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Abstract. The classical control theory cannot be applied in those systems 

whose complexity is too high to be analytically modeled. In these cases, math-

ematical methods with more degrees of freedom are used because they provide 

better adaptation. One method widely used in control problems is the Fuzzy In-

ferencing Systems. However, the process of calibration of the parameters re-

quired may involve a high computational cost. Among them, Genetic Algo-

rithms have demonstrated great convergence towards ideal solutions. As the 

dimensions of the control problem (input features) increase, the optimization 

process requires much more time. Therefore, the present work proposes a grad-

ual search and parameter update criteria for Genetic Fuzzy Controllers because 

it improves several orders of magnitude in the processing time. The algorithm 

developed has been applied to the control problem of the Inverted Pendulum 

with Free Cart. The results obtained demonstrate an effective parameter calibra-

tion in seconds, while the traditional method of tuning for the same problem 

takes more than 2 hours. Currently, many of the mechanical systems of the dif-

ferent industries undergo sudden changes in their properties during use, there-

fore an instant effective recalibration of the controllers is necessary. This meth-

od allows fast adaptation and also guarantees the same performance in the con-

trol process. 

Keywords: Fast Tuning, Chained Genetic Algorithms, Fuzzy Inferencing Sys-

tem, Symmetric Mechanical Systems, Gradual Update 

1 Introduction 

1.1 Problem 

The use of a single Genetic Algorithm (GA) that optimizes the parameters of an entire 

Fuzzy Inference System (FIS) in a problem with several degrees of freedom is com-

putationally expensive. 
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1.2 Main Purpose 

Offer a substantially faster training method for the FIS of a control problem with 

symmetry, while proving high precision in the testing.  

 

1.3 Approach 

Instead of applying a single GA for the exploratory search of the parameters for the 

control, the following steps are proposed: 

Divide the problem into small independent blocks (workspace regions of the FIS). 

Apply different chained GAs to some of the blocks (strategically chosen) to opti-

mize these regions. 

Finally, extrapolate the information to the remaining blocks (symmetrically equiva-

lent) without the use of GAs. 

In the end, a fully trained FIS is achieved in a faster and elegant way rather than 

using “brute force” in the optimization. 

 

1.4 Nature of the Case Study 

The case chosen to benchmark this technique is the Inverted Pendulum with Free Cart 

(IPFC). The System is composed of a homogeneous bar with a mass M2 and a length 

L2 (known moment of inertia I2), joined with a linkage that allows its rotation to the 

top of the cart. The free cart, of mass M1, glides without friction along a horizontal 

track. A unique actuator exerts a horizontal force, F , in the center of gravity of the 

cart, G1. 

The IPFC problem has 2 degrees of freedom and thus it should have 2 actuators. 

Nevertheless, the configuration considered includes a single actuator to increase the 

complexity of the problem. Thus, proving the efficiency of the algorithm developed in 

the control of highly unstable mechanical systems. 

Three input variables have been chosen to control the system, θ,�̈�,�̈� angle of the 

rod, angular acceleration and linear acceleration of the base of the cart respectively. 

There is no control over �̇� (angular velocity of the rod) or x (linear displacement of 

the cart). As said, F (horizontal force applied to the cart) will be the control variable 

on the actuator. Thus, the problem is 4-dimensional with 3 inputs and 1 output (see 

Fig. 1). 
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Fig. 1. Schematics of the Inverted Pendulum with Free Cart (IPFC). 

 

For the given configuration, the differential equations of the motion of the IPFC 

with no friction are defined as, 
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2 Related Work 

For the control of this nonlinear system (IPFC), many and very diverse strategies have 

been used previously. In [1] such objective is obtained with the Lyapunov function 

and applying LaSalle’s invariance theorem. 

In [2] a network of the Fuzzy Logic Controllers (FLCs) with different weights and 

a GA for the tuning is used. The control of the double inverted pendulum is also an 

interesting problem, similar to the one considered in this study, where a Genetic 

Fuzzy System proves to be a good solution ([3]). 

A comparative study of the LQR and PID control strategies is introduced in [4]. In 

[5] the passivity properties of Lagrangian and Hamiltonian systems are used to find 

the best static feedback controller. 

Other authors have used GAs for the optimization of the parameters for the FIS of 

the inverted pendulum and cart system but at a high computational cost, [6]. Particle 

Swarm Optimization (PSO) algorithms or Ant Colony System optimization tech-

niques are viable substitutes to replace the use of GA for the tuning of the PID or the 

LQR ([7], [8]). Alternative inferencing rules considering the Takagi-Sugeno were 

introduced in [9] for the control of the inverted pendulum. 

