F EasyChair Preprint
 № 3708

The Riemann Hypothesis

Frank Vega

EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair.

THE RIEMANN HYPOTHESIS

FRANK VEGA

Abstract

In mathematics, the Riemann Hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part $\frac{1}{2}$. It is one of the seven Millennium Prize Problems selected by the Clay Mathematics Institute to carry a US $1,000,000$ prize for the first correct solution. In 1915, Ramanujan proved that under the assumption of the Riemann Hypothesis, the inequality $\sigma(n)<e^{\gamma} \times n \times \log \log n$ holds for all sufficiently large n, where $\sigma(n)$ is the sum-of-divisors function and $\gamma \approx 0.57721$ is the Euler-Mascheroni constant. In 1984, Guy Robin proved that the inequality is true for all $n>5040$ if and only if the Riemann Hypothesis is true. In 2002, Lagarias proved that if the inequality $\sigma(n) \leq H_{n}+\exp \left(H_{n}\right) \times \log H_{n}$ holds for all $n \geq 1$, then the Riemann Hypothesis is true, where H_{n} is the $n^{t h}$ harmonic number. We prove the Robin's inequality is true for every integer $n>5040$ that is not divisible by any prime $q_{m} \leq 47$. Besides, we demonstrate the Lagarias's inequality is true for every integer $n>5040$ when $n=r \times q_{m}$ and the Lagarias's inequality is true for r, where $q_{m} \geq 47$ denotes the largest prime factor of n. We finally show the union of these results implies the proof of the Lagarias's inequality and therefore, the Riemann Hypothesis must be true.

1. Introduction

As usual $\sigma(n)$ is the sum-of-divisors function of n Cho+07:

$$
\sum_{d \mid n} d
$$

such that $d \mid n$ means the integer d divides to n while $d \nmid n$ means the integer d does not divide to n. Define $f(n)$ to be $\frac{\sigma(n)}{n}$. Say Robins (n) holds provided

$$
f(n)<e^{\gamma} \times \log \log n
$$

The constant $\gamma \approx 0.57721$ is the Euler-Mascheroni constant, and log is the natural logarithm. Let H_{n} be $\sum_{j=1}^{n} \frac{1}{j}$. Say Lagarias (n) holds

2010 Mathematics Subject Classification. Primary 11M26; Secondary 11A41.
Key words and phrases. number theory, inequality, sum-of-divisors function, harmonic number, prime.
provided

$$
\sigma(n) \leq H_{n}+\exp \left(H_{n}\right) \times \log H_{n} .
$$

The importance of these properties is:
Theorem 1.1. [RH] If Robins(n) holds for all $n>5040$, then the Riemann Hypothesis is true [Rob84]. If Lagarias(n) holds for all $n \geq 1$, then the Riemann Hypothesis is true Lag02.

It is known that Robins(n) and Lagarias (n) hold for many classes of numbers n. We know this:

Lemma 1.2. [condition] If Robins(n) holds for some $n>5040$, then Lagarias (n) holds Lag02.

Here, they are some other results that we use:
Lemma 1.3. [basic-results] Robins (n) holds for every $n>5040$ that is not divisible by 2 [Cho+07]. In general, we know that if a positive integer $n>5040$ satisfies either $\nu_{2}(n) \leq 19$, $\nu_{3}(n) \leq 12$ or $\nu_{7}(n) \leq 6$, then Robins (n) holds, where $\nu_{p}(n)$ is the p-adic order of n : In basic number theory, for a given prime number p, the p-adic order of a positive integer n is the highest exponent ν_{p} such that $p^{\nu_{p}}$ divides n Her18].

Our goal is to prove our main two theorems:
Theorem 1.4. [1-main] Robins (n) holds for all $n>5040$ when a prime number $q_{m} \nmid n$ for $q_{m} \leq 47$.
Theorem 1.5. [2-main] Let $n>5040$ and $n=r \times q_{m}$, where $q_{m} \geq 47$ denotes the largest prime factor of n. We prove if Lagarias (r) holds, then Lagarias (n) holds.

