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Abstract. Recognizing facial expressions from static images or video
sequences is a widely studied but still challenging problem. The recent
progresses obtained by deep neural architectures, or by ensembles of het-
erogeneous models, have shown that integrating multiple input represen-
tations leads to state-of-the-art results. In particular, the appearance and
the shape of the input face, or the representations of some face parts,
are commonly used to boost the quality of the recognizer. This paper
investigates the application of Convolutional Neural Networks (CNNs)
with the aim of building a versatile recognizer of expressions in static im-
ages that can be further applied to video sequences. We first study the
importance of different face parts in the recognition task, focussing on ap-
pearance and shape-related features. Then we cast the learning problem
in the Semi-Supervised setting, exploiting video data, where only a few
frames are supervised. The unsupervised portion of the training data is
used to enforce two types of coherence, namely temporal coherence and
coherence among the predictions on the face parts. Our experimental
analysis shows that coherence constraints can improve the quality of the
expression recognizer, thus offering a suitable basis to profitably exploit
unsupervised video sequences.

Keywords: Facial Expression Recognition, Convolutional Neural Net-
works, Learning from Constraints, Coherence Constraints

1 Introduction

Facial expression recognition is the problem of detecting emotions in facial im-
ages or videos. The research activity on this problem involves the scientific com-
munity that is about psychology but also the one that is about computer science
and artificial intelligence. Although this task is widely studied and much progress
has been made, it still remains a challenging problem, due to the variability and
complexity of facial expressions. As a matter of fact, facial expressions can be cat-
egorized with respect to multiple classes of emotions. The most widely followed
approach consists in considering six basic emotions plus the neutral case, and
it is due to the studies of Paul Ekman [2], while other scientists provided more
fine grained descriptions [14]. Facial features of expressions are mostly located
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around mouth, nose, and eyes, and their locations are essential in explaining and
categorizing expressions [1]. Despite the large number of advanced psychological
experiments about the human perception and recognition of emotions, we can
trivially figure out that different face parts have a different impact in the way
humans recognize emotions: the role of eyebrows when we are angry or the way
we treat our mouth when we are happy or surprised, for example.

We can find several approaches that exploit Machine Learning with the aim
of learning to categorize emotions from examples. Most of them are about using
still images [10, 13], while several more recent works also consider video sequences
where actors start with a neutral expression and generate a non-neutral one [9,
16]. The learning framework is usually fully supervised, and supervision is either
about each training image or about each video sequence. Works that exploit
video data focus on the importance of the temporal evolution of the input face.
The system proposed by Fan and Tjahjadi [3] processes four sub-regions of the
face: forehead, eyes/eyebrows, nose and mouth. They used an extension of the
spatial pyramid histogram of gradients and dense optical flow to extract spatial
and dynamic features from video sequences, and adopted a multi-class SVM-
based classifier with one-to-one strategy to recognise facial expressions. Jung et
al. [7] propose a neural-network-based method where two different networks are
exploited: the first one extracts appearance features from image sequences, learn-
ing temporal correlations, while the other network extracts shape features from a
set of facial landmarks. The two nets are combined to yield the final decision on
the emotion class. Happy and Routray [5] identify salient areas with generalized
discriminative features for expression classification. They only use appearance-
based features, and they do not consider the time domain. The framework from
Jain et al. [6] recognizes facial expressions from video sequences by modeling
temporal variations within shapes. They show that shape provides important
information that is sometimes hard to grasp from appearance only. Zhang and
Huang [16] propose a mixed model which include a “temporal” and a “spatial”
network. The former captures dynamic features from consecutive frames, while
the latter is about extracting static features from still frames. More generally, we
can roughly characterize the popular trends in the existing literature by the us-
age of (i.) appearance-related (i.e., visual) features, (ii.) shape-related features,
(iii.) features from face parts, (iv.) the temporal domain (i.e., video data).

