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REVISITING FACIAL KEY POINT 

DETECTION - AN EFFICIENT APPROACH 

USING DEEP NEURAL NETWORKS 

Abstract Facial landmark detection is a widely researched field of deep 

learning as this has a wide range of applications in many fields. These key 

points are distinguishing characteristics points on the face, such as the eyes 

center, the eye's inner and outer corners, the mouth center, and the nose tip 

from which human emotions and intent can be explained. The focus of our 

work has been evaluating transfer learning models such as MobileNetV2 and 

NasNetMobile, including custom CNN architectures. The objective of the 

research has been to develop efficient deep learning models in terms of model 

size, parameters, and inference time and to study the effect of augmentation 

imputation and fine-tuning on these models. It was found that while 

augmentation techniques produced lower RMSE scores than imputation 

techniques, they did not affect the inference time. MobileNetV2 architecture 

produced the lowest RMSE and inference time. Moreover, our results 

indicate that manually optimized CNN architectures performed similarly to 

Auto Keras tuned architecture. However, manually optimized architectures 

yielded better inference time and training curves.  

 

Keywords: Inference Time, Efficient Transfer Learning, Deep Learning, 

MobileNetV2, NasNetMobile, Custom CNN, Keras-autotuner 

1 Introduction 

The face is critical in visual communication. Numerous nonverbal messages, such 

as human identity, intent, and emotion, can be automatically extracted from the face. 

Localizations of facial key points are required in computer vision to extract 

nonverbal cues of facial information automatically. The term "facial appearance" 

refers to the distinct patterns of pixel intensity around or across facial landmarks or 

key points. These key points represent those critical features on a human face, such 

as the eyes, nose, eyebrows, lips, and nose from which information about a person’s 

emotion or intent can be identified. Once correctly identified, they can be used to 

train deep learning algorithms to perform various classification tasks. Their 

applications include computer interaction, entertainment, drowsiness detection, 

biometrics, emotion detection, security surveillance, and a range of medical 

applications. However, the practical applications of these models depend on the 
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speed of inference of these models and their deployability on Edge and mobile 

devices that have lower computational powers. This research aims to evaluate 

various transfer learning and custom models in terms of inference time, model size 

to test their deployability on Edge / mobile devices.  

In this work, we used the Facial Key Point Detection dataset from Kaggle. The 

dataset consists of the training variables and 15 target variables, the facial key points 

representing various facial features. Deep learning models using custom and 

transfer learning architectures such as Resnet50, MobileNetV2, NasnetMobile have 

been built using baseline and also combining various augmentation techniques to 

identify the ideal model. Additionally, the architectures have been evaluated in 

terms of parameter count, disc requirements, and inference timings to determine 

their suitability for deployment on computationally less intensive devices. We have 

compared our results with other state-of-the-art architectures and found that our 

models have higher efficiency,  hence achieving the objective of this research. 

2 Lıterature Review 

Facial landmark detection algorithms can be classified into three broad categories 

[1] based on how they model the facial appearance and shape: holistic, Constrained 

Local Model (CLM), and regression-based. Holistic methods mainly include Active 

Appearance Models  (AAM)[2] and fitting algorithms. AAM works on the principle 

of learning from the whole face patch and involves the concept of PCA, wherein 

learning takes place by calculating the difference “I” between the greyscale image 

and an instance of the model. The error is reduced by learning the parameters like 

any conventional machine learning algorithm. CLM methods are slightly better than 

the holistic approaches as they learn from both the globalized face pattern and the 

local appearance from the nearby facial keypoints. They can be probabilistic or 

deterministic. They consist of two steps [3], the initial step where the landmarks are 

located independent of the other landmarks. In this second step, while updating the 

parameters, the location of all the landmarks is updated simultaneously. In 

regression based approaches, there is no initial localization of the landmark; instead, 

the images are mapped directly to the co-coordinates of these landmarks, and the 

learning is done directly. These methods may be direct or cascaded. However, with 

the advent of deep learning algorithms, convolutional neural networks have 

replaced conventional regression methods with state-of-the-art results. These 

methods are faster and more efficient. Convolutional neural networks using LeNet 

have been used in many state-of-the-art works. The principles of LeNet have been 
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used to build many custom architectures, which have shown reduced training time 

[4] and reduced RMSE scores.  