Consequently, we finally conclude that
Theorem 1.6. [final] Lagarias(n) holds for all $n \geq 1$ and thus, the Riemann Hypothesis is true.

Proof. On the one hand, Lagarias(n) has been checked for all $n \leq 5040$ by computer. On the other hand, for all $n>5040$ we have that Lagarias (n) has been recursively verified due to lemma 1.2 [condition], theorems 1.4 [1-main] and 1.5 [2-main]. Indeed, for every natural number $n>5040$, there is always an integer s such that $n=s \times t, s$ is not divisible by any prime number greater than 47 and s is divisible by all the prime powers of n when the prime factors are lesser than 47 (in some cases, the only chance is that s could be lesser than or equal to 5040). In this way, we have that Lagarias(s) holds using the lemma 1.2 [condition] and theorem 1.4 [1-main] and therefore, with a multiplication of factor by factor we could obtain that Lagarias $(s \times t)$ holds
recursively over the theorem 1.5 [2-main]. In addition, we can omit the application of the lemma 1.2 [condition] and theorem 1.4 [1-main] when $s \leq 5040$ and obtain the same result, since we know that Lagarias (s) also holds for every natural number $s \leq 5040$. For example, we can show the number $n=17^{3} \times 19^{3} \times 53 \times 113^{2}>5040$ satisfies Lagarias (n), because of Lagarias $\left(17^{3} \times 19^{3}\right)$ holds by lemma 1.2 [condition] and theorem 1.4 [1-main] and therefore, Lagarias $\left(17^{3} \times 19^{3} \times 53\right)$ holds and next Lagarias $\left(17^{3} \times 19^{3} \times 53 \times 113\right)$ holds and finally Lagarias $\left(17^{3} \times\right.$ $19^{3} \times 53 \times 113^{2}$) holds using recursively the theorem 1.5 [2-main] just with a multiplication of factor by factor, where every factor is a prime number $q_{m} \geq 47$ such that $q_{m} \in\{53,113\}$. In conclusion, we show that Lagarias (n) holds for all $n \geq 1$ and therefore, the Riemann Hypothesis is true.

2. Known Results

We use the following knowledge:
Lemma 2.1. [sigma-bound] From the reference Cho+07, we know that:

$$
f(n)<\prod_{q \mid n} \frac{q}{q-1} .
$$

Lemma 2.2. [zeta] From the reference [Edw01], we know that:

$$
\prod_{k=1}^{\infty} \frac{1}{1-\frac{1}{q_{k}^{2}}}=\zeta(2)=\frac{\pi^{2}}{6}
$$

Lemma 2.3. [harmonic-bound] From the reference [Lag02], we know that:

$$
\log \left(e^{\gamma} \times(n+1)\right) \geq H_{n} \geq \log \left(e^{\gamma} \times n\right)
$$

3. A Central Lemma

The following is a key lemma. It gives an upper bound on $f(n)$ that holds for all n. The bound is too weak to prove Robins (n) directly, but is critical because it holds for all n. Further the bound only uses the primes that divide n and not how many times they divide n. This is a key insight.

Lemma 3.1. [pro] Let $n>1$ and let all its prime divisors be $q_{1}<$ $\cdots<q_{m}$. Then,

$$
f(n)<\frac{\pi^{2}}{6} \times \prod_{i=1}^{m} \frac{q_{i}+1}{q_{i}}
$$

Proof. We use that lemma 2.1 [sigma-bound]:

$$
f(n)<\prod_{i=1}^{m} \frac{q_{i}}{q_{i}-1}
$$

Now for $q>1$,

$$
\frac{1}{1-\frac{1}{q^{2}}}=\frac{q^{2}}{q^{2}-1} .
$$

So

$$
\begin{aligned}
\frac{1}{1-\frac{1}{q^{2}}} \times \frac{q+1}{q} & =\frac{q^{2}}{q^{2}-1} \times \frac{q+1}{q} \\
& =\frac{q}{q-1}
\end{aligned}
$$