This paper investigates the application of a pool of Convolutional Neural
Networks (CNNs) with the aim of building recognizers of expressions in static
images, that can be further applied to video sequences. We consider both (i.)
appearance and (ii.) shape features, but, differently from most of the existing
works, we do not hand-engineer shape features, and we let the CNNs learn the
right representations from special shape-only images. We propose a model that
considers (iii.) sub-parts of the face in addition to the entire face, motivated
by the need of gaining deeper insights in the role of each component. Then,
we move to the Semi-Supervised setting, exploiting (iv.) video data. The unsu-
pervised portion of the training data is used to enforce “temporal coherence”
among consecutive frames, and “part coherence” in each frame, i.e., a coherent
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prediction among the CNNs that operate on the different face parts. Our ex-
perimental analysis shows that coherence constraints can improve the quality
of the expression recognizer, thus offering a suitable basis to profitably exploit
unsupervised video sequences.

This paper is organized as follows. The next Section formalizes the problem
of facial expression recognition. Section 3 introduces our model. The role of
coherence is described in Section 4, while experiments and conclusions (and
future work) are collected in Section 5 and Section 6, respectively.

2 Facial Expression Recognition

The task of facial expression recognition that we consider in this paper consists
in building a classifier that predicts one of the six universal emotions [2], that are
anger, disgust, fear, happiness, sadness, surprise, plus the neutral case, and that
we collect into the set Y , codified with indices from 1 to 7. The most popular
inputs of the recognizer are images of faces, represented in foreground, usually
with frontal orientation. When video data is considered, the recognition problem
focusses on short video clips where a transition from the neutral state toward
one the six emotions is recorded. Processing videos instead of still images can im-
prove the recognition performance because facial expressions involve variations
of the facial muscles along the temporal dimension. However, classifiers that are
specifically trained to build a latent representation from a video clip V before
taking a decision [7], cannot be immediately applied to classify images. Differ-
ently, image-based classifiers can process single frames {It} of a video (being t
the time index) to produce a final decision over a time window, so they are more
versatile from the point of view of easiness of deployment in different real-world
applications. The facial expression recognition problem is usually faced in the
“Fully-Supervised” setting, and, in the case of videos, the available datasets are
composed of labeled video clips where we do not have access to the labelings of
the single frames3. Nonetheless, obtaining supervised data is costly, while nowa-
days is pretty easy to have access to collections of unsupervised frontal view faces
(web, social networks, smartphones, ...) or unsupervised video recordings (video
conference/call applications). This suggests that studying the “Semi-Supervised”
setting, where a portion of the training data is labeled and a larger portion is
unsupervised, can be a promising way to approach the recognition task.

Motivated by the need of building a versatile emotion recognition system, we
focus on a predictor that operates on still images and that we can use to make
predictions on video data. The system can be trained exploiting both video
and image data in a Semi-Supervised setting, taking advantage of the temporal
evolution described by the video format. In detail, we consider a classifier f(·)
that produces a decision y ∈ Y for each input image I, or for a set of consecutive

3 See CK+ http://www.consortium.ri.cmu.edu/ckagree/, Oulu-CASIA http://

www.cse.oulu.fi/CMV/Downloads/Oulu-CASIA, MMI https://mmifacedb.eu/.
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frames belonging to a time window W (that covers a video clip, for example),

y = f(I) (1)

y = majorityt∈W {f(It)} , (2)

where majority is the majority-voting function, that returns the most frequent
prediction in the time window W . Differently from the existing approaches, our
system can be trained using labeled and unlabeled image databases, collected
in DI , or labeled and unlabeled frames extracted from the previously described
labeled video sequences, collected in DV . Due to the aforementioned properties
of the existing video datasets (containing transitions from neutral to a certain
emotion), we can artificially generate DV by labeling as neutral the very first
frames of each video clip, and by assigning the provided video label to the last
frames of the sequence. The frames in the internal portion of the sequence are
not labeled. Formally, we have

DI = {(Ii, yi), i = 1, . . . , l} ∪ {(Ii, none), i = l + 1, . . . , l + u} ,

where yi ∈ Y is the image label, and the rightmost set is fully unlabeled. Then,

DV = {DVz , z = 1, . . . , v} ,

where v is the number of available video clips and DVz is a sequence extracted
from the z-th clip,

DVz = ((Iz,t, neutral), t = 1, . . . , α|Vz|)⊕
((Iz,t, none), t = α|Vz|+ 1, . . . , β|Vz|)⊕
((Iz,t, yz), t = β|Vz|+ 1, . . . , |Vz|) ,

being ⊕ the sequence concatenation operator, Iz,t ∈ Vz the t-th frame of the
z-th video, and 0 < α < β < 1, arbitrarily chosen. In this case yz ∈ Y \
{neutral} is the label provided with the video clip Vz (neutral is the identifier
of the neutral class). We notice that DV is more informed than DI , since it
also stores the image/frame order and the frame grouping with respect to the
videos. For this reason, we can consider DI to be an instance of the more general
representation DV , and in the rest of the paper we will focus on data represented
as in DV without reducing the generality of what we described so far, and we
will compactly indicate it with D.

