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Abstract. Due to the shortage of Synthetic Aperture Sonar (SAS) im-
age datasets, the development of many underwater tasks is hindered.
To tackle this problem, coupling optical rendering and image-to-image
translation is a novel and feasible way. However, because of the big gap
between simulated optical images and real SAS images, the performances
of existing works are not desired and have plenty of room for improve-
ment. In this letter, we introduce a Self-Perceptual Generative Adver-
sarial Network (SPerGAN) which can controllably generate SAS images
with high fidelity. It utilizes a kind of self-perceptual loss to generate
high-quality and diverse SAS images. Moreover, we introduce a novel
evaluation method of SAS image that accords closely with human cog-
nition. To evaluate the performance of our method, we first compare it
against recent outstanding image-to-image translation methods on quali-
tative and quantitative aspects. Then we make ablation studies to explore
the effects of different cycle consistency loss and hyper-parameter. The
results show that our method surpasses all existing methods and is able
to generate diverse and realistic SAS images.

Keywords: SAS Image Generation · Generative Adversarial Network ·

Image-to-Image Translation.

1 Introduction

In many underwater tasks, such as Underwater Object Detection [1, 15, 28] and
Seafloor Classification [14], there is an urgent demand for high-quality SAS image
datasets. But unfortunately, collecting SAS image datasets cost so much time
and manpower that few existing relevant datasets are available, which limits
the development of the aforementioned underwater technology to a great extent.
Therefore, it is necessary to find an efficient approach to acquire high-quality
SAS images.

Usually, there are two paradigms for sonar image generation. One of them is
generating sonar images by building an acoustic-imaging model which is similar
to the optical-imaging model in computer graphics. Most of the existing relative
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works [6, 16, 20, 26] are aimed to simulate forward-looking sonar images and
they are very time-consuming and have poor performance. Another paradigm is
coupling guide image synthesis and image-to-image translation to generate sonar
images. This is a two-stage paradigm that generates guide images firstly, such as
semantic image [12] or optical rendering image [19, 23, 25], then translates it to
realistic sonar image. Thanks to the power of Generative Adversarial Networks
(GANs) [5], it is able to generate far more realistic sonar images than the first
paradigm. However, we find that these existing methods still cannot generate
satisfying SAS images and control the content properly because of the limitation
of their models in the second stage. For example, the results generated by Cycle-
Consistent Adversarial Networks (CycleGAN) [30] are shown in Fig. 3. We can
find that all orientations of shadow are the same. To acquire approving SAS
images, a more powerful and robust image-to-image translation model should be
applied.

Our image-to-image translation network is motivated by self-supervised learn-
ing and deep perceptual metric [13]. We argue that the L1 norm in cycle consis-
tency loss is a strong constraint that minimizes the discrepancy between origin
images and reconstruction images at pixel level. This strong constraint makes it
difficult for the generator to learn about diverse representations so that generator
can not control the content of generated SAS images according to guide images.
Therefore, we can relax it to improve the performance of the generator. Recently,
deep perceptual metric have been proved that it possesses superior performance
than conventional low-level metrics [29], and it is not as strict as L1/L2 norm
so we can leverage it to help the model relax. Usually, deep perceptual metric is
based on a pre-trained network like VGG16 [24] which is trained in supervised
training. However, most SAS image datasets are small and lack labels so it is
hard to train an effective network. In recent years, self-supervised learning has
been proven that it has great potential to learn the representation of data. In our
work, we find that image-to-image translation itself can be seen as a pretext and
the generator can learn rich representations in the training process. Therefore,
we consider calculating deep perceptual metric by using the generator during
the training. Based on that, we propose a new network called Self-Perceptual
Generative Adversarial Network (SPerGAN). We demonstrate that SPerGAN
surpasses the state-of-the-art methods in the SAS image generation task.