Then by lemma 2.2 [zeta],

$$
\prod_{i=1}^{m} \frac{1}{1-\frac{1}{q_{i}^{2}}}<\zeta(2)=\frac{\pi^{2}}{6}
$$

Putting this together yields the proof:

$$
\begin{aligned}
f(n) & <\prod_{i=1}^{m} \frac{q_{i}}{q_{i}-1} \\
& \leq \prod_{i=1}^{m} \frac{1}{1-\frac{1}{q_{i}^{2}}} \times \frac{q_{i}+1}{q_{i}} \\
& <\frac{\pi^{2}}{6} \times \prod_{i=1}^{m} \frac{q_{i}+1}{q_{i}} .
\end{aligned}
$$

4. A Particular Case

We prove the Robin's inequality for this specific case:
Lemma 4.1. [case] Given a natural number

$$
n=2^{a_{1}} \times 3^{a_{2}} \times 5^{a_{3}} \times 7^{a_{4}}>5040
$$

such that $a_{1}, a_{2}, a_{3}, a_{4} \geq 0$ are integers, then Robins (n) holds for $n>$ 5040.

Proof. Given a natural number $n=q_{1}^{a_{1}} \times q_{2}^{a_{2}} \times \cdots \times q_{m}^{a_{m}}>5040$ such that $q_{1}, q_{2}, \cdots, q_{m}$ are distinct prime numbers and $a_{1}, a_{2}, \cdots, a_{m}$ are natural numbers, we need to prove

$$
f(n)<e^{\gamma} \times \log \log n
$$

that is true when

$$
\prod_{i=1}^{m} \frac{q_{i}}{q_{i}-1} \leq e^{\gamma} \times \log \log n
$$

according to the lemma 2.1 [sigma-bound]. Given a natural number $n=2^{a_{1}} \times 3^{a_{2}} \times 5^{a_{3}}>5040$ such that $a_{1}, a_{2}, a_{3} \geq 0$ are integers, we have

$$
\prod_{i=1}^{m} \frac{q_{i}}{q_{i}-1} \leq \frac{2 \times 3 \times 5}{1 \times 2 \times 4}=3.75<e^{\gamma} \times \log \log (5040) \approx 3.81
$$

However, we know for $n>5040$

$$
e^{\gamma} \times \log \log (5040)<e^{\gamma} \times \log \log n
$$

and therefore, the proof is completed for that case. Hence, we only need to prove the Robin's inequality is true for every natural number $n=2^{a_{1}} \times 3^{a_{2}} \times 5^{a_{3}} \times 7^{a_{4}}>5040$ such that $a_{1}, a_{2}, a_{3} \geq 0$ and $a_{4} \geq 1$ are integers. In addition, we know the Robin's inequality is true for every natural number $n>5040$ such that $\nu_{7}(n) \leq 6$, where $\nu_{p}(n)$ is the p-adic order of n Her18]. Therefore, we need to prove this case for those natural numbers $n>5040$ such that $7^{7} \mid n$. In this way, we have

$$
\prod_{i=1}^{m} \frac{q_{i}}{q_{i}-1} \leq \frac{2 \times 3 \times 5 \times 7}{1 \times 2 \times 4 \times 6}=4.375<e^{\gamma} \times \log \log \left(7^{7}\right) \approx 4.65
$$

However, for $n>5040$ and $7^{7} \mid n$, we know that

$$
e^{\gamma} \times \log \log \left(7^{7}\right) \leq e^{\gamma} \times \log \log n
$$

and as a consequence, the proof is completed.