3 Model

Our model is based on CNNs that process two categories of representations of the
input image/frame I. Such categories consist in appearance-based (i.e, visual)
representations and a shape-based representations.

In both the cases, we do not consider the whole I, but only the rectangular
area that is covered by the target face. We localize the face first, and then we
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crop the image accordingly. This choice is crucial when processing inputs with
multiple faces or when the face is not well positioned at the center of the im-
age (or more generally, at a position incoherent with the training data). The
appearance-based representation of the face is simply a grayscale instance of the
cropped face. In the case of the shape-based representation, we still focus on
the same cropped region, but we extract a set of shape features that essentially
describe the contours of the face parts, and that, in this work, consist of a set of
facial landmark points. However, instead of stacking their 2D coordinates into
a vector (that is only possible if the set of points is consistent among differ-
ent faces), we consider a more generic approach in which the shape is simply
represented by an artificial image with uniform background and in which the
landmarks points are depicted at their coordinates. This allows us to treat the
shape in a way that is similar to what we do with the appearance, and it opens
the possibility of providing different shape “sketches” that are not only based
on landmark points (but also on contour lines, for example).

In order to study the effects of the different face parts in the recognition pro-
cess, we computed the appearance and shape representations for the face (as just
described) and for all the face parts: mouth, nose, eyes, eyebrows. We localized
the face area and a set of 68 landmark points using the localizer of Viola and
Jones [15] and a landmark detector [8]4. The detector uses the classic Histogram
of Oriented Gradients (HOG) features combined with a linear classifier, an im-
age pyramid, and a sliding window detection scheme. Cropping around each set
of part-related landmarks (adding a small padding), we obtained 7 instances of
appearance-based representations of the input I and 8 shape-based ones, since in
the case of shape we also included the landmarks associated to the jaw contour.
Figure 1 shows the overall 15 representations that we generate. We resized these
representations to the following sizes: face area 200× 200, mouth area 80× 50,
eye area 60 × 30, eyebrow area 100 × 30, nose area 60 × 100 pixels, jaw area
200× 170.

appearance-based inputs shape-based inputs

Fig. 1. Representations extracted from an input image. On the left there are the 7
appearance-based representations. On the right there are the 8 shape-based represen-
tations, that we implement by sketching landmark points in artificial images.

We implemented a pool of 15 CNNs, each of them processing one of the
aforementioned representations (Figure 2). The generic CNNh associated to the

4 We used OpenCV https://opencv.org/ and the “dlib” library http://dlib.net/
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h-th representation has two convolutional layers followed by max pooling, and
some fully connected layers terminated with a softmax activation that outputs a
probability distribution over the emotions in Y . We indicate with ph(·) the func-
tion computed by such CNNh. All the hidden neural units have ReLu activation
functions. The face-related CNNs have 32 and 64 filters on the two convolutional
layers, respectively, and two fully connected layers (64 and |Y | = 7 neurons). The
other CNNs, that are based on inputs with smaller sizes, exploit 16 and 32 filters,
and a single fully connected layer (|Y | = 7 neurons).

The output of each of the 15 CNNs, when followed by an arg max operation
(assuming 1-based indexing), is a possible instance of the function f in Eq. (1)
and Eq. (2). Formally, for a given h,

xh = representationh(I)

ph(xh) = CNNh (xh)

f(I) = arg max ph(xh) ,

where xh is the h-representation of the input, and ph(xh) outputs a vector of
size |Y | that sums to 1. Even if our final goal is to focus on the case in which
h is the index of the full-face-based classifier, in Section 5 we will evaluate the
quality of multiple instances of f , considering the predictors on the face parts
too. In the next Section we will introduce a link between the full-face and face
parts.

