
EasyChair Preprint
№ 10649

Decision Diagrams for Symbolic Verification of
Quantum Circuits

Xin Hong, Wei-Jia Huang, Wei-Chen Chien, Yuan Feng,
Min-Hsiu Hsieh, Sanjiang Li, Chia-Shun Yeh and Mingsheng Ying

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

August 1, 2023

Decision Diagrams for Symbolic Verification of
Quantum Circuits

1st Xin Hong
Centre for Quantum Software and Information

University of Technology Sydney
Sydney, Australia

xin.hong@student.uts.edu.au

2nd Wei-Jia Huang
Hon Hai Quantum Computing Research Center

Taipei, Taiwan
wei-jia.huang@foxconn.com

3rd Wei-Chen Chien
MediaTek, Inc.

Hsinchu, Taiwan
owen.chien@mediatek.com

4th Yuan Feng
Centre for Quantum Software and Information

University of Technology Sydney
Sydney, Australia

yuan.feng@uts.edu.au

5th Min-Hsiu Hsieh
Hon Hai Quantum Computing Research Center

Taipei, Taiwan
minhsiuh@gmail.com

6th Sanjiang Li
Centre for Quantum Software and Information

University of Technology Sydney
Sydney, Australia

sanjiang.li@uts.edu.au

7th Chia-Shun Yeh
MediaTek, Inc.

Hsinchu, Taiwan
jason.yeh@mediatek.com

8th Mingsheng Ying
Institute of Software

Chinese Academy of Sciences
Beijing, China

yingms@ios.ac.cn

Abstract—With the rapid development of quantum computing,
automatic verification of quantum circuits becomes more and
more important. While several decision diagrams (DDs) have
been introduced in quantum circuit simulation and verification,
none of them supports symbolic computation. Algorithmic ma-
nipulations of symbolic objects, however, have been identified
as crucial, if not indispensable, for several verification tasks.
This paper proposes the first decision-diagram approach for
operating symbolic objects and verifying quantum circuits with
symbolic terms. As a notable example, our symbolic tensor
decision diagrams (symbolic TDD) could verify the functionality
of the 160-qubit quantum Fourier transform circuit within
three minutes. Moreover, as demonstrated on Bernstein-Vazirani
algorithm, Grover’s algorithm, and the bit-flip error correction
code, the symbolic TDD enables efficient verification of quantum
circuits with user-supplied oracles and/or classical controls.

Index Terms—Decision Diagram, Symbolic Verification, Quan-
tum Circuits

I. INTRODUCTION

In the past several years, quantum hardware has expe-
rienced rapid development. In particular, IBM has recently
announced their 127-qubit quantum processor “Eagle”, 433-
qubit “Osprey” [1] as well as the planned 1121-qubit “Condor”
in their aggressive roadmap [2]. As the scale of quantum
devices becomes larger and larger, the automatic verification
of quantum circuits becomes more and more important.

Decision diagram-based methods are perhaps the most suc-
cessful verification methods for quantum circuits. Successful
examples include, among others, the quantum information de-
cision diagram (QuIDD) [3], the quantum multi-value decision

diagram (QMDD) [4], and tensor decision diagram (TDD)
[5]. A recent work [6] even used binary decision diagrams
(BDD) in the verification of quantum circuits. All these
decision diagrams can be used to represent quantum states,
simulate quantum circuits, and represent the functionality of
quantum circuits. However, many quantum circuits still have
no compact decision diagram representations.

Take the well-known quantum Fourier transform (QFT)
as an example [7], [8]. QFT can be classically simulated
in polynomial time [9] and, for any given input state in
the computational basis, the size of its decision diagram
representation is linear in the number of qubits. However, it
requires exponentially more memory resources to fulfil the
complete functionality. Indeed, for an n-qubit QFT, its QuIDD,
TDD, or QMDD representation all have O(2n) nodes [5], [10].
This is because they have very different output amplitudes
on 2n different computational basis states. For example, if
n = 27, it needs 8 GB of memory to store such a decision
diagram.

It is worth noting that the decision diagram representations
of different input basis states have similar patterns. Instead of
simulating on all 2n computational basis states, we propose
to interpret an arbitrary input basis state on each qubit as a
symbol and simulate the circuit on this symbolised basis state.
Fortunately, for QFT, the simulation on this symbolised basis
state consumes only polynomial resources. This implies that
we may verify the functionality of a quantum circuit with
a single (symbolised) simulation. The output state for such a
symbolised input state can be elegantly represented by a single

TDD-like diagram whose edge weights are symbolic objects
instead of complex values.

Perhaps more importantly, symbolic objects appear naturally
as classical control signals in many quantum algorithms,
such as Grover’s algorithm [11] and the Bernstein-Vazirani
algorithm (BV) [12]. To completely verify the correctness of
these algorithms, all possible classical control signals need to
be considered. One way of achieving this is to regard classical
control signals as symbolic objects and then check the circuit
on the symbolic level.

This work formally presents the symbolic tensor decision
diagrams (or simply symTDDs) for symbolically executing
and representing a quantum circuit, establishes the canonicity,
and then demonstrates the efficiency of symTDDs in the
simulation and verification of quantum circuits such as QFT,
BV, Grover’s algorithm, and the bit-flip error correction code
circuit. In this paper, to fully utilise the efficiency of TDD,
we regard symbolic objects as tensors and represent them as
TDDs.