On the other hand, most SAS image generation works utilize Frechet Incep-
tion Distance score (FID score) [9] to evaluate the performance of the model.
However, using this index for evaluation may be biased as big gap between a
natural image and a SAS image. Therefore, we propose a novel evaluation in-
dex called Frechet SwAV Distance score (FSD score) where replacing Inception
V3 [27] with ResNet [8] trained by using SwAV [2] on real SAS image datasets.
As for SAS images, it is in line with human judgment.

To summarize, the main contributions of our work can be listed as follows:

1. We propose a novel image-to-image translation network called SPerGAN for
SAS image generation.
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2. We propose a novel index called FSD score for evaluating the performance
of the model in the SAS image generation task.

3. Our experiments show that the proposed index is more suitable than the
common index like FID for evaluation and the SPerGAN surpasses the state-
of-the-art methods in the SAS image generation task.

2 Related Work

2.1 Two-stage Paradigm for SAS Image Generation

To the best of our knowledge, the earliest work using the two-stage paradigm to
generate realistic SAS images is Chen et al. [3]. They try to utilize Conditional
Generative Adversarial Nets (cGAN) [22] and style transfer based method [4] to
generate photo-realistic sonar images respectively. Recently, Jiang et al. [12]
utilize Photoshop-like tools to label segmentation map firstly, then combine
Pix2PixHD architecture with SPADE block to translate segmentation map to
realistic SAS image. Reed et al. [23] firstly combine POV-Ray and preprocessing
to generate simulated SAS images and then use Wasserstein-GAN with gradient
penalty (WGAN-GP) [7] to improve SAS realism. Our work is similar to [23],
but there are substantial differences. Firstly, in the first stage, we simulate very
simple optical images which only contain object and shadow information, instead
of considering the texture of the object and seabed like [23]. Secondly, we utilize
a more powerful image-to-image translation network for generating realistic SAS
images.

2.2 Image-to-Image Translation

Recently, a parametric approach using CNNs architecture is proposed by Gatys
et al. [4]. This method translates image pair each time requiring training once
again. In 2017, Isola et al. [11] propose Pix2Pix networks, which utilize cGAN
to achieve paired image-to-image translation. Furthermore, they invent a frame-
work named CycleGAN [30] which can apply to unpaired image-to-image trans-
lation. This elegant framework consists of two pairs of GANs, each pair is re-
sponsible for one direction of image translation, and it cleverly takes advantage
of cycle consistency loss as a content constraint to guarantee the mapping from
input to output. In our work, we follow the basic architecture of CycleGAN, but
we discard L1 norm cycle consistency loss and use a self-perceptual metric to
achieve better results.

2.3 Perceptual Metric

As an effective way to evaluate the similarity between two images, perceptual
metrics are widely used in image reconstruction, image-to-image translation, and
image synthesis. In early works, researchers mainly utilize hand-crafted metrics
for evaluating the quality of images, such as PSNR, SSIM, MS-SSIM and FSIM.
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In 2016, Johnson et al. [13] propose a kind of perceptual loss that calculate the
distance between two images’ feature map extracted by VGG16, and they demon-
strate that it has remarkable performance in style transfer and super-resolution.
After that, Zhang et al. [29] make a comparative survey on the performance of
classic and deep perceptual metrics, they find that deep features outperform all
classic metrics by large margins. Recently, many works integrate perceptual met-
rics into GANs. In [10], SSIM and perceptual loss by using VGG19 are applied
to cycle consistency loss for improving the quality of generated images. Differ-
entiating from all the above works, we do not adopt the ImageNet pre-trained
model to calculate the perceptual loss for cycle consistency, but creatively utilize
inherent generators of CycleGAN to calculate it.

3 Approach

Our goal is to generate realistic SAS images in a controllable way by leveraging
computer graphics and deep learning. We follow the two-stage paradigm, our
framework consists of two components: (1) an optical renderer that is able to
generate guide images according to scene settings, (2) a powerful and robust
image-to-image translation network that is responsible to translate guide image
to realistic SAS image. Note that we simulate very simple guide images which
only contain object and shadow information in the first stage, and our emphasis
is on the second stage.