Nevertheless, the training time of the inferencing rules for those methodologies is 

still high. There are already algorithms which use neuro-fuzzy logic controllers with 

the aim to diminish such computational cost ([10]).  
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3 Theoretical Background 

The concept of fuzzy refers to a scale of values between 0 and 1. Where the analyzed 

variable can belong to more than one set. In this way, the transition from one group of 

values to another is blurred. Thus, a gradation in the contours that limit the member-

ship of each set is obtained. In short, it is intended to resolve the sudden changes that 

crisp sets imply. 

In engineering control systems, a fuzzy data processing approach significantly im-

proves the accuracy. That is, by increasing the degrees of freedom, the control surface 

(or hypersurface for more than 2 dimensions) becomes smooth, with no sudden 

jumps. A great ability to adjust is achieved regardless of the problem considered. 

In the vast majority of aerospace systems these precision and adaptation properties 

are essential, given the complex nature of the infrastructure. However, this technique 

presents a clear drawback when compared to the classical control theory; it requires 

the optimization of a greater amount of values. 

Therefore, an efficient optimization method is needed to perform an exploratory 

search until the closest combination of parameters is found. Genetic Algorithms 

(GAs) have been one of the biggest bets for the search of these parameters. This algo-

rithm is based on the principles of natural evolution. A group of chained functions 

perform the basic processes that are observed in the biological mechanisms for devel-

opment; selection, mutation, crossover and elitism. In each generation / iteration, the 

individuals (chromosomes) of the population change, progressively improving their 

fitness. At all times, chromosomes are evaluated with a fitness function that deter-

mines how valid the individual is. A certain degree of randomness is also incorpo-

rated in the evolutionary process. This is done to consider alternative solutions, which 

although in the initial generations are not very adequate, in the future they will lead to 

better results. 

The IPFC problem involves an exploration of continuous values. Therefore, the 

training process using a single GA (in this study referred to as the traditional ap-

proach) can take a long time if the number of parameters to be optimized is high. 

Therefore, the authors have focused their work on improving the Genetic Fuzzy 

(GF) system so that the computational cost for training is significantly lower than the 

one required in the traditional approach. 

One of the techniques developed is the Modified Mamdani ([11]) that allows solv-

ing the problem of 3D fuzzy fitting in seconds (see Fig. 2). This simulates the adapta-

tion of a Neural Network with step functions by making individual approximations in 

each section of the surface. 
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Fig. 2. 3D Genetic Fuzzy Fitting with a Modified Mamdani Approach  (real solution in trans-

parent, and approximation in color). 

 

The technique proposed in this paper seeks also this property of fast training. The 

physical properties of many industrial systems are subject to sudden modifications. 

Thus, an immediate recalibration process should be used in order to minimize the loss 

of efficiency. The recalibration and maintenance operations of the tools are still a big 

problem in many automated manufacturing processes.  

For this preliminary development, the primary goal was to obtain a successful fast 

learning algorithm. In the next stage, this fast adaption skill will be incorporated in 

the controller of an IPFC prototype. 

The system will have a health monitoring systems integrated (accelerometers and 

gyroscopes will be used for the measurements), which will evaluate constantly the 

efficiency of the controller. When the IPFC shows a decrease in performance (Identi-

fication Procedure) the fast learning algorithm will recalibrate automatically the coef-

ficients of the FIS to obtain a tuned system (Self Adaption Procedure) (Fig. 3).  

 

 
Fig. 3. Block Diagram for Self Adaptation of the IPFC. 
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4 Methodology 

In the first place, a preprocessing of the variables has been carried out, being stand-

ardized with values between 0 and 1. As initial input, it has been decided to divide the 

4 variables into 5 equally spaced regions. Identifying the letters L, H, Z, N and P as 

Low, High, Zero, Negative and Positive respectively. 

In the proposed algorithm, membership functions with symmetrical triangular 

shape have been used. The two functions of the ends are therefore divided in half, 

generating right triangles. The problem is thus reduced to the choice of the values (5 

possible) of each combination in the three-dimensional mesh of the if-then-rules. 

Fig. 4 shows the structure or 3D tower of if-then rules along with the three input 

variables and their associated membership functions. The form of the membership 

functions of the output variable is not represented in Fig. 4, however, it is the same as 

the other three. 

 

 
 

Fig. 4. Tower or grit of if-then rules representing all the possible combinations of the fuzzy sets 

from the input variables. 

 

Every point in the 3D grit represents an if-then rule. Thus, the total number of if-

then rules is 53, 125 parameters for the optimization problem. 

In the traditional approach (single GA for the optimization of all the parameters) if 

the form of the memberships is not defined, the number of degrees of freedom due to 

the membership functions should also be counted. Since there are 4 variables, each 
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with 5 membership functions, and each membership function has 3 edges, there are 60 

degrees of freedom. Thus, making a total of 185 values for the optimization problem. 

In a normal computer of basic 8GB CPU this traditional approach requires more 

than 2 hours of computation.  On the other hand, the training of the algorithm present-

ed requires less than 10 seconds. 