Extending TDDs with symbolic (tensor) weights makes
it possible to leverage the power of symbolic logic in a
systematic way. On the one hand, Boolean algebra laws such
as x · x = x, x · x′ = 0, and x + x′ = 1 are used in the
normalisation and reduction of symTDDs so that canonicity
is guaranteed. On the other hand, the generated symTDDs
can be used in extracting distributions of the output states by
symbolic computations with these symbolic weights. It is also
possible to employ software tools such as SMT solvers like
Z3 in the generation of symTDD to check, for example, if
some given output state or subspace is reachable.
Related works. Symbolic verification of quantum circuits has
also been explored in [13], where a symbolic approach for
representing quantum circuits with more general matrix-valued
Boolean expressions was proposed. Their approach provides
a way to verify quantum circuits with existing techniques and
tools developed for the verification of classical logic circuits.
In contrast, our work is based on TDDs, which combine
the merits of both tensor networks and decision diagrams
for representing quantum circuits. In [14], the author also
discussed the verification of quantum circuits in a symbolic
way. Potentially, it could efficiently represent a large class of
quantum circuits, while sacrificing uniqueness (i.e., canonic-
ity). Note that the canonicity of symTDD is guaranteed (cf.
Theorem 2).

Classical simulation of QFT circuit as an important task has
been considered in works such as [9], [15], [16]. These works
simulate either on a subset of all possible input states [16] or
in an approximate way [9], [15]. Our scheme, in contrast, can
reveal information of the circuit for all computational basis
states.

Other verification methods such as equivalence checking
and model checking have been considered in [17], [18],
[19], [20], etc. However, none of them considers executing
a quantum circuit with a symbolic input state and verifying
a quantum circuit using a decision diagram with symbolic
weights.

|s0⟩ H (|0⟩+ e2πı0.s0s1s2 |1⟩)/
√
2

|s1⟩ R2 H (|0⟩+ e2πı0.s1s2 |1⟩)/
√
2

|s2⟩ R3 R2 H (|0⟩+ e2πı0.s2 |1⟩)/
√
2

Fig. 1. The circuit for 3-qubit quantum Fourier transform.

II. BACKGROUND

Quantum Computing. The most fundamental concept in quan-
tum computing is qubit, the counterpart of the classical bit.
While a classical bit can be either 0 or 1, a qubit can be in a
superposition of two basis states. Using the Dirac notation,
a qubit state can be represented as |ψ⟩ = a |0⟩ + b |1⟩,
where a, b are complex numbers with |a|2 + |b|2 = 1. It is
often represented by the vector |ψ⟩ = [a, b]T . In general,
an n-qubit state can be represented by a 2n-dim vector
|ψ⟩ = [α0, · · · , α2n−1]

T .
The evolution of quantum states is according to unitary

operators, which are also called quantum (logic) gates. The
quantum gates used in our paper mainly include the Hadamard
gate, the Rk gates, and the Controlled-X gate (aka CNOT or
CX gate) defined as follows:

H = 1√
2

[
1 1
1 −1

]
Rk =

[1 0

0 e2πı/2k

]
CX =

[
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

]
The reader is referred to, e.g., [8] for other standard gates

used in this paper. Mathematically, a quantum gate on n qubits
can be represented as a 2n × 2n unitary matrix.

A quantum circuit is a sequence of quantum gates. For
example, Fig. 1 depicts a quantum circuit of the QFT on
three qubits. Given a computational basis input |s0⟩ |s1⟩ |s2⟩,
the expected output is 1

2
√
2
(|0⟩ + e2πı0.s0s1s2 |1⟩)(|0⟩ +

e2πı0.s1s2 |1⟩)(|0⟩ + e2πı0.s2 |1⟩). Note that we use ı to rep-
resent the imaginary unit.

Tensor Decision Diagram (TDD). Tensor network methods
play a fundamental role in machine learning and quantum
physics. By combining the merits of both tensor networks and
decision diagram, TDDs [5] provide a compact and canonical
way to represent quantum circuits, which are a special class of
tensor networks. TDDs have also been applied in equivalence
checking of quantum circuits [21].

A rank n complex-valued tensor is a map
ϕ(q1 . . . qn) : {0, 1}n → C, where I = {q1, · · · , qn} is
the set of indices of the tensor and ϕ(a1, . . . , an) its value
for the evaluation q1 = a1, · · · , qn = an. In the following,
we also denote it as ϕ(q) for simplicity. The classical
Boole-Shannon expansion [22] also extends to tensors:
ϕ = q′k · ϕ|qk=0 + qk · ϕ|qk=1, where ϕ|qk=ak

is a rank
n − 1 tensor with indices {q1, · · · , qk−1, qk+1, · · · , qn} and
ϕ|qk=ak

(a1, · · · , ak−1, ak+1, · · · , an) = ϕ(a1, · · · , an), and
q′k represents the complement of qk. Obviously, an n-qubit
quantum state can be seen as a rank n tensor, and an
n-qubit quantum gate can be seen as a rank 2n tensor. When

1

1

1 −1

1√
2

qi

1

qo

Fig. 2. The canonical TDD of the H gate w.r.t. the index order qi ≺ qo,
where qi and qo are two internal nodes and we have a unique terminal node.

associating to quantum states, qk normally represents the
index of the k-th qubit and we use qik and qok to represent
the indices of the input and output of a quantum gate
corresponding to the k-th qubit.

There are mainly two tensor operations: addition and con-
traction. Addition is defined for two tensors ϕ, ψ with the same
index set, and (ϕ+ψ)(a) = ϕ(a)+ψ(a) for any assignments
a of the indices. Tensor contraction can be defined for two
tensors with different index sets. Let γ(q, r) and ξ(r, s) be
two tensors of which the indices share a common part r. Their
contraction is the sum of product over every assignment c of
indices in r. The new tensor ϕ(q, s) with assignments a and
b hence becomes

ϕ(a,b) =
∑

c∈{0,1}r

γ(a, c) · ξ(c,b). (1)

In this paper, we will also use the Hadamard product ⊙ of
two tensors, which is defined for two tensors with the same
indices and (ϕ ⊙ ψ)(a) = ϕ(a) · ψ(a). All complex-valued
tensors with the same index set form a commutative ring with
the two operations + and ⊙.