3.1 Optical Rendering

To acquire guide images, we utilize Blender, a free and open source software
with ray-tracing-based optical renderer. By using it, users are able to build
scenes conveniently in accordance with specified settings and directly acquire
high-quality optical images through the built-in optical renderer.

Parallel Light Source
Camera

Plane

Object

Fig. 1. A brief sketch of scene setting. The plane is infinite and the parallel light source
consists of many dense point light sources in line. We use this way to model the scene
and simulate guide images.
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In our work, we build a scene containing four elements: (1) a parallel light
source, (2) a camera, (3) a sphere object and (4) an infinite plane. For simulating
alike shadow of objects in real SAS image, we use a simple setting: placing the
camera directly above the object and using a parallel light source to produce
SAS-like shadow. The parallel light source consists of many dense point light
sources in line. By adjusting the relative location between parallel light source
and object, we can simulate different shadow effects related to the positional
relationship between sonar and object. A brief sketch of our modeling is shown
in Fig. 1 and generated examples are shown in the first column of Fig. 3. It
should be noted that our optical image simulation method is different from [23].
In [23], they have considered textures of objects and seabed in this part which
is much more complex and time-consuming than ours.

3.2 Self-Perceptual Generative Adversarial Network

CycleGAN has achieved astonishing performance in image-to-image translation.
Given two domain datasets X and Y , training samples can be denoted as {xi}Ni=1

where xi ∈ X and {yj}Mj=1 where yj ∈ Y . We denote the distribution of x and y
as px and py respectively. G and F are a pair of generators, G is responsible for
translation X → Y and F is responsible for translation Y → X. Moveover, there
are two adversarial discriminators DX and DY , where DX distinguish between x
and F (y), DY distinguish between y and G(x). The full objective of CycleGAN
can be expressed as:

L (G,F,DX , DY ) = LGAN (G,DY , X, Y ) + LGAN (F,DX , Y,X)

+ λ1Lcyc(G,F ) + λ2Lidentity(G,F )
(1)

where LGAN (G,DY , X, Y ) and LGAN (F,DX , Y,X) are least-squares adversar-
ial loss [21], and Lidentity(G,F ) is identity mapping loss which is beneficial to
color preservation of input image. Lcyc(G,F ) is cycle consistency loss which
keeps the reconstruction image close to the input image, it can be expressed as:

Lcyc(G,F ) = Ex∼px
[∥F (G(x))− x∥1] + Ey∼py

[∥G(F (y))− y∥1] (2)

Although CycleGAN is able to generate promising results, it seems can not
change the content of generated image according to the guide image. We argue
that L1 norm in original cycle consistency loss may be too strict and it limits the
diversity of generated images. Consequently, we get rid of L1 norm and propose
a novel self-perceptual loss to ensure the diversity of generated images.

As illustrated in Fig. 2, we take the outputs of the last residual block before
the upsampling layer as feature maps, and we denote the feature extractors as ϕ1

and ϕ2 for G and F respectively. Moreover, we denote G(x) and F (y) as ŷ and x̂
respectively, denote F (G(x)) and G(F (y)) as x′ and y′ respectively. We utilize ϕ1

and ϕ2 to extract the feature maps of the input image and reconstruction image,
then calculate the L1 distance between two feature maps as the self-perceptual
loss. The self-perceptual loss can be expressed as:

Lsp(G,F ) = Ex∼px [∥ϕ2(x
′)− ϕ2(x)∥1] + Ey∼py [∥ϕ1(y

′)− ϕ1(y)∥1] (3)
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Fig. 2. The architecture of SPerGAN. We denote the part before the first upsampling
layer of generator F as ϕ2 and the similar part of generator G as ϕ1. As for mapping
x → ŷ → x′, we utilize feature extractor ϕ2 to calculate the feature maps of input x
and reconstruction x′, and then calculate the L1 distance between two feature maps as
self-perceptual loss for this mapping. As for another mapping y → x̂ → y′, we utilize
extractor ϕ1 to calculate the self-perceptual loss in a similar way.