... ...

conv 3x3 - 32

max-pool 2x2

conv 3x3 - 64

max-pool 2x2

fully connected - 64 
(relu) 

fully connected - 7 
(softmax) 

Pface-app

conv 3x3 - 32

max-pool 2x2

conv 3x3 - 64

max-pool 2x2

fully connected - 64 
(relu) 

fully connected - 7 
(softmax) 

Pface-shape

conv 3x3 - 16

max-pool 2x2

conv 3x3 - 32

max-pool 2x2

fully connected - 7 
(softmax) 

Pmouth-app

conv 3x3 - 16

max-pool 2x2

conv 3x3 - 32

max-pool 2x2

fully connected - 7 
(softmax) 

Pjaw-shape

Fig. 2. Structure of CNNs employed.
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4 Learning by Enforcing Coherence

We trained the pool of CNNs by minimizing an objective function involving the
cross-entropy L(ph(xh), y) between the outputs of the networks and the available
labels (one-hot encoding), considering the training data T ⊂ D. The cross-
entropy only exploits the labeled pairs in T . However, our objective function
is also composed by the penalties associated to the fulfilment of “coherence
constraints” that we enforce on all the samples of T , being them labeled or
not. We have considered two types of coherence, namely “temporal coherence”
and “coherence among the predictions on the face parts”. The former enforces
the CNNs to be coherent over time for each video sequence, i.e., it enforces the
predictions to smoothly change along the time axis. This constraint introduces a
regularizing effect, since it prevents the system from developing unstable models
that abruptly change their decisions among consecutive frames5. The part-based
coherence enforces each full-face-representation-based classifiers to take decisions
that are coherent with the ones taken (on average) by the other part-based
classifiers (and vice-versa). The idea behind this constraint is that the committee
of the local (i.e. part-based) predictors could provide important fine-grained
information that the global (face-based) predictor might not have been able
to capture. We already experimented some related constraints in the case of
multi-view object recognition [12], and these ideas are borrowed by the generic
framework of “Learning from Constraints” [4], where a predictor is constrained
exploiting high-level knowledge on the task at hand, bridging the symbolic and
sub-symbolic worlds.

In detail, given two scalars λt, λc ≥ 0 that weigh the importance of the
coherence (soft) constraints, our objective function for the appearance-based
classifiers (or, equivalently, for the shape-based classifiers) is

∑
h

∑
i=1

yi 6=none

wi · L(ph(xh,i), yi) + λt

temporal coherence︷ ︸︸ ︷∑
h

v∑
z=1

|Vz|∑
t=2

(
1− ph(xh,(z,t−1))

′ · ph(xh,(z,t))
)

+λc
∑

h6=face

∑
i

(1− pface(xh,i)′ · ph(xh,i))︸ ︷︷ ︸
part coherence

(3)

where the index h spans over the 7 appearance-based classifiers (or the 8 shape-
based classifiers). The index i spans over all the pairs in T , and, for the sake
of simplicity, we used the notation yi 6= none to indicate that we consider only
the labeled examples. The scalar weights wi are used to give custom weights to
the examples, and we used them to give more importance to the classes that are
less represented in T . The notation (z, t) is the index of the t-th frame in the

5 We remark that the enforcement of both the coherence constraints only happens at
training time.
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z-th video sequence belonging to T . Finally, face is used to indicate the index
associated with the full-face input, and ′ is the transpose operator.

We notice that since p·(·) is a probability distribution, the dot products
involving two instances of p·(·) are 1 when such instances are equivalent (and
the coherence constraints are fulfilled). The temporal constraint involves dot
products between the predictions on pairs of consecutive frames in the same
video clip. We kept the same structure to build the part-based constraint, where
the averaging operation on the part-based classifiers is evident when

∑
h6=face is

moved right before the second term of the dot product pface(xh,i)
′ · ph(xh,i).

5 Experimental Results

In order to validate our model, we used the popular Extended Cohn-Kanade
dataset (CK+) [11]. It consists of 593 frames belonging to a set of short video
sequences, where 120 subjects (different age and gender) generate expressions
belonging to the following list: anger, contempt, disgust, fear, happiness, sadness
and surprise. We excluded the sequences associated to “contempt”, which is not
included into the six universal emotions. The video sequences are composed of
10-60 frames, they start with a neutral expression and they end with the peak
of one of the previously listed expressions. Each sequence is associated with an
emotion label.