A TDD over an index set I is a directed acyclic graph
T = (V,E, idx, val, w), where the node set V consists of non-
terminal nodes in VN and terminal ones in VT and each non-
terminal node v has two child nodes low(v) and high(v) (also
called the 0- and 1-successors of v); the associated functions
are idx : VN → I , val : VT → C, and w : E → C which
are respectively assigned node index, terminal node value, and
edge weight [5]. For any internal node v, we also call the edge
from v to low(v) (resp. high(v)) the low-edge or 0-edge (resp.
the high-edge or 1-edge). A general TDD may be transformed
into a reduced and normalised one, which is canonical w.r.t. a
fixed index order, by a series of normalisation and reduction
procedures. Usually, all terminal nodes in a TDD are merged
to a unique one labelled with 1. Then the tensor value of
an evaluation q1 = a1, · · · , qn = an can be obtained by
multiplying the weights of the edges along the path assigned
by the evaluation.

Example 1. Fig. 2 gives the canonical TDD of the H gate
w.r.t. the index order qi ≺ qo. Each matrix element of H
corresponds to the product of the weights along a maximal
path from the root to the terminal. For any internal node u,
the outgoing red (blue, resp.) edge connects its 0-successor
(1-successor, resp.), denoting that the index takes value 0 (1,

s′ s

1

q

1

(a)

1 s′ − s

1√
2

q

1

(b)

s′ s

s′ + ıs

q

1

(c)

1

0
1

0

s′0s
′
1 s0s

′
1 + s1

1

q0

q1

1

q2

(d)

Fig. 3. symTDD representations of (a) a 1-qubit symbolised computational
basis state |s⟩; (b) H |s⟩; (c) R2 |s⟩; (d) the output state of the 2-qubit Grover
oracle applied on |001⟩, where |1⟩ is the state of the ancilla qubit.

resp.). The red edge of node qi implies that all elements of
the first column of this matrix are 1√

2
· 1 = 1√

2
. Similarly, the

blue edge leading to node qo implies that the second column
of the matrix is 1√

2
· 1 · [1,−1]T = [1√

2
,− 1√

2
]T .

III. SYMBOLIC TDD

Symbolic TDD (symTDD) is TDD with all weights being
symbolic objects instead of complex values. In this paper,
these symbolic objects are complex-valued tensors whose
indices are symbols from either the input symbolised basis
state or classical control signals.

A. Motivating Examples

Similar to the 3-qubit QFT case shown in Fig. 1, the
output states (functionality) of a quantum circuit C on all
2n computational basis states can be (symbolically) computed
by executing C on a single symbolised basis state. Further-
more, symTDD can also be used to represent the oracle of
many quantum algorithms, including Grover’s algorithm and
Bernstein-Vazirani algorithm.

Fig. 3 illustrates several symTDDs, which represent (a) the
symbolic input basis state |s⟩ = s′ |0⟩ + s |1⟩, (b) H |s⟩, the
resultant state of applying a Hadamard gate on |s⟩, (c) R2 |s⟩,
the resultant state of applying a rotation gate R2 on |s⟩, and (d)
the resultant state of applying a 2-qubit Grover oracle on |001⟩,
where |1⟩ is the state of the ancilla qubit. Note that H |s⟩ =
1√
2
(|0⟩ + (s′ − s) |1⟩). If we take s = 0, then Fig. 3(a,b)

exactly give the TDD representations of the states |0⟩ and
|+⟩ = H |0⟩. A similar observation applies to the case s = 1.
This implies that the information of the circuit for all input
computational basis states is captured by a single simulation
on the symbolised basis state. Note that all weights here are
tensors: s and s′ (the complement of s) represent the tensors
with only one index s, and ϕ(s) = s and ξ(s) = 1−s; s′0s′1 and
s0s

′
1+s1 represent the rank 2 tensors with indices s0, s1, where

ϕ(s0, s1) = (1−s0) ·(1−s1) and ξ(s0, s1) = s0 ·(1−s1)+s1.

B. Symbolic TDD and Operations

SymTDD is an extension of TDD [5] in that its weights are,
instead of complex values, complex-valued tensors over a set
of indices (i.e., Boolean symbols) S = {s0, · · · , sm−1}. Since
a TDD represents a tensor, a symTDD represents a tensor-
valued tensor ϕ (a map from {0, 1}n to tensors), or more

precisely, a map in {0, 1}n → {0, 1}m → C. For clarity,
let I = {q0, . . . , qn−1} be the set of indices other than those
in S. For convenience, we often address indices in I and S
as, respectively, quantum and classical indices. In addition, we
call ϕ an (I, S)-tensor with rank n or simply an (m,n)-tensor.
This representation gives us more flexibility for representing
and analysing a quantum circuit. For example, let s be the
indices that appear in both an n-qubit input state |ψ⟩ and an
n-qubit quantum circuit U (note that a tensor with index set
S can always be regarded as a tensor with index set S′ with
S′ ⊇ S). That is, |ψ⟩ = [f0(s), · · · , f2n−1(s)]

T and U =
[uij(s) : i, j = 0, . . . , 2n−1] where both fj and uij are tensors
in {0, 1}m → C. Note that U |ψ⟩ = [g0(s), · · · , g2n−1(s)]

T

where for each i,

gi(s) =
∑2n−1

j=0
uij(s)⊙ fj(s).