Note that G and F used in self-perceptual loss are identical with the G and F
used in the training process, which means our method does not need to train a
pair of generators in advance. The full objective of SPerGAN can be expressed
as:

L (G,F,DX , DY ) = LGAN (G,DY , X, Y ) + LGAN (F,DX , Y,X)

+ λ1Lsp(G,F ) + λ2Lidentity(G,F )
(4)

where λ1 in our most experiments is set 10, λ2 use the default value 0.5. In
follow-up experiments, we demonstrate that our method can not only tackle the
problem of CycleGAN but also improve the quality of generated SAS images.

3.3 Evaluation for SAS Image Generation

Until now, there is no reliable evaluation method for the SAS image generation
task. In recent SAS image generation works [23], [12], Frechet Inception Distance
score (FID score) [9] is widely used due to its simplicity and robustness. However,
there are two problems if we use FID to evaluate models directly: (1) FID utilizes
ImageNet pre-trained model as feature extractor, but in fact, there is a big gap
between optical image and SAS image, whether the features extracted from SAS
images can effectively represent the statistical property of SAS images? (2) If
we train the extractor from scratch on the SAS dataset which is usually very
small, it easily leads to overfitting and the pre-trained extractor is unable to
output representative features. Due to the aforementioned problems, we propose
a novel evaluation method named Frechet SwAV Distance score (FSD score),
it is suitable to measure the similarity between two SAS images by calculating
the statistical property of their feature vectors. Different from FID, it utilizes a
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ResNet pre-trained on the SAS image dataset by using a self-supervised learning
method named SwAV to calculate the feature maps of SAS images.

For our FSD, we denote the feature extraction process as Φ, as for two SAS
images x and y, the evaluation metric can be expressed as:

FSD(x, y) = ∥µx − µy∥+ Tr(Σx +Σy − 2
√
ΣxΣy) (5)

where µx and µy are expectation of feature maps Φ(x) and Φ(y) respectively, Σx

and Σy are covariance of Φ(x) and Φ(y) respectively, Tr is the trace of matrix.

4 Experiments

In this section, we first evaluate the qualitative and quantitative performance
of our method by comparing it with other advanced image-to-image translation
methods. Then we make some ablation studies to explore the effects of different
cycle consistency loss and self-perceptual coefficient λ1.

4.1 Settings

Datasets We build and adopt an Optical Simulated Image to SAS image dataset
(OSim-SAS) in our experiments. The optical image part consists of 32 images
(256× 256) simulated by using Blender, including sphere objects with different
positions and orientations. The SAS image part consists of 8 images (212× 212)
acquired in the lake trial, all images contain sphere objects.

Baseline In our experiments, we compare our SPerGAN against five recent
works in total. Firstly, we choose three unpaired image-to-image translation
methods including CycleGAN [30], DRIT [17] and DRIT++ [18]. Secondly, we
add a typical neural style transfer method [4] to the comparison experiment.
Thirdly, we find that [23] has achieved promising results for SAS image gen-
eration by using WGAN-GP [7] based network, so it also compares with our
method.

Training Details For all experiments, we utilize Adam solver with a batch size
of 1, β1 = 0.5 and β2 = 0.999. The initial learning rate is set to 0.0002 and all
networks are trained from scratch. We keep the learning rate unchanged for the
first 600 epochs and decay it to zero linearly over the next 400 epochs. Besides,
we apply 9 residual blocks architecture used in CycleGAN as our generator and
PatchGANs as our discriminator.

4.2 Qualitative Results

As illustrated in Fig. 3, we observe that Gatys, Reed, DRIT and DRIT++ are
unable to generate satisfying SAS images. Gatys’ method only learns coarse
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background texture but not object characteristics, the results are not realistic.
Reed’s method can not learn any useful information. DRIT and DRIT++ have
learned background texture and object characteristics to some extent, but they
lead to offset of the object position that can be seen clearly in the fourth row of
DRIT and DRIT++ in Fig. 3. CycleGAN has the best performance in baselines,
but it does not learn the relation between the object and shadow so that it is
unable to change the orientation of shadow according to the guide image. By
contrast, our proposed method has superior learning ability and it can generate
realistic SAS images with true relation of object and shadow.