In order to build the Semi-Supervised setD described in Section 2, we selected
α = 0.1 and β = 0.7. We generated 5 randomizations of the whole dataset, and
divided each of them into training (70%), validation (15%), and test sets (15%),
keeping the original distribution of the classes in each set. The validation data
was used to validate the model parameters and excluded from training. The
test partition was used to measure the quality of the model, and the results
presented in this Section are averaged over the 5 test partitions (when available,
we also report the standard deviation in brackets). Each collection of training
data consists of about ≈ 4, 000 frames, out of which ≈ 1, 500 are labeled, and
they are organized into ≈ 200 sequences, while the validation data is composed of
≈ 600 frames, out of which ≈ 200 are labeled, and organized into ≈ 30 sequences.
Since examples from the “neutral” class are much more represented with respect
to other examples, we set wi = 0.1 in Eq. (3) if i is an example from the
neutral class, wi = 1 otherwise. We selected the optimal λc, λt by a grid-search in{

10−10, 10−8, 10−7, 10−6, 10−4, 10−2
}

, measuring frame-level accuracy (i.e., only
the labeled validation frames are considered). We implemented our model using
TensorFlow, and we minimized Eq. (3) by the Adam-based optimizer (starting
learning rate 0.001), mini-batches of size 96, and we have trained the model
for multiple epochs, stopping the procedure when the validation error started
increasing.

We performed experiments comparing a system with no-coherence-constraints
(λc = λt = 0) with other models that include either temporal or part-based co-
herence. We compared the cases of single-frame-level predictions (where only
the labeled portion of the test set is considered) and the case of video-sequence-
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level predictions, following the decision rules of Eq. (1) and Eq. (2), respec-
tively (where W covers the full video sequence). Since examples of the different
classes are not balanced in the given dataset, and in order to provide a more
informative set of results, we measured two types of accuracies, namely Micro

and Macro accuracies. The former is simply the percentage of correctly labeled
frames/sequences, while the latter is the average of the percentages of correctly
labeled frames/sequences in each emotion class.

Table 1 shows the results we obtain when testing the classifiers that operate
on the full-face inputs, considering both appearance and shape representations.
We also report results of an additional classifier obtained by averaging the out-
puts of the full set of 15 classifiers (thus mixing appearance and shape data).

Table 1. Micro and macro accuracies (std dev. in brackets) at image and video (se-
quence) level of the full-face-based classifiers (appearance and shape representations)
and of an ensemble of the 15 classifiers (average of 15 outputs, both shape and appear-
ance). Results without coherence constraints (None), with Part-based coherence and
Temp-oral coherence (results where coherence improves the accuracy are in bold).

Images
% Micro Acc % Macro Acc

None Part Temp None Part Temp
Faceapp. 78.9 (3.6) 78.0 (2.0) 81.1 (3.0) 71.2 (2.8) 72.8 (2.2) 72.2 (7.4)

Faceshape 71.8 (3.0) 71.9 (3.1) 72.5 (2.9) 61.1 (2.9) 61.3 (3.0) 62.1 (2.7)

Avgall 73.7 (4.1) 71.4 (3.1) 72.1 (4.8) 71.9 (3.9) 70.2 (3.3) 69.7 (3.7)

Videos
% Micro Acc % Macro Acc

None Part Temp None Part Temp
Faceapp. 75.3 (5.1) 77.0 (3.4) 80.0 (2.9) 64.0 (3.2) 66.8(3.1) 64.4 (10.3)

Faceshape 68.5 (3.0) 68.1 (3.1) 69.4(2.9) 54.0 (2.9) 53.5 (3.0) 55.5 (2.7)

Avgall 78.3 (4.9) 77.9 (2.5) 80.4 (5.5) 65.6 (6.5) 65.9 (3.9) 64.8 (7.4)

Temporal coherence always improves the quality of the face-based classifiers,
up to 5% in the case of sequences (micro). In the case of macro-accuracy we ob-
serve larger standard deviations, that are due to the effects of the predictions on
the classes with a smaller number of examples. Such classes are less-frequently
predicted, and asking for a strong temporal regularization sometimes further
reduces such frequency. Coherence among parts helps in a less evident manner,
especially when using shapes. Shape is less informative than appearance, re-
sulting in a performance drop of ≈ 10%. The average-based classifier is only in
some cases better that the face-based ones. Constraints are less effective in this
case (even if we get a strong micro accuracy in videos + temporal coherence).
This suggests that mixing the 15 classifiers together is not a promising direc-
tion, mostly because some of them have low performances that can degrade the
average quality of the system.