Then gi is again a tensor in {0, 1}m → C, and finally, U |ψ⟩
is a symbolic tensor in {0, 1}n → {0, 1}m → C.

The overall representation and calculation are similar to that
in TDD, except that the addition and multiplication of complex
numbers used in TDD (Alg.s 1∼3 in [5]) should be replaced
by the addition and multiplication of complex-valued tensors.

C. Normalisation

Normalisation is required to make symTDD representations
canonical. The main idea is to extract a (greatest) common
part from the weights on the two outgoing edges of every
internal node and multiply it to their incoming edges, such
that no more common part can be further extracted from the
two remaining weights.

Assume that all tensors are over the same index set S. Let
f, g be the weights on the outgoing edges of internal node
v. We define the extracted tensor h and the remaining parts
f∗ and g∗ in a term-by-term manner. For any assignment a
of S, we set h(a) as f(a) if f(a) ̸= 0, and g(a) otherwise.
Furthermore,

f∗(a) =

{
1 if f(a) ̸= 0

0 otherwise,
g∗(a) =

g(a)/f(a) if f(a) ̸= 0

1 if f(a) = 0, g(a) ̸= 0

0 if f(a) = g(a) = 0

We call this the local normalisation procedure and denote
the result as loc norm(f, g) = (h, f∗, g∗). For example, let
f = [2ı, 0, 1 + ı, 0] and g = [0, 1, 1 − ı, 0] be two tensors
over S in vector representations. They will be normalised to
(h, f∗, g∗) with h = [2ı, 1, 1 + ı, 0], f∗ = [1, 0, 1, 0], and
g∗ = [0, 1, 1−ı

1+ı , 0].
Let supp(f) = {a ∈ {0, 1}n : f(a) ̸= 0}. For a

local normalisation loc norm(f, g) = (h, f∗, g∗), we have
supp(h) = supp(f) ∪ supp(g), supp(f∗) = supp(f), and
supp(g∗) = supp(g). If supp(f) = {0, 1}n, then h = f ,
f∗ = 1 and g∗ =

[
g0
f0
, · · · , g2n−1

f2n−1

]
. We also have the following

useful lemma.

Lemma 1. If loc norm(f, g) = (h, f∗, g∗) and supp(h) ⊆
supp(h∗), then loc norm(h∗⊙f, h∗⊙g) = (h∗⊙h, f∗, g∗); if

loc norm(h⊙ f, h⊙ g) = (h, f, g) and supp(h) = supp(h∗),
then loc norm(h∗ ⊙ f, h∗ ⊙ g) = (h∗, f, g).

By using this local normalisation scheme, we can fully nor-
malise a symTDD T . A symTDD T is called fully normalised
if for each internal node v with two outgoing edges weights fv
and gv and any path leading to it with accumulated weights hv
we have loc norm(hv⊙fv, hv⊙gv) = (hv, fv, gv). The fully
normalised form reveals the invariance under local normalisa-
tion. Typically, a symTDD can be fully normalised by pushing
all weights down to the bottom and then performing the local
normalisation procedure on each internal node from bottom to
top. During this process, however, we may need to split a lot
of nodes causing additional time and memory overhead. But
the following theorem shows that the normalisation procedure
can be done more efficiently for the cases considered in this
paper.

Theorem 1 (normalisation). Let T be a symTDD with quan-
tum and classical index sets I and S. For each internal node
v of T and any incoming edge e of v, write hv, fv, gv for,
respectively, the weights of e and the two outgoing edges of
v. Then T is fully normalised if and only if loc norm(hv ⊙
fv, hv ⊙ gv) = (hv, fv, gv) for each internal node v and any
incoming edge e of v.

Proof. If T has no internal nodes, this result is clearly true.
In the following, let T be a symTDD and v an internal node

of T . For any incoming edge e of v, suppose hv is weight on
e = (u, v) and h∗v the corresponding weight accumulated by
multiplying all the weights leading to v through e. In addition,
write fv and gv for the weights on the two outgoing edges of
v.

If v is the root node of T , we have hv = h∗v . Thus,
loc norm(hv⊙fv, hv⊙gv) = (hv, fv, gv) iff loc norm(h∗v⊙
fv, h

∗
v ⊙ gv) = (h∗v, fv, gv). Otherwise, suppose h∗v = h0 ⊙

· · · ⊙ hk ⊙ hv . Note that here u is the parent node of v s.t.
e = (u, v). Then h∗u = h0 ⊙ · · · ⊙ hk.

Then, suppose T is fully normalised. We have
loc norm(h∗v ⊙ fv, h

∗
v ⊙ gv) = (h∗v, fv, gv). Then

supp(h∗v) = supp(fv) ∪ supp(gv). By applying this property
for the node u, we have supp(h∗u) ⊇ supp(hv). As a result,
we must have supp(hv) = supp(h∗v). According to Lemma 1,
we have loc norm(hv ⊙ fv, hv ⊙ gv) = (hv, fv, gv).

For the sufficiency part, we have loc norm(hv ⊙ fv, hv ⊙
gv) = (hv, fv, gv). According to the local normalisation
scheme, supp(fv) = supp(hv ⊙ fv) ⊆ supp(hv). Also,
we have supp(hv) ⊆ supp(hk) ⊆ · · · ⊆ supp(h0). Thus,
supp(h∗v) = supp(h0 ⊙ · · · ⊙ hk ⊙ hv) = supp(hv). Then
according to lemma 1, we have loc norm(h∗v⊙fv, h∗v⊙gv) =
(h∗v, fv, gv).