Fig. 3. Qualitative results of different methods. From left to right: input, neural style
transfer network, WGAN-GP based network, DRIT, DRIT++, CycleGAN, our method
trained on OSim-SAS dataset, and real SAS image (ground truth).

4.3 Quantitative Results

To demonstrate the reasonability of FSD, we firstly compare the scores of five
baselines in different evaluation methods. The result is illustrated in Table 1.
The sole difference of the three evaluation methods in Table 1 is using different
extractors. In particular, SwAV in the table means that we utilize the extractor
model trained on ImageNet by using SwAV. The lower the score, the better
performance of the model.

Table 1. Quantitative comparison of different image-to-image translation methods in
different evaluation methods.

Gatys Reed DRIT DRIT++ CycleGAN Ours

FID 0.570 0.237 0.154 0.223 0.040 0.200

SwAV 2.020 27.22 34.57 34.31 17.98 26.48

FSD 6.962 928.0 7.174 5.322 5.169 3.302
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Combining Table 1 with Fig. 3, we observe that FID gives a lower score
to Reed than Gatys which means Reed’s method has better performance than
Gatys’. However, it is obviously wrong. SwAV thinks that the SAS image gener-
ated by Gatys has the best quality with a score of 2.020 and Reed is superior to
DRIT/DRIT++, these are also not in line with human judgment. By contrast,
our proposed evaluation method FSD has more reasonable results. Moreover, we
find that score of Reed is much higher than others, which means FSD has better
discrimination ability. In this way, our SPerGAN gets the lowest score (3.302)
which demonstrates that it is able to generate more realistic SAS images.

4.4 Ablation Studys

Cycle Consistency Loss In this part, we only change cycle consistency loss.
As shown in Fig. 4, utilizing SSIM and MS-SSIM as cycle consistency loss can not
learn basic textures of SAS image. L1 norm and perceptual loss based on VGG16
can not adjust the shadow orientation. Besides, the latter leads to a false shadow
shape. By contrast, our method is a better choice. Table 2 illustrates quantitative
results of different cycle consistency loss and our method gets the lowest score
(5.749).

Fig. 4. Qualitative results of ablation study of cycle consistency loss.

Fig. 5. Qualitative results of ablation study of self-perceptual coefficient.
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Table 2. Quantitative results of ablation study of cycle consistency loss.

L1 SSIM MS-SSIM VGG Ours

FSD 7.108 11.51 92.55 6.500 5.749

Self-Perceptual Coefficient In this part, we only change the self-perceptual
coefficient λ1 in equation 4. The qualitative and quantitative results are shown
in Fig. 5 and Table 3 respectively. It shows that the λ1 should keep in a proper
range. Too small or too large both lead to degradation of the model performance.
Small λ1 will generate artifacts around the object which can be seen in the
column of λ1 = 0.1 and large λ1 makes it is hard for the model to learn the
useful representations of SAS image.

Table 3. Quantitative results of ablation study of self-perceptual coefficient.

0.1 1 10 100 1000

FSD 10.77 6.231 6.833 8.482 84.42

5 Conclusions

We utilize a two-stage paradigm to generate realistic SAS images. The first
stage is using optical rendering to acquire guide images, and in the second stage,
we translate them to realistic SAS images. As for the second stage, we pro-
pose a novel image-to-image translation network——SPerGAN. It can adapt to
changes in the guide image and generates diverse and high-quality SAS images.
To evaluate the performance of the network, we propose a novel evaluation index
called Frechet SwAV Distance score (FSD score) which is in line with human
judgment. In all experiments, our method performs better results than recent
popular methods.

Acknowledgments. This work was supported by Institute of Acoustics, Chi-
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