5. A Better Upper Bound

Lemma 5.1. [up-bound] For $x \geq 11$, we have

$$
\sum_{q \leq x} \frac{1}{q}<\log \log x+\gamma-0.12
$$

where $q \leq x$ means all the primes lesser than or equal to x.
Proof. For $x>1$, we have

$$
\sum_{q \leq x} \frac{1}{q}<\log \log x+B+\frac{1}{\log ^{2} x}
$$

where

$$
B=0.2614972128 \cdots
$$

is the (Meissel-)Mertens constant, since this is a proven result from the article reference RS62]. This is the same as

$$
\sum_{q \leq x} \frac{1}{q}<\log \log x+\gamma-\left(C-\frac{1}{\log ^{2} x}\right)
$$

where $\gamma-B=C>0.31$, because of $\gamma>B$. If we analyze $\left(C-\frac{1}{\log ^{2} x}\right)$, then this complies with

$$
\left(C-\frac{1}{\log ^{2} x}\right)>\left(0.31-\frac{1}{\log ^{2} 11}\right)>0.12
$$

for $x \geq 11$ and thus, we finally prove

$$
\sum_{q \leq x} \frac{1}{q}<\log \log x+\gamma-\left(C-\frac{1}{\log ^{2} x}\right)<\log \log x+\gamma-0.12
$$

6. On a Square Free Number

We recall that an integer n is said to be square free if for every prime divisor q of n we have $q^{2} \nmid n[$ Cho +07 . Robins (n) holds for all $n>5040$ that are square free [Cho+07]. Let core (n) denotes the square free kernel of a natural number n (Cho+07].

Theorem 6.1. [strict] Given a square free number

$$
n=q_{1} \times \cdots \times q_{m}
$$

such that $q_{1}, q_{2}, \cdots, q_{m}$ are odd prime numbers, the greatest prime divisor of n is greater than 7 and $3 \nmid n$, then we obtain the following inequality

$$
\frac{\pi^{2}}{6} \times \frac{3}{2} \times \sigma(n) \leq e^{\gamma} \times n \times \log \log \left(2^{19} \times n\right)
$$

Proof. This proof is very similar with the demonstration in theorem 1.1 from the article reference [Cho+07]. By induction with respect to $\omega(n)$, that is the number of distinct prime factors of n Cho+07. Put $\omega(n)=m$ [Cho+07]. We need to prove the assertion for those integers with $m=1$. From a square free number n, we obtain

$$
\sigma(n)=\left(q_{1}+1\right) \times\left(q_{2}+1\right) \times \cdots \times\left(q_{m}+1\right)[\mathrm{eq}: 1]
$$

when $n=q_{1} \times q_{2} \times \cdots \times q_{m}$ Cho+07. In this way, for every prime number $q_{i} \geq 11$, then we need to prove

$$
\frac{\pi^{2}}{6} \times \frac{3}{2} \times\left(1+\frac{1}{q_{i}}\right) \leq e^{\gamma} \times \log \log \left(2^{19} \times q_{i}\right) \cdot[\mathrm{eq}: 2]
$$

For $q_{i}=11$, we have

$$
\frac{\pi^{2}}{6} \times \frac{3}{2} \times\left(1+\frac{1}{11}\right) \leq e^{\gamma} \times \log \log \left(2^{19} \times 11\right)
$$

is actually true. For another prime number $q_{i}>11$, we have

$$
\left(1+\frac{1}{q_{i}}\right)<\left(1+\frac{1}{11}\right)
$$

and

$$
\log \log \left(2^{19} \times 11\right)<\log \log \left(2^{19} \times q_{i}\right)
$$

which clearly implies that the inequality 6.2 is true for every prime number $q_{i} \geq 11$. Now, suppose it is true for $m-1$, with $m \geq 2$ and let us consider the assertion for those square free n with $\omega(n)=m$ [Cho+07]. So let $n=q_{1} \times \cdots \times q_{m}$ be a square free number and assume that $q_{1}<\cdots<q_{m}$ for $q_{m} \geq 11$.