Now, we have a more efficient procedure for normalising a
symTDD T . That is, we first do a local normalisation for every
internal node of T from top to bottom and then do another
local normalisation for every internal node of T from bottom
to top. The top-down procedure ensures that, for every internal

f0
f1

1

q

g0
g1

1

q

l r

f0 ⊔ g0 f1 ⊔ g1

f̂0 ⊔ f̂1 ĝ0 ⊔ ĝ1

q

l r

(a)

1

(b)

Fig. 4. Reduction rule RR3.

node v, the support of the weight on any incoming edge of v
contains the supports of the weights of v’s outgoing edges; and
the bottom-up procedure ensures that loc norm(hv⊙fv, hv⊙
gv) = (hv, fv, gv) for every internal node v. As we don’t need
to push every weight down to the bottom, the probability of
node splitting and hence the space and time consumption is
significantly reduced.

D. Reduction

Reduction is a process to merge nodes that represent the
same tensors so that the decision diagram can be as compact
as possible. The following two reduction rules are commonly
used for various kinds of decision diagrams, including BDDs
and TDDs.

• RR1: Delete a node v if its 0- and 1-successors are both
w and its low- and high-edges have the same weight f .
Meanwhile, redirect the incoming edge of v to w.

• RR2: Merge two nodes if they have the same index, the
same 0- and 1-successors, and the same weights on the
corresponding edges.

Note in RR1 we have h⊙f = h if the local normalisation has
been conducted on v, where h is the weight on the incoming
edge of v.

While the above two reduction rules are sufficient, the
reduction rule RR3 as specified in Fig. 4 (a) is sometimes
more powerful. To apply RR2, we require the weights on the
corresponding low- and high edges to be identical, which are
often too restricted for tensors. From the left side of Fig. 4 (a),
we can see that RR3 is applicable when two nodes (i) have
the same index and the same 0- and 1-successors; (ii) gi(a) =
fi(a) for all a ∈ supp(fi)∩ supp(gi), where fi and gi are the
weights on the outgoing edge to the i-successor for i ∈ {0, 1};
and (iii) supp(f0) ∩ supp(g1) = supp(f1) ∩ supp(g0). In the
right side of Fig. 4 (a), f̂ denotes the weight tensor which
takes value 1 at each element in supp(f) and 0 otherwise;
f ⊔g denotes the tensor which takes the value as f(a) at each
a ∈ supp(f) and g(a) otherwise. Here, we assume that f and g
have the same value on their common support when using this
operation. The basic idea here is that (f̂0⊔f̂1)⊙(f0⊔g0) = f0,
(f̂0 ⊔ f̂1) ⊙ (f1 ⊔ g1) = f1, (ĝ0 ⊔ ĝ1) ⊙ (f0 ⊔ g0) = g0 and
(ĝ0 ⊔ ĝ1)⊙ (f1 ⊔ g1) = g1. In RR3, the weights f̂0 ⊔ f̂1 and
ĝ0 ⊔ ĝ1 are used as filters indicating when the corresponding
edges will lead to a node which represents a tensor with non-
zero values. Then f0⊔g0 and f1⊔g1 specify the corresponding

values. RR3 is more powerful than RR2 and is essential for
making quantum circuits, such as the Toffoli circuit, in tower
forms. Since RR3 may change the weights on the edges and
destroy the normalisation of a symTDD, we only use it at
specific times as indicated in Fig. 4 (b). That is, we will only
merge two nodes using RR3 when all the paths leading to
these two nodes come from the same node. The nodes with
dotted lines mean that there can be zero or many such nodes.

E. Canonicity

By using the normalisation and reduction rules, we are able
to construct a canonical symTDD representation for every
tensor-valued tensor. In the following, we only consider the use
of RR1 and RR2 for simplicity. A fully normalised symTDD
is reduced when no reduction rule (RR1 or RR2) can be
further applied. The following theorem shows that there is,
up to isomorphism and a given index order, a unique reduced
symTDD for each tensor. Two symTDDs F and G w.r.t. the
same index order are isomorphic if there is a bijection σ
between the node sets of F and G such that, for each node v,
v′ = σ(v) and v have the same index, the same weights on
their incoming and outgoing edges, and σ(low(v)) = low(v′),
σ(high(v)) = high(v′).

Theorem 2 (canonicity). Let S = {s0, . . . , sm−1} be a set
of classical indices and I = {q0, . . . , qn−1} a set of quantum
indices. Suppose ϕ is an (I, S)-tensor. Given any index order
≺ of I , ϕ has a unique reduced symTDD representation w.r.t.
≺ up to isomorphism.

Proof. We prove this by using induction on the rank of the
tensor. Let ϕ = s ∈ [2m → C] be a rank 0 tensor. Any
reduced symTDD of ϕ has only one node labelled with 1
and has weight s. Suppose the statement holds for any rank k
tensor. Let ϕ be a rank k+1 tensor and ≺ any index order on I .
Suppose F , G are two reduced symTDDs that represent ϕ w.r.t.
≺. We show they are isomorphic. Let q be the first index under
≺. Without loss of generality, we assume ϕ|q=0 ̸= ϕ|q=1. That
is, q is essential in ϕ.

Write rF and rG for the root nodes of F and G. Then q
is the index of both rF and rG . Let h1, f1, g1 and h2, f2, g2
be the weights of the incoming and two outgoing edges of,
respectively, rF and rG . We write F0 and F1 for the sub-
DDs of F with root nodes the 0- and 1-successors of rF and
weights h1⊙f1 and h1⊙g1, respectively. The two sub-DDs G0

and G1 of G are defined in a similar way. We assert that Fi and
Gi are all reduced. Apparently, no reduction rule can be applied
as they are sub-DDs of reduced symTDDs. Thus we need only
show that they are normalised. By Theorem 1, we need only
show their root nodes are locally normalised. Take F0 as an
example. Let v = low(rF) (the 0-successor of rF) and fv, gv
be the weights on the two outgoing edges of v in F . Note that
f1 is the weight on the incoming edge of v. We need only show
loc norm(h1 ⊙ f1 ⊙ fv, h1 ⊙ f1 ⊙ gv) = (h1 ⊙ f1, fv, gv).
Since F is normalised, we have supp(f1) ⊆ supp(h1) and
loc norm(f1 ⊙ fv, f1 ⊙ gv) = (f1, fv, gv). By Lemma 1, we
have loc norm(h1⊙f1⊙fv, h1⊙f1⊙gv) = (h1⊙f1, fv, gv).