The performance of a machine learning model also depends mainly on the type of 

algorithm being used. Some of the popular datasets [1] on which deep learning 

algorithms have been used with promising results are BU-4DFE with 68 landmark 

points (RMSE – 5.15), AFLW with 53 landmark points (RMSE-4.26), AFW with 

five landmark points (RMSE – 8.2), LFPW with 68 landmark points (RMSE – 5.44), 

Ibug 300-W with 67 landmark points (RMSE – 5.54). Most of the deep learning 

algorithms have utilized methods such as Task constrained deep convolutional 

network (TCDCN) [5], Hyperface[6], 3-Dimensional, Dense Face Alignment 

(3DDFA) [7], Coarse to Fine Auto Encoder Techniques (CFAN) [8] in achieving 

relatively higher accuracies.  

Inception architecture [9] has been used on the similar kaggle dataset achiveing a 

RMSE score of 2.91. Resnet have also been used in the work done by [10] achieving 

a RMSE of 2.23. A similar work done using the LeNet architecture [4] achieved a 

RMSE score of 1.77. As more and more evidences were being produced in favour 

of custom architectures, focus was then directed on the bulding of Custom CNN 

networks for facial key point detection. A comparative study was done [11]using 

both custom and transfer learning architectures. Custom architectures were able to 

achieve lower RMSE scores(1.97). A similar custom model consisting of 14 layers 

[12] produced an RMSE score of 1.75. As evident above, achieving higher accuracy 

with lesser errors by making deep learning algorithms more efficient and precise 

has been the target of various studies. 

Tuning of deep learning models is also critical in achieving high accuracies. The 

keras tuner library[13] has been widely used to achieve this. Fine-tuning efficiency 

has been further established in the classification plant leaves disease [14] where 

fine-tuning architectures such as Resnet50, DenseNet121, InceptionV4 and VGG16 

have been used . 

Lightweight models such as Mobilenet and NasnetMobile have been gaining 

popularity recently due to the ease of their deployability. Mobilenet [15] utilizes the 

concept of depth-wise separable convolution to reduce the number of training 

parameters without affecting the accuracy of a model. They are ideal for tasks such 

as recognition of palm prints [16], breast mammogram classification[17], and the 

identification of proper wearing of facemask[18]. Similar models like Mobilenet 

have also been built to achieve similar accuracy with fewer parameters, as in the 

case of PeleeNet[19].  



4  

3 Research Methodology 

3.1 Dataset description 

The dataset for this paper has been taken from the Kaggle competition[20]. There 

are 7049 images in this dataset and 15 facial key points representing various parts 

of the face such as eyebrows, eyes, nose, and lips in the training dataset. These facial 

key points represent the target variables. The test dataset consists of 1783 images.  

The dataset consists of images of 96x96 size with a one-channel dimension 

(grayscale images). The distribution of null values is shown below in Figure 1. 

69.64% of the data points contain alteast one null value in the facial key points, 

while 30.36% of the images consists of all key points 

 

 
Figure 1. Class Imbalance 

3.2 Image Preprocessing 

As mentioned below in the models’ section, transfer learning architectures such as 

MobileNetV2 and Nasnet are used on this dataset and custom-designed CNN 

architectures. These pre-trained networks require the input image to be a three-

channel dimensional image and the image size to be 224x224x3 in the case of 

Nasnet. Hence the images are converted to three-channel images and resized 

accordingly before model training. The raw image, along with the corresponding 

facial key points, is shown in Figure 2. 
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Figure 2. Visualization of Images 

3.3 Imputation techniques 

Two different types of imputation strategies have been implemented here. 

Forward fill & K-Nearest Neighbour (KNN) imputation Forward fill is an 

imputation technique where the subsequent null values are fileld with the previous 

valid observations. KNN works on imputing the missing value by predicting the 

nearest neighbor to a particular datapoint. 

3.4 Data  Augmentation  

Figure 3 depicts the many types of augmentation. The images have been augmented 

with random rotation, brightness, shift, and noise. These procedures were applied 

offline on the dataset's non-null subset.  

 
Figure 3. Rotation, Brightness, Shift and Random noise augmentation 

3.5 Inference Time 

The Inference times of various models have been calculated on 100 images. It can 

be defined as shown in Equation 1 

𝐼𝑛𝑓 𝑡𝑖𝑚𝑒  𝑜𝑛 100 𝑖𝑚𝑎𝑔𝑒𝑠 =  
𝐼𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑇𝑜𝑡𝑎𝑙 𝑡𝑒𝑠𝑡 𝑑𝑎𝑡𝑎𝑠𝑒𝑡

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑠𝑡 𝑖𝑚𝑎𝑔𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑡𝑒𝑠𝑡 𝑑𝑎𝑡𝑎𝑠𝑒𝑡
 

Equation 1. Inference Time Calculation 
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3.6 Loss functions 

The current problem is framed as a regression model where the target variable is a 

continuous numeric variable, the loss function used here is mean squared error. 

Mean squared error is defined by the following equation. 

𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝐸𝑟𝑟𝑜𝑟 =  
1

𝑛
∑(𝑦𝑖 − 𝑦�̂�)

2

𝑛

𝑖=1

 

Equation 2. Mean Squared Error - Loss function 

3.7 Evaluation metrics 

The evaluation metric used in this regression problem is the root mean squared error 

(RMSE) as shown in Equation 3 

𝑅𝑜𝑜𝑡 𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝐸𝑟𝑟𝑜𝑟 =  √
1

𝑛
∑(𝑦𝑖 − 𝑦�̂�)

2

𝑛

𝑖=1

 

Equation 3. Root Mean Squared Error 

3.8 Model Architecture 

Two different models have been built here, Custom models and Transfer learning 

models, namely MobileNetV2 and NasnetMobile. Tuning is done use Keras tuner 

library. 

Table 1. Parameter / Model size comparison of all architectures 

Custom Models Total parameters Model size (MB) 

Baseline CNN model 1,890,366 7.6 

Manually Optimized CNN 235,834 1.0 

Keras Optimized CNN- No imputation 306,750 1.27 

Keras Optimized CNN - Forward fill 246,478 1.03 

Keras Optimized CNN - KNN imputed 246,062 1.58 

Keras Optimized CNN - Augmentation 364,318 1.50 

MobilenetV2 2,257,984 9.66 

NasNetMobile 4,301,426 18.48 

Custom Models.    The custom models are tuned sequentially to arrive at the best-

performing model in terms of  RMSE scores. Three different custom models have 
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been built using baseline architecture, manual tuning, and Keras auto-tuning. The 

number of parameters in the model is shown below in Table 1. Complete fine-tuning 

of transfer learning architectures has also been done. Tuning of the model results in 

a reduced number of parameters. Manually tuned Custom models have the least 

parameters with an insignificant difference in RMSE scores, as seen in Figure 7. 

Further, the tuned model's size is lesser than non-tuned models, with manually 

tuned models having the least size (1.0 MB). The model architecture of the manual 

tuned and the Keras tuned model is shown below in Figure 4. 

 

Figure 4. Manually Tuned CNN (Left) and Keras Tuned CNN architecture (Right) 

MobileNetV2 and NasNetmobile.    Transfer learning architectures such as 

MobileNetV2 and Nasnetmobile have been customized to solve our regression 

problem. The original weights from the Imagenet classification have been used. The 

topmost softmax classification has been replaced with a GAP + Regression (Dense 

Layer) to predict the facial key points. The models are experimented with using the 

original baseline weights of imagenet and by completely fine-tuning all the layers 

of the architecture to evaluate the RMSE scores and inference time on prediction. 

The model architectures are shown in Figures 5 and 6 
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Figure 5. MobilenetV2 (left) and NasnetMobile architecture (right) 

4 Results 

The results of the experiments have been explained in the following subsections 

consisting of Evaluation of RMSE scores, model size, and number of parameters 

4.1 Evaluation of RMSE scores 

RMSE scores on the test dataset have been calculated for both custom and transfer 

learning models, as shown in Figure 7 and Figure 8. 

Huge Parameters of Baseline models.    The initial baseline model was created 

using the conventional architecture without any tuning of the layers among the 

custom models. Figure 7 show that the Custom baseline model outperformed the 

manually optimized and Keras fine tuner optimized models; however, manually 

optimized models performed similarly to Keras fine tuner optimized models. 

 

Figure 6. RMSE scores of Custom CNN models 
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It's worth noting that both fine-tuned Mobilenet and Nasnet trained on augmented 

data exhibit a 4-5x improvement in RMSE scores compared to their non fine-tuned 

counterparts (Figure 8). Surprisingly, compared to its non-finetuned counterpart, 

fine-tuned Mobilenet demonstrated a 2x improvement in RMSE on KNN imputed 

data.  

 

Figure 7. RMSE scores of Transfer Learning Models 

Supremacy of models trained on Augmented Data.    As seen in the evaluation 

of custom models in Table 2 and Table 3, that augmentation results in a significant 

increase in the performance of the models. A sharp decrease in the RMSE scores on 

the fine-tuned model shows that augmentation performs better than any imputation 

technique.  

Table 2. Comparison of RMSE performance of transfer learning models  

Models No 

İmputation 

Forward fill 

İmputation 

KNN 

imputation 

Aug 

MobileNetV2 baseline model Similar 

performance 

Similar 

performance 

+ + 

MobileNetV2 fine tuned ++ +++ 

NasNet baseline model Similar 

performance 

Similar 

performance 

Similar 

performance 

+ 

NasNet Model fine-tuned +++ 

4.2 Evaluation of Model size and parameters 

Among all the models built, manually tuned custom models have the least number 

of parameters (235K) and least model size against Keras autotuned custom models 

that are trained on different kinds of imputation techniques and augmentation. 