Case 1: $q_{m} \geq \log \left(2^{19} \times q_{1} \times \cdots \times q_{m-1} \times q_{m}\right)=\log \left(2^{19} \times n\right)$.
By the induction hypothesis we have
$\frac{\pi^{2}}{6} \times \frac{3}{2} \times\left(q_{1}+1\right) \times \cdots \times\left(q_{m-1}+1\right) \leq e^{\gamma} \times q_{1} \times \cdots \times q_{m-1} \times \log \log \left(2^{19} \times q_{1} \times \cdots \times q_{m-1}\right)$ and hence

$$
\begin{gathered}
\frac{\pi^{2}}{6} \times \frac{3}{2} \times\left(q_{1}+1\right) \times \cdots \times\left(q_{m-1}+1\right) \times\left(q_{m}+1\right) \leq \\
e^{\gamma} \times q_{1} \times \cdots \times q_{m-1} \times\left(q_{m}+1\right) \times \log \log \left(2^{19} \times q_{1} \times \cdots \times q_{m-1}\right)
\end{gathered}
$$

when we multiply the both sides of the inequality by $\left(q_{m}+1\right)$. We want to show

$$
\begin{gathered}
e^{\gamma} \times q_{1} \times \cdots \times q_{m-1} \times\left(q_{m}+1\right) \times \log \log \left(2^{19} \times q_{1} \times \cdots \times q_{m-1}\right) \leq \\
e^{\gamma} \times q_{1} \times \cdots \times q_{m-1} \times q_{m} \times \log \log \left(2^{19} \times q_{1} \times \cdots \times q_{m-1} \times q_{m}\right)=e^{\gamma} \times n \times \log \log \left(2^{19} \times n\right) .
\end{gathered}
$$

Indeed the previous inequality is equivalent with

$$
q_{m} \times \log \log \left(2^{19} \times q_{1} \times \cdots \times q_{m-1} \times q_{m}\right) \geq\left(q_{m}+1\right) \times \log \log \left(2^{19} \times q_{1} \times \cdots \times q_{m-1}\right)
$$

or alternatively

$$
\begin{gathered}
\frac{q_{m} \times\left(\log \log \left(2^{19} \times q_{1} \times \cdots \times q_{m-1} \times q_{m}\right)-\log \log \left(2^{19} \times q_{1} \times \cdots \times q_{m-1}\right)\right)}{\log q_{m}} \geq \\
\frac{\log \log \left(2^{19} \times q_{1} \times \cdots \times q_{m-1}\right)}{\log q_{m}} .
\end{gathered}
$$

From the reference Cho+07, we have if $0<a<b$, then

$$
\frac{\log b-\log a}{b-a}=\frac{1}{(b-a)} \int_{a}^{b} \frac{d t}{t}>\frac{1}{b} .[\mathrm{eq} \mathrm{:} 3]
$$

We can apply the inequality 6.3 to the previous one just using $b=$ $\log \left(2^{19} \times q_{1} \times \cdots \times q_{m-1} \times q_{m}\right)$ and $a=\log \left(2^{19} \times q_{1} \times \cdots \times q_{m-1}\right)$. Certainly, we have

$$
\begin{gathered}
\log \left(2^{19} \times q_{1} \times \cdots \times q_{m-1} \times q_{m}\right)-\log \left(2^{19} \times q_{1} \times \cdots \times q_{m-1}\right)= \\
\log \frac{2^{19} \times q_{1} \times \cdots \times q_{m-1} \times q_{m}}{2^{19} \times q_{1} \times \cdots \times q_{m-1}}=\log q_{m} .
\end{gathered}
$$

In this way, we obtain

$$
\frac{q_{m} \times\left(\log \log \left(2^{19} \times q_{1} \times \cdots \times q_{m-1} \times q_{m}\right)-\log \log \left(2^{19} \times q_{1} \times \cdots \times q_{m-1}\right)\right)}{\log q_{m}}>
$$