Thus Fi and Gi are all normalised and reduced. It is easy to
see that F0 and G0 represent the same tensor ϕ|q=0 and hence
are isomorphic by induction hypothesis. Analogously, F1 and
G1 represent the same tensor ϕ|q=1 and are also isomorphic.

Let σi be the isomorphism between Fi and Gi for i = 1, 2.
Because F is reduced, for any node v in both F1 and F2,
we have σ1(v) = σ2(v). Define σ as the extension of σ1 and
σ2 by further mapping rF to rG . We show σ : F → G is an
isomorphism. To this end, we need only show h1 = h2, f1 =
f2, and g1 = g2. Since Fi

∼= Gi, we have h1 ⊙ f1 = h2 ⊙ f2
and h1⊙g1 = h2⊙g2. Because F , G are normalised, we have
(h1, f1, g1) = loc norm(h1⊙ f1, h1⊙ g1) = loc norm(h2⊙
f2, h2 ⊙ g2) = (h2, f2, g2). This shows F ∼= G.

IV. CASE STUDY

In this section, we show by examples how symTDD can be
used in the verification of quantum circuits.

Quantum Fourier Transform. Suppose the input state is a
computational basis state. The output state of QFT can be
represented as a QMDD or TDD with O(n) nodes. The
functionality of the circuit, however, requires O(2n) nodes
to represent in either QMDD or TDD.

s′0 s0

s′1 s1

s′2 s2

1

q0

q1

q2

1

(a)

1 s′0 − s0

s′1 s1

s′2 s2

1√
2

q0

q1

q2

1

(b)

1 f1

s′1 s1

s′2 s2

1√
2

q0

q1

q2

1

(c)

1 f2

s′1 s1

s′2 s2

1√
2

q0

q1

q2

1

(d)

1 f2

1 s′1 − s1

s′2 s2

1
2

q0

q1

q2

1

(e)

1 f2

1 f3

s′2 s2

1
2

q0

q1

q2

1

(f)

1 f2

1 f3

1 s′2 − s2

1
2
√
2

q0

q1

q2

1

(g)

Fig. 5. symTDD for simulation of 3-qubit QFT, where (a)-(g) represent the
symTDD of the input state and the states obtained after applying the gates
shown in Fig. 1 in sequence, and f1 = (s′0 − s0)(s′1 − ıs1), f2 = (s′0 −
s0)(s′1 + ıs1)(s′2 + 1+ı√

2
s2), f3 = (s′1 − s1)(s′2 + ıs2).

To verify the functionality of the QFT circuit, we first exe-
cute the circuit on the symbolised input state |s0⟩ · · · |sn−1⟩.
Fig. 5 illustrates the detailed process of executing the 3-qubit
QFT on the symbolised input state |s0⟩ |s1⟩ |s2⟩. All symTDDs
generated have a tower form with only four nodes. In this
process, applying the Hadamard gate on q0 changes the two
weights s′0 and s0 to 1 and s′0−s0 respectively. Then applying
the Controlled-R2 gate on q0, q1 further changes the weights
to 1 and (s′0 − s0)(s

′
1 − ıs1) respectively. This is because,

no matter whether R2 is applied on the target qubit q1, the
corresponding node is not changed (cf. Fig. 3(a,c)) and only
a weight is multiplied to the weight on the high-edge of the
control qubit q0. Similarly, applying the Controlled-R3 gate on
q0, q2 changes the weights to 1 and (s′0 − s0)(s

′
1 + ıs1)(s

′
2 +

(1√
2
+ 1√

2
ı)s2) respectively. The similar pattern will repeat on

the last two qubits. The symTDD shown in Fig. 5(g) contains
the information of all possible output states of the circuit.

Since s′2−s2 = e2πı0.s2 , f3 = (s′1−s1)(s′2+ıs2) = e2πı0.s1s2 ,
and f2 = (s′0 − s0)(s

′
1 + ıs1)(s

′
2 +

1+ı√
2
s2) = e2πı0.s0s1s2 , this

verified the functionality of the QFT circuit.

Fig. 6. The time and space consumption of symTDD execution of 10-160
qubits QFT circuits. In this figure, we use ˆ to represent the exponent and nˆ
2.2/300, nˆ 2.4*10 represent n2.2/300 and 10n2.4 respectively.

We symbolically execute the QFT circuit from 10 to 160
qubits and depict in Fig. 6 the time and space consumption
curve. The space consumption was measured as the total
number of nodes used for representing both the symTDD
and all tensor weights. As a comparison, we also give the
curve for n2.2/300 and 10n2.4 in the time and space figures.
It can be seen that both the time and space consumption grow
polynomially in the number of qubits. In fact, it only requires
about ten thousand nodes to represent a 30-qubit QFT circuit
in symTDD other than using around two billion nodes in a
single TDD. Remarkably, QFT circuit with 160 qubits can
be executed within three minutes on our laptop with 8GB
memory.