 For the obtention of the membership value for the target variable the geometric 

mean is calculated using the three variables’ memberships. Then, a defuzzification 

process is carried out. The final value is proportional to the areas enclosed under the 

membership functions of the output force.  

The fitness function used is such that it seeks to maintain vertical the pendulum 

(θ→0), minimizing its angular acceleration (�̈�→0)  and linear acceleration (�̈�→0). 

Fig. 4 also represents with different colors two subsets (A and B) that contain eight 

if-then rules each. Due to the symmetry of the problem, these subsets are complemen-

tary, such that each point of the subset A has its exact complementary inside B. As 

defined below. 

 𝑃1𝐴
≡ 𝑃8𝐵

̅̅ ̅̅ ̅ (3) 

 𝑃2𝐴
≡ 𝑃7𝐵

̅̅ ̅̅ ̅ (4) 

 𝑃5𝐴
≡ 𝑃4𝐵

̅̅ ̅̅̅ (5) 

For the optimization problem, several recursive functions are used. The ultimate 

goal is to find which of the membership functions from the output variable, 𝐹, corre-

sponds to each of the points in the 3D lattice.  

The tuning is then performed inside each subset. It starts from one corner of the 3D 

lattice, where a single GA is applied to search for the eight parameters of the cell in 

the lattice. After the generations converge to the best chromosome, the corners of that 

subset are updated with the values of the genes. The first exploration process finishes, 

and a new GA is applied in the following subset that lies next to the current one. The 

only difference is that the length of the chromosomes is reduced to the half. Thus, 

convergence is much faster. 

This process is repeated for each subset of the 3D tower, updating the inferencing 

rules as the chained GAs provide the best solution for each subset.  

The optimization is not the same for all the cells in the workspace, the dimension-

ality of the problem plays a key role to determine the most efficient updating protocol.  

Additionally, as it has been pointed out before, due to the symmetry, the computa-

tional time of the problem can be reduced to the half. But in fact, this is not the condi-

tion that improves significantly the computational cost. The key to minimize the pro-

cessing time is the discretization of the workspace into subsets, and the gradual up-

date of the lattice by using several GAs that pass the information forward, creating a 

chain. In the end, the exploratory problem is reduced tremendously, proving that is 

more efficient the application of many “small” GAs rather than a single “big” GA in 

the tuning of the FIS. 
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5 Preliminary Results 

 

The functions of this algorithm have been developed in MATLAB. For this computa-

tion, the physical parameters of the system have been set to the followings values: 

Mass of the free cart, (𝑀1), 0.2 [kg], mass of the rod,  (𝑀2), 1 [kg], length of the rod,  

(𝐿2), 1 [m]. For the specified conditions, the tower's training process took 7 seconds. 

Unlike the traditional approach which training took more than 2 hours. 

For the validation phase, in each case studied, a set of initial conditions have been 

considered; 𝜃0, �̇�0, �̈�0, 𝑥0, �̇�0 , �̈�0, 𝐹0. Both methodologies are able to keep the invert-

ed pendulum upright in the operating range for which they have been trained. In addi-

tion, the two methods converge towards their stationary states in a similar way. Below 

are four cases (Fig 5. to Fig. 8) in which the pendulum control is more complex; 

where �̈�0<0 and �̈�0>0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Control of the IPFC for a given case 1. Force evolution in time (left). Linear and angular 

accelerations’ convergence in time (right). 

 

 

 

 

 

 
 

 

 

 

 

 

 
Fig. 6. Control of the IPFC for a given case 2. Force evolution in time (left). Linear and angular 

accelerations’ convergence in time (right). 
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Fig. 7. Control of the IPFC for a given case 3. Force evolution in time (left). Linear and angular 

accelerations’ convergence in time (right). 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 8. Control of the IPFC for a given case 4. Force evolution in time (left). Linear and angular 

accelerations’ convergence in time (right). 

 

In addition to keeping the pendulum in an upright position, it is observed how the 

applied force is such that a tradeoff between �̈� and �̈� is obtained so that 𝜃, �̈� and �̈� are 

minimal. These do not become exactly zero because of the granularity of the problem 

considered. Increasing the number of membership functions would make the values in 

the steady state closer to zero. On the other hand, it would also increase the computa-

tional cost. However, to verify the algorithm proposed in this study (which is the main 

objective) is sufficient. 
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6 Conclusions 

 

A fast training algorithm for the control of symmetric systems has been proposed. Its 

effectiveness has been proven with the Inverted Pendulum + Free Cart system. The 

basis of the algorithm is a Fuzzy Inferencing System whose parameters have been 

optimized using different chained Genetic Algorithms. The training time is substan-

tially improved by dividing the workspace into blocks and gradually transmitting the 

information obtained to the following phases of the optimization process. Using a 

single GA for the optimization of the entire system has a computational cost of more 

than 2 hours, whereas this method required less than 10 seconds. Furthermore, such 

benefit is achieved while still proving a successful and efficient result competitive 

with the traditional approach. 
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