

Figure 8. Model parameters vs. Model Size – All Models

4.3 Inference time analysis

The ultimate performance depends on the speed at which an inference can be made

on the test dataset with the least computational requirements. Table 4 shows the

inference time on 100 images by various models on a Colab CPU.

Table 3. Inference Time Analysis

Model

No impute

(sec)

Forward

Fill (sec)

KNN

Impute (sec) Aug(sec)

CNN Baseline model 1.99 1.97 1.98 2.01

CNN Manual tuned model 1.4 1.33 1.34 1.34

CNN Keras tuned 2.72 1.52 4.19 3.58

MobileNetV2 - Baseline 0.89 0.86 1 0.83

MobileNetV2 - Fine tuned 0.84 0.82 0.82 0.88

NasNetMobile - Baseline 8.46 8.4 8.17 7.87

NasNetMobile - Fine tuned 7.95 7.96 8.01 7.68

Architectural efficiency in Inference Time. The inference time of a model

depends on both the number of parameters and the architecture. Among all models,

MobileNetV2 has the quickest inference. The enormous training parameters (twice

that of MobileNetV2) account for NasNetmobile's long inference times. Manually

tuned models come in second. In contrast to custom CNN models, MobileNet has

ten times the number of parameters and works two times faster. Augmentation does

not affect the inference time in a regression scenario, as seen from the analysis

11

4.4 Evaluation of Training Curves

Training curves for various models are shown below to identify the best

performings model in this scenario.

Figure 9. Custom CNN Manual Tuned (Left) Vs Custom CNN Keras Tuned (Right)

Manual Tuning vs. Keras autotuning. Manually tuned models exhibit more

reliable model fitting training curves than Keras auto tuned models, as illustrated in

Figure 10.

Figure 10. MobileNetV2 - No impute, Forward Fill, KNN impute, Augmentation (Top to bottom)

MobileNetV2 vs NasnetMobile. Figures 11 and 12 show that Nasnet mobile has

better training curves than Mobile Net architecture for all imputation techniques and

augmentation. The better training curves may be attributed to higher parameters of

Nasnet. However, when considering inference times, RMSE scores, and parameter

counts, MobileNetV2 outperforms Nasnet.

12

Figure 11. NasnsetMobile - No impute, Forward Fill, KNN impute, Augmentation (Top to Bottom)

4.5 Visualization of Test Images

Figure 13 shows various augmented models' predictions of facial key points.

Varying performances by different models are observed in the images below.

However, the images only represent a sample of the total test dataset, and hence no

meaningful conclusion can be drawn.

Figure 12. Facial Key Point Predictions by CNN manual tuned/Keras autotuned, MobilenetV2 and

Nasnet on Augmentation

13

5 Conclusion

In this work, we conducted experiments on the facial key point detection dataset by

building custom CNN models optimized manually and using Keras fine-tuner.

Further transfer learning architectures, non-finetuned and fine-tuned MobileNetV2

and NasNetMobile were used as baselines to evaluate custom-built CNN

architecture. In addition, we compared the effectiveness of imputation and

augmentation. The following are the conclusions of our work which can be

summarized below.

- Manually optimized custom CNN models outperform or are comparable

to auto-tuned Keras optimized models. On the other hand, manually tuned

custom CNN models may be ideal when considering training curves,

model size, and model parameters.

- MobileNetV2 outperforms all other models with the fastest inference times

but slightly compromising the model size and parameters.

- In both custom CNN and transfer learning models, augmented models have

lower RMSE scores, proving that augmentation is superior to imputation.

- Furthermore, there is no significant difference in performance between

baseline non-tuned and baseline completely fine-tuned models, demon-

strating that transfer learning models must be fine-tuned selectively in

terms of the number of layers for a given dataset.

- The experiments demonstrate that architectural efficiency significantly im-

pacts model performance and inference time, as demonstrated by the Mo-

bileNetV2 architecture, which uses depth-wise separable convolutions.

- Moreover, our models have the lowest RMSE compared to other state-of-

the-art architectures ([4], [10], [11], [12]), and to our knowledge, this is

one of the very few studies that evaluated models on size, inference time,

parameters and RMSE

6 References

[1] Y. Wu and Q. Ji, “Facial Landmark Detection: A Literature Survey,”

International Journal of Computer Vision, vol. 127, no. 2, pp. 115–142,

Feb. 2019, doi: 10.1007/s11263-018-1097-z.