Bernstein-Vazirani Algorithm. Suppose O is an oracle such that
O |x⟩ |y⟩ = |x⟩ |y ⊕ f(x)⟩, where f(x) = s·x = s0x0⊕· · ·⊕
sn−1xn−1 and s is a hidden Boolean string. The Bernstein-
Vazirani algorithm (BV) [12] can find s with a single call of
the oracle. The circuit for the 3-bit BV is shown in Fig. 7,
where the oracle is implemented by a set of Controlled-Xsi

gates.
While for every s this circuit can be verified with a single

run of TDD simulation, it needs exponential time in total
to verify this for all s. Executing the circuit symbolically,
we obtain the symTDD of |s0⟩ · · · |sn−1⟩ |1⟩ as the output
state (cf. Fig. 7 (bottom)), indicating that the hidden string

|0⟩ H H |s0⟩

|0⟩ H H |s1⟩

|0⟩ H H |s2⟩

|1⟩ H Xs0 Xs1 Xs2 H |1⟩

s′0
s0

s′1
s1

s′2
s2

0
11 q0 q1 q2 q3 1

Fig. 7. The circuit (top) and symTDD (bottom) for verification of the
Bernstein-Vazirani algorithm.

s has been successfully computed. It is also observed in our
experiments that all symTDDs generated during this process
are in a tower form.

Fig. 8. The time and space consumption of using symTDDs to verify the
Bernstein-Vazirani algorithm. In the figure, we use ˆ to represent the exponent
and nˆ 1.3/100, nˆ 1.7*7 represent n1.3/100 and 7n1.7 respectively.

Fig. 8 gives the time and space consumption needed for
verifying BV using the symTDD. As a comparison, we also
provide the data for n1.3/100 and 7n1.7. It can be seen that
both the time and space consumption grow polynomially in
the number of qubits. In fact, 300-qubit BV can be verified
within 10 seconds.

Grover’s Algorithm. Similar to BV, Grover’s algorithm [8] can
also be verified by symTDD. For the 3-qubit Grover’s algo-
rithm, an oracle O as specified by O |x⟩ |y⟩ = |x⟩ |y ⊕ f(x)⟩
with f(x) = 1 iff x = s, where s is the solution that
the algorithm aims to find. Similar to BV, it also needs an
exponential number of runs to verify for all possible s by

using TDD. In contrast, a single run of the symTDD suffices.

|0⟩ H Xs′0 Xs′0 H X X H |s0⟩

|0⟩ H Xs′1 Xs′1 H X H X H X H |s1⟩

|1⟩ H X H |1⟩

s′0
s0

s′1
s1

0
1−1

q0 q1 q2 1

Fig. 9. The circuit (top) and symTDD (bottom) for verification of the 3-qubit
Grover’s algorithm.

The output of symbolic execution of the 3-qubit Grover
circuit is shown in Fig. 9 (bottom), which exactly represents
the state |s0⟩ |s1⟩ |1⟩ up to a global phase −1.

For Grover’s algorithm with more than 4 qubits, the output
state is not exactly |s0⟩ · · · |sn−1⟩ |1⟩. Nevertheless, it can be
analysed using symTDD as well. We symbolically execute the
algorithm by applying the Grover iteration ⌊

√
2nπ/4⌋ times,

and then compute the probability of successfully finding the
solution s. Note that the desirable output |s0⟩ · · · |sn−1⟩ |1⟩ can
also be represented as a symTDD ϕsuc . The calculation of the
success probability boils down to the contraction of ϕsuc with
the resulting symTDD of executing Grover’s algorithm.

Although the whole complexity is not polynomial, it shows
an exponential advantage over TDDs. For example, it takes
29 seconds and 53,892 nodes to simulate the 8-qubit Grover’s
algorithm (with 8 iterations) using symTDD and find the
success probability to be 0.9956 no matter what the solution
is. In comparison, it takes 23 seconds and 1753 nodes to
obtain the same answer for a given solution, which means
that the expenses will sum up to 23 · 27 = 2, 944 seconds and
1, 753·27 = 224, 384 nodes when the task is to analyse all pos-
sible s. When we consider the 9-qubit Grover’s algorithm with
12 iterations, the corresponding data will be 153 vs 34, 371
seconds and 164, 377 vs 829, 184 nodes respectively, where
the success probability is 0.9999.

Toffoli Circuits. In addition, symTDD can be used to analyse
Toffoli circuits [23], i.e., circuits consisting of only CkX (k ∈
N) gates. Every Toffoli circuit has a symTDD representation in
tower form (cf. the bottom of Fig. 10). This is because, for any
CkX which splits the symTDD, the two branches have disjoint
supports, and thus can be merged by using RR3 introduced in
Sec. III-D. Moreover, the two weights on the outgoing edges
of every internal node have forms f ′ and f respectively, where
f is a tensor that states exactly the relations between the output
state of this qubit and the input signals while f ′ represents its
complement. By contrast, using TDD will interleave the input
and output indices, making the analysis difficult.

As an example of Toffoli circuits, let us consider the
bit-flip code circuit [8] shown in Fig. 10 (top), which can
correct the input quantum state if there is at most one bit-
flip error occurred. Let q0, · · · , q5 be the 6 qubits from top to
bottom. Symbolically executing this circuit, the corresponding
symTDD is shown in Fig. 10 (bottom) where f00 = f10 =

|s0⟩ X

|s1⟩ X

|s2⟩ X

|0⟩ X X

|0⟩ X X

|0⟩ X X

f00

f01

f10

f11

f20

f21

f30

f31

f40

f41

f50

f51
1 q0 q1 q2 q3 q4 q5 1

Fig. 10. The circuit (top) and the symTDD (bottom) for verification of the
bit-flip code circuit. Principle of deferred measurement [8] is used.

f20 = s′0s
′
1s2 + s′0s1s

′
2 + s′1s

′
2 and f01 = f11 = f21 = f ′00.