However, in the case of augmentation, Keras autotuned models slightly outperform 

custom models at the cost of increasing the number of parameters and model size. 
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Figure 8. Model parameters vs. Model Size – All Models 

4.3 Inference time analysis 

The ultimate performance depends on the speed at which an inference can be made 

on the test dataset with the least computational requirements. Table 4  shows the 

inference time on 100 images by various models on a Colab CPU. 

Table 3. Inference Time Analysis 

Model 

No impute 

(sec) 

Forward 

Fill (sec) 

KNN 

Impute (sec) Aug(sec) 

CNN Baseline model 1.99 1.97 1.98 2.01 

CNN Manual tuned model 1.4 1.33 1.34 1.34 

CNN Keras tuned  2.72 1.52 4.19 3.58 

MobileNetV2 - Baseline 0.89 0.86 1 0.83 

MobileNetV2 - Fine tuned  0.84 0.82 0.82 0.88 

NasNetMobile - Baseline 8.46 8.4 8.17 7.87 

NasNetMobile - Fine tuned 7.95 7.96 8.01 7.68 

 

Architectural efficiency in Inference Time.  The inference time of a model 

depends on both the number of parameters and the architecture. Among all models, 

MobileNetV2 has the quickest inference. The enormous training parameters (twice 

that of MobileNetV2) account for NasNetmobile's long inference times. Manually 

tuned models come in second. In contrast to custom CNN models, MobileNet has 

ten times the number of parameters and works two times faster. Augmentation does 

not affect the inference time in a regression scenario, as seen from the analysis 
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4.4 Evaluation of Training Curves 

Training curves for various models are shown below to identify the best 

performings model in this scenario.  

  

Figure 9. Custom CNN Manual Tuned (Left ) Vs Custom CNN Keras Tuned (Right) 

Manual Tuning vs. Keras autotuning.    Manually tuned models exhibit more 

reliable model fitting training curves than Keras auto tuned models, as illustrated in 

Figure 10.  

 

 

Figure 10. MobileNetV2 - No impute, Forward  Fill, KNN impute, Augmentation (Top to bottom) 

MobileNetV2 vs NasnetMobile.    Figures 11 and 12 show that Nasnet mobile has 

better training curves than Mobile Net architecture for all imputation techniques and 

augmentation. The better training curves may be attributed to higher parameters of 

Nasnet. However, when considering inference times, RMSE scores, and parameter 

counts, MobileNetV2 outperforms Nasnet. 
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Figure 11. NasnsetMobile - No impute, Forward Fill, KNN impute, Augmentation (Top to Bottom) 

4.5 Visualization of Test Images 

Figure 13 shows various augmented models' predictions of facial key points. 

Varying performances by different models are observed in the images below. 

However, the images only represent a sample of the total test dataset, and hence no 

meaningful conclusion can be drawn. 

 

 

 

 
Figure 12. Facial Key Point Predictions by CNN manual tuned/Keras autotuned, MobilenetV2 and 

Nasnet on Augmentation 
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5 Conclusion 

In this work, we conducted experiments on the facial key point detection dataset by 

building custom CNN models optimized manually and using Keras fine-tuner. 

Further transfer learning architectures, non-finetuned and fine-tuned  MobileNetV2 

and NasNetMobile were used as baselines to evaluate custom-built CNN 

architecture. In addition, we compared the effectiveness of imputation and 

augmentation. The following are the conclusions of our work which can be 

summarized below. 

- Manually optimized custom CNN models outperform or are comparable 

to auto-tuned Keras optimized models. On the other hand, manually tuned 

custom CNN models may be ideal when considering training curves, 

model size, and model parameters.  

 

- MobileNetV2 outperforms all other models with the fastest inference times 

but slightly compromising the model size and parameters.  

 

- In both custom CNN and transfer learning models, augmented models have 

lower RMSE scores, proving that augmentation is superior to imputation. 
 

- Furthermore, there is no significant difference in performance between 

baseline non-tuned and baseline completely fine-tuned models, demon-

strating that transfer learning models must be fine-tuned selectively in 

terms of the number of layers for a given dataset.  

 
- The experiments demonstrate that architectural efficiency significantly im-

pacts model performance and inference time, as demonstrated by the Mo-

bileNetV2 architecture, which uses depth-wise separable convolutions.  

 

- Moreover, our models have the lowest RMSE compared to other state-of-

the-art architectures ([4], [10], [11], [12]), and to our knowledge, this is 

one of the very few studies that evaluated models on size, inference time, 

parameters and RMSE 
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