To gain better insights about the last comment, Table 2 reports the accuracies
for all the part-based classifiers. The mouth area is a very effective input for facial
expression recognition, that can sometimes compete with the full-face. This is
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Table 2. Micro and macro accuracies (std dev. in brackets) at image and video level of
all the part-based classifiers (appearance and shape representation). Results without
coherence constraints (None), with Part-based coherence and Temp-oral coherence
(results where coherence improves the accuracy are in bold).

Images
% Micro Acc % Macro Acc

None Part Temp None Part Temp
Mouthapp. 70.5 (3.5) 68.6 (3.0) 72.8 (2.6) 71.5 (6.7) 70.8 (5.8) 73.3 (4.4)

Left-eyeapp. 42.3 (6.0) 41.4 (6.0) 40.0 (4.2) 41.3 (6.5) 39.1 (4.9) 38.5 (3.9)

Right-eyeapp. 42.0 (5.6) 42.0 (7.3) 40.6 (5.2) 40.8 (5.7) 40.5 (5.7) 38.8 (5.6)

Left-eyebrowapp. 40.5 (6.8) 37.7 (7.3) 38.4 (9.1) 40.1 (6.1) 37.4 (7.5) 37.6 (8.4)

Right-eyebrowapp. 40.1 (2.5) 39.7 (2.4) 40.4 (2.9) 40.1 (3.5) 39.5 (2.8) 40.3 (3.1)

Noseapp. 43.6 (2.9) 44.1 (5.5) 43.4 (4.0) 41.6 (3.4) 42.4 (4.8) 42.0 (3.7)

Mouthshape 64.3 (2.3) 63.8 (3.5) 63.4 (3.2) 64.4 (4.7) 63.4 (4.8) 66.2 (4.9)

Left-eyeshape 35.8 (3.4) 34.5 (3.7) 35.2 (2.6) 33.2 (3.9) 33.0 (3.4) 32.5 (2.3)

Right-eyeshape 40.7 (3.2) 40.6 (2.7) 41.5 (3.0) 36.9 (2.4) 37.2 (2.1) 37.9 (2.0)

Left-eyebrowshape 31.2 (4.4) 31.0 (3.8) 30.1 (3.5) 31.8 (1.8) 31.9 (2.0) 31.7 (3.7)

Right-eyebrowshape 34.3 (4.2) 33.9 (3.7) 34.1 (3.5) 34.3 (5.2) 33.4 (4.5) 33.6 (4.9)

Noseshape 30.8 (3.7) 30.4 (3.2) 30.9 (4.2) 30.6 (5.6) 31.0 (5.0) 31.6 (5.2)

Jawshape 37.4 (3.7) 37.2 (3.7) 37.0 (3.5) 34.1 (4.6) 34.9 (4.3) 33.8 (4.0)

Videos
% Micro Acc % Macro Acc

None Part Temp None Part Temp
Mouthapp. 77.5 (7.7) 72.3 (9.0) 75.7 (6.4) 73.0 (9.5) 66.4 (8.4) 69.9 (8.7)

Left-eyeapp. 49.4 (8.4) 50.6 (4.1) 47.2 (5.9) 42.7 (5.8) 41.3 (2.7) 40.2 (6.3)

Right-eyeapp. 46.8 (2.3) 47.2 (4.9) 47.7 (2.9) 39.8 (1.7) 39.2 (3.0) 38.9 (3.7)

Left-eyebrowapp. 43.0 (9.7) 41.7 (9.2) 42.1 (11.1) 35.2 (7.7) 34.3 (9.1) 34.3 (9.6)