This means that the output of q0, q1, q2 will be |000⟩ when at
least two of s0, s1, s2 are 0 and the output of q0, q1, q2 will be
|111⟩ when at least two of s0, s1, s2 are 1. Furthermore, the
weights f30 = f ′31 = s0s1+s

′
0s

′
1, f40 = f ′41 = s1s2+s

′
1s

′
2 and

f50 = f ′51 = s0s2 + s′0s
′
2, meaning that measuring q3, q4, q5

at the end of the circuit will obtain result 0 iff s0 = s1,
s1 = s2 and s0 = s2, respectively. Note that to obtain the
same information, we have to traverse all 56 paths in a TDD
of 34 nodes, if TDD is employed for the verification task.

V. CONCLUSION

This paper proposed the first decision-diagram approach
for operating symbolic objects. The proposed symTDD is an
extension of the tensor decision diagram and makes it possible
to leverage the power of symbolic logic and tensor networks
in a systematic way. Our experiments on QFT, BV, Grover’s
Algorithm have partially demonstrated the utility of symTDD.
In particular, it provides an efficient approach for extracting
information of the output states of quantum circuits. It can also
be used to verify the correctness of quantum algorithms with
classical control signals. Future work will employ SMT solvers
like Z3 in extracting more useful output state information of
quantum circuits.

ACKNOWLEDGEMENTS

This work was partially supported by the Australian Re-
search Council (Grant No.: DP220102059). The research of
Xin Hong was also partially supported by Sydney Quantum
Academy.

REFERENCES

[1] J. Chow, O. Dial, and J. Gambetta, “IBM quantum breaks the 100-qubit
processor barrier,” IBM Research Blog, 2021.

[2] Jay Gambetta, “IBM’s roadmap for scaling quantum technology,” https:
//research.ibm.com/blog/ibm-quantum-roadmap, 2020, accessed: 2022-
04-27.

[3] G. F. Viamontes, I. L. Markov, and J. P. Hayes, “Improving gate-
level simulation of quantum circuits,” Quantum Information Processing,
vol. 2, no. 5, pp. 347–380, 2003.

[4] P. Niemann, R. Wille, D. M. Miller, M. A. Thornton, and R. Drechsler,
“QMDDs: Efficient quantum function representation and manipulation,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 35, no. 1, pp. 86–99, 2015.

[5] X. Hong, X. Zhou, S. Li, Y. Feng, and M. Ying, “A tensor network
based decision diagram for representation of quantum circuits,” ACM
Transactions on Design Automation of Electronic Systems (TODAES),
vol. 27, no. 6, pp. 1–30, 2022.

[6] Y.-H. Tsai, J.-H. R. Jiang, and C.-S. Jhang, “Bit-slicing the Hilbert
space: scaling up accurate quantum circuit simulation,” in 2021 58th
ACM/IEEE Design Automation Conference (DAC). IEEE, 2021, pp.
439–444.

[7] D. Coppersmith, “An approximate fourier transform useful in quantum
factoring,” arXiv preprint quant-ph/0201067, 2002.

[8] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Information (10th Anniversary edition). Cambridge University Press,
2016.

[9] D. Aharonov, Z. Landau, and J. A. Makowsky, “The quantum FFT can
be classically simulated,” arXiv: Quantum Physics, 2008.

[10] A. Zulehner and R. Wille, “Advanced simulation of quantum compu-
tations,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 38, no. 5, pp. 848–859, 2018.

[11] L. K. Grover, “A fast quantum mechanical algorithm for database
search,” in Proceedings of the twenty-eighth annual ACM symposium
on Theory of computing, 1996, pp. 212–219.

[12] E. Bernstein and U. Vazirani, “Quantum complexity theory,” SIAM
Journal on computing, vol. 26, no. 5, pp. 1411–1473, 1997.

[13] M. Ying and Z. Ji, “Symbolic verification of quantum circuits,” arXiv
preprint arXiv:2010.03032, 2020.

[14] M. Amy, “Towards large-scale functional verification of universal quan-
tum circuits,” arXiv preprint arXiv:1805.06908, 2018.

[15] N. Yoran and A. J. Short, “Efficient classical simulation of the approx-
imate quantum fourier transform,” Physical Review A, 2007.

[16] D. E. Browne, “Efficient classical simulation of the quantum Fourier
transform,” New Journal of Physics, vol. 9, 2007.

[17] L. Burgholzer and R. Wille, “QCEC: A jkq tool for quantum circuit
equivalence checking,” Software Impacts, vol. 7, p. 100051, 2021.

[18] ——, “Improved DD-based equivalence checking of quantum circuits,”
in 2020 25th Asia and South Pacific Design Automation Conference
(ASP-DAC). IEEE, 2020, pp. 127–132.

[19] T. Peham, L. Burgholzer, and R. Wille, “Equivalence checking of
quantum circuits with the ZX-calculus,” IEEE Journal on Emerging and
Selected Topics in Circuits and Systems, 2022.

[20] M. Ying and Y. Feng, Model Checking Quantum Systems: Principles
and Algorithms. Cambridge University Press, 2021.

[21] X. Hong, M. Ying, Y. Feng, X. Zhou, and S. Li, “Approximate equiv-
alence checking of noisy quantum circuits,” in 2021 58th ACM/IEEE
DAC. IEEE, 2021, pp. 1–6.

[22] C. E. Shannon, “A symbolic analysis of relay and switching circuits,”
Transactions of The American Institute of Electrical Engineers, 1938.

[23] M. Szyprowski and P. Kerntopf, “Reducing quantum cost in reversible
toffoli circuits,” arXiv preprint arXiv:1105.5831, 2011.