14

[2] T. F. Cooles, G. J. Edwards, and C. J. Taylor, “Active appearance models,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23,

no. 6, pp. 681–685, 2001, doi: 10.1109/34.927467.

[3] A. Zadeh, Y. C. Lim, T. Baltrušaitis, and L.-P. Morency, “Convolutional

Experts Constrained Local Model for 3D Facial Landmark Detection.”

[4] N. Agarwal, A. Krohn-Grimberghe, and R. Vyas, “Facial Key Points

Detection using Deep Convolutional Neural Network - NaimishNet,” pp.

1–7, 2017, [Online]. Available: http://arxiv.org/abs/1710.00977

[5] Z. Zhang, P. Luo, C. C. Loy, and X. Tang, “Facial Landmark Detection by

Deep Multi-task Learning.”

[6] R. Ranjan, V. M. Patel, and R. Chellappa, “HyperFace: A Deep Multi-task

Learning Framework for Face Detection, Landmark Localization, Pose

Estimation, and Gender Recognition,” Mar. 2016, [Online]. Available:

http://arxiv.org/abs/1603.01249

[7] X. Zhu, X. Liu, Z. Lei, and S. Z. Li, “Face Alignment in Full Pose Range:

A 3D Total Solution,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 41, no. 1, pp. 78–92, Jan. 2019, doi:

10.1109/TPAMI.2017.2778152.

[8] J. Zhang, S. Shan, M. Kan, and X. Chen, “Coarse-to-Fine Auto-Encoder

Networks (CFAN) for Real-Time Face Alignment.”

[9] C. Mao, “Facial Keypoints Detection with Inception Structure,” pp. 3–5,

2016.

[10] S. Wu, J. Xu, S. Zhu, and H. Guo, “A Deep Residual convolutional neural

network for facial keypoint detection with missing labels,” Signal

Processing, vol. 144, pp. 384–391, Mar. 2018, doi:

10.1016/j.sigpro.2017.11.003.

[11] S. Shi, “Facial Keypoints Detection,” pp. 1–28, 2017, [Online]. Available:

http://arxiv.org/abs/1710.05279

[12] R. Gao, “Facial Keypoints Detection with Deep Learning,” Journal of

Computers, vol. 13, no. 12, pp. 1403–1410, 2018, doi:

10.17706/jcp.13.12.1403-1410.

15

[13] “Introduction to the Keras Tuner | TensorFlow Core.”

https://www.tensorflow.org/tutorials/keras/keras_tuner (accessed Nov. 24,

2020).

[14] E. C. Too, L. Yujian, S. Njuki, and L. Yingchun, “A comparative study of

fine-tuning deep learning models for plant disease identification,”

Computers and Electronics in Agriculture, vol. 161, pp. 272–279, Jun.

2019, doi: 10.1016/j.compag.2018.03.032.

[15] A. G. Howard et al., “MobileNets: Efficient Convolutional Neural

Networks for Mobile Vision Applications,” 2017, [Online]. Available:

http://arxiv.org/abs/1704.04861

[16] A. Michele, V. Colin, and D. D. Santika, “Mobilenet convolutional neural

networks and support vector machines for palmprint recognition,” in

Procedia Computer Science, 2019, vol. 157, pp. 110–117. doi:

10.1016/j.procs.2019.08.147.

[17] “Transfer Learning in Breast Mammogram Abnormalities Classification

With Mobilenet and Nasnet.”

[18] B. Qin and D. Li, “Identifying facemask-wearing condition using image

super-resolution with classification network to prevent COVID-19,”

Sensors (Switzerland), vol. 20, no. 18, pp. 1–23, Sep. 2020, doi:

10.3390/s20185236.

[19] R. J. Wang, X. Li, and C. X. Ling, “Pelee : A Real-Time Object Detection

System on Mobile Devices,” no. NeurIPS, pp. 1–10, 2018.

[20] “Facial Keypoints Detection | Kaggle.” https://www.kaggle.com/c/facial-

keypoints-detection/data (accessed Jun. 28, 2020).