Right-eyebrowapp. 43.4 (4.6) 42.5 (5.5) 43.8 (3.2) 36.5 (6.6) 35.6 (6.8) 35.9 (4.0)

Noseapp. 44.3 (4.9) 47.7 (5.1) 47.2 (2.8) 35.4 (4.3) 38.8 (4.3) 38.9 (3.1)

Mouthshape 71.9 (2.5) 74.0 (3.7) 70.6 (2.8) 64.3 (4.2) 66.1 (6.0) 67.3 (5.0)

Left-eyeshape 45.1 (5.8) 44.7 (8.5) 45.1 (4.5) 36.6 (7.1) 37.2 (6.1) 38.3 (4.1)

Right-eyeshape 51.9 (2.2) 52.8 (3.7) 56.2 (3.7) 39.4 (3.1) 41.5 (3.3) 44.9 (3.9)

Left-eyebrowshape 36.2 (6.7) 34.5 (3.4) 34.9 (3.5) 28.7 (5.1) 28.7 (3.0) 29.3 (4.1)

Right-eyebrowshape 40.4 (5.0) 40.0 (5.9) 41.3 (6.7) 33.9 (5.6) 33.1 (5.0) 33.8 (7.0)

Noseshape 37.5 (5.0) 35.7 (3.7) 34.0 (1.4) 31.4 (5.4) 28.5 (5.6) 31.8(4.4)

Jawshape 40.9 (2.5) 40.9 (2.1) 40.0 (3.7) 30.5 (2.5) 31.3 (2.7) 29.8 (2.7)

more evident in the case of videos, when comparing shape-based representations
of face and mouth. As expected, the other parts are worse than the full-face,
since they are just local views. The addition of both coherences sparsely helps in
improving the local classifiers, with a preference toward temporal coherence. The
worst results are obtained by eyebrows and nose in shape-based classification.
Interestingly, the eye-based predictors score the most effective results after face
and mouth in video sequences. While their appearance representation is altered
when eyes get closed, their shape representation is more stable. This analysis
suggests that an accurate choice of a sub-portion of the face parts could signifi-
cantly help the part-based coherence constraint (since some of the parts are not
very informative).

We deepened the analysis on the temporal-constrained classifiers in the case
of making predictions in video sequences. Since the number of sequences is small,
we selected the optimal λt using image-level predictions on the validation data
(as already stated), leading to λt = 10−8 and λt = 10−2 in the case of micro
and macro accuracy, respectively. Figure 3 reports the performances on videos
with different values of λt (appearance only). We can see that the distributions
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of the performances are multimodal, and if we focus on the macro accuracy we
observe that we could have obtained much better results with different values of
λt. This suggests that the validation procedure has room for being improved in
the case of video data.
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Fig. 3. Micro and macro accuracies in the case of video data, full-face-based classifier
(appearance), for different values of λt. The black-bordered bars are the results we
reported in Table 1.

In Table 3 we show the results on single emotion classes for face and mouth
appearance-based classification, focussing on the case where no-coherence is in-
troduced and the ones with a selection of the best λc > 0 and λt > 0 from the
previously described experiments. “Fear” and “sadness” classes are difficult to
classify because they do not involve strong facial movements, while “happiness”
and “surprise” are easy to recognize. The mouth-based model has difficulties
in the “neutral” class, since some emotions do not evidently alter the mouth
area (the face model does not show this issue). In the “sadness” class, where the
face-based model scores low accuracies, the mouth-based classifier is much more
performant. This suggests that the face-related network has difficulties in de-
veloping a generalizable representation for the whole face to identify “sadness”.
Larger training data could help in this case.

Temporal coherence shows better performance in “neutral”, “anger” (image-
level only), and “disgust” emotions. It is also helpful in the “happiness” class,
where the face model performs a close-to-flawless classification. Introducing co-
herence among parts improves the recognition of “disgust”, “fear” (face only),
“happiness” (image-level only), and it slightly improves the accuracy of “sur-
prise” for the face-based predictor.

In addiction to these results, we report that eye-based recognition reaches
very good results for the “surprise” class; the accuracy of right-eye classifier with
temporal coherence is 88.2%. This is due to the fact that the eyes in surprise
expressions are wide open, so easily recognizable. Differently, the “neutral” class
is not recognizable at all from the eyebrows. Nose-based classification (appear-
ance) reaches an accuracy of 79.4% with temporal coherence in the “disgust”
class, where the nose is wrinkled. As a final comment, we have also tried to
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Table 3. Accuracies (std dev. in brackets) on each class of full-face and mouth classi-
fiers (appearance). Results without coherence constraints, with Part-based coherence
and Temporal coherence (results where coherence improves the accuracy are in bold).

Images
Anger Disgust Fear Happiness Sadness Surprise Neutral

faceapp. None 73.7 (8.8) 69.2 (12.4) 56.1 (28.9) 92.5 (9.8) 29.5 (27.7) 96.1 (1.3) 81.1 (14.9)

faceapp. Part 68.0 (28.0) 78.2 (10.0) 75.2 (11.8) 98.2 (2.9) 24.3 (21.0) 97.4 (0.7) 68.6 (9.3)

faceapp. Temp 77.1 (18.6) 81.8 (14.2) 50.0 (27.7) 97.5 (4.9) 26.2 (21.5) 95.5 (2.7) 81.8 (15.1)

mouthapp. None 66.4 (18.5) 69.6 (19.1) 59.4 (9.5) 92.7 (7.0) 75.6 (16.0) 96.6 (2.5) 40.2 (11.8)

mouthapp. Part 66.4 (31.8) 81.8 (14.5) 65.1 (13.3) 95.0 (3.8) 59.6 (27.5) 95.5 (3.1) 32.2 (12.2)

mouthapp. Temp 67.8 (19.8) 80.4 (12.3) 58.8 (9.7) 94.8 (5.9) 72.0 (20.8) 95.2 (3.4) 44.1 (6.8)

Videos
Anger Disgust Fear Happiness Sadness Surprise Neutral

faceapp. None 77.1 (7.0) 62.2 (13.3) 33.3 (21.1) 90.9 (14.1) 25.0 (27.4) 95.4 (6.2) –
faceapp. Part 68.6 (31.8) 71.1 (16.6) 53.3 (16.3) 90.9 (11.5) 20.0 (18.7) 96.9 (3.8) –
faceapp. Temp 77.1 (26.5) 73.3 (11.3) 40.0 (13.3) 98.2 (3.6) 25.0 (15.8) 96.9 (3.8) –
mouthapp. None 77.1 (17.1) 73.3 (16.6) 46.7 (26.7) 78.2 (14.8) 75.0 (27.4) 87.7 (11.5) –
mouthapp. Part 62.9 (34.5) 77.8 (14.1) 46.7 (16.3) 74.6 (15.6) 55.0 (36.7) 81.5 (9.2) –
mouthapp. Temp 74.3 (21.0) 77.8 (14.1) 40.0 (24.9) 74.6 (14.6) 65.0 (33.9) 87.7 (10.4) –

perform some preliminary experiments involving both temporal and part-based
coherences activated, and while we obtained good results on average (showing
improvements with respect to the unconstrained case), they were not better than
the “best” ones we obtained by activating only one of the two coherences. How-
ever, we will further investigate this point with a more detailed cross-validation
and larger data collections.

6 Conclusions and Future Work

We presented a Convolutional Neural Network (CNN)-based approach to Facial
Expression Recognition. Our model is based on a pool of CNNs that process dis-
tinct face parts, represented using visual (appearance) or shape-only features. In
the latter case, we treated shape as a generic input of the learnable model, with-
out manually engineering its representation. We studied the importance of the
different representations on the task at hand, showing an analysis that involved
all the considered face parts, and reporting results of experiments on a popular
dataset composed of six basic emotions, plus the neutral case. We proposed the
introduction of coherence constraints among the face-part predictors and be-
tween predictions on consecutive time instants, casting the learning problem in
the Semi-Supervised setting and using video data. Our results have shown that
using unsupervised training data paired with coherence constraints improves the
quality of the recognizer, especially in the case of temporal coherence. Our fu-
ture work will include a more detailed study on the face-part coherence, selecting
only on the most promising face parts, according to the results of this study. We
will also consider introducing coherence between shape and appearance-based
predictors, and the use of larger collections of data, to grasp the importance of
large-scale unsupervised data obtained from video conferences.
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