Using this result we infer that the original inequality is certainly satisfied if the next inequality is satisfied

$$
\frac{q_{m}}{\log \left(2^{19} \times q_{1} \times \cdots \times q_{m}\right)} \geq \frac{\log \log \left(2^{19} \times q_{1} \times \cdots \times q_{m-1}\right)}{\log q_{m}}
$$

which is trivially true for $q_{m} \geq \log \left(2^{19} \times q_{1} \times \cdots \times q_{m-1} \times q_{m}\right)$ Cho +07 .
Case 2: $q_{m}<\log \left(2^{19} \times q_{1} \times \cdots \times q_{m-1} \times q_{m}\right)=\log \left(2^{19} \times n\right)$.
We need to prove

$$
\frac{\pi^{2}}{6} \times \frac{3}{2} \times \frac{\sigma(n)}{n} \leq e^{\gamma} \times \log \log \left(2^{19} \times n\right) .
$$

We know $\frac{3}{2}<1.503<\frac{4}{2.66}$. Nevertheless, we could have

$$
\frac{3}{2} \times \frac{\sigma(n)}{n} \times \frac{\pi^{2}}{6}<\frac{4 \times \sigma(n)}{3 \times n} \times \frac{\pi^{2}}{2 \times 2.66}
$$

and therefore, we only need to prove

$$
\frac{\sigma(3 \times n)}{3 \times n} \times \frac{\pi^{2}}{5.32} \leq e^{\gamma} \times \log \log \left(2^{19} \times n\right)
$$

where this is possible because of $3 \nmid n$. If we apply the logarithm to the both sides of the inequality, then we obtain
$\log \left(\frac{\pi^{2}}{5.32}\right)+(\log (3+1)-\log 3)+\sum_{i=1}^{m}\left(\log \left(q_{i}+1\right)-\log q_{i}\right) \leq \gamma+\log \log \log \left(2^{19} \times n\right)$.
From the reference Cho+07], we note

$$
\log \left(q_{1}+1\right)-\log q_{1}=\int_{q_{1}}^{q_{1}+1} \frac{d t}{t}<\frac{1}{q_{1}} .
$$

In addition, note $\log \left(\frac{\pi^{2}}{5.32}\right)<\frac{1}{2}+0.12$. However, we know

$$
\gamma+\log \log q_{m}<\gamma+\log \log \log \left(2^{19} \times n\right)
$$

since $q_{m}<\log \left(2^{19} \times n\right)$ and therefore, it is enough to prove

$$
0.12+\frac{1}{2}+\frac{1}{3}+\frac{1}{q_{1}}+\cdots+\frac{1}{q_{m}} \leq 0.12+\sum_{q \leq q_{m}} \frac{1}{q} \leq \gamma+\log \log q_{m}
$$

where $q_{m} \geq 11$. In this way, we only need to prove

$$
\sum_{q \leq q_{m}} \frac{1}{q} \leq \gamma+\log \log q_{m}-0.12
$$

which is true according to the lemma 5.1 [up-bound] when $q_{m} \geq 11$. In this way, we finally show the theorem is indeed satisfied.

7. Robin on Divisibility

Theorem 7.1. [btw2-3] Robins(n) holds for all $n>5040$ when $3 \nmid n$. More precisely: every possible counterexample $n>5040$ of the Robin's inequality must comply with $\left(2^{20} \times 3^{13}\right) \mid n$.

Proof. We will check the Robin's inequality is true for every natural number $n=q_{1}^{a_{1}} \times q_{2}^{a_{2}} \times \cdots \times q_{m}^{a_{m}}>5040$ such that $q_{1}, q_{2}, \cdots, q_{m}$ are distinct prime numbers, $a_{1}, a_{2}, \cdots, a_{m}$ are natural numbers and $3 \nmid n$. We know this is true when the greatest prime divisor of $n>5040$ is lesser than or equal to 7 according to the lemma 4.1 [case]. Therefore, the remaining case is when the greatest prime divisor of $n>5040$ is greater than 7. We need to prove

$$
f(n)<e^{\gamma} \times \log \log n
$$

that is true when

$$
\frac{\pi^{2}}{6} \times \prod_{i=1}^{m} \frac{q_{i}+1}{q_{i}} \leq e^{\gamma} \times \log \log n
$$

according to the lemma 3.1 [pro]. Using the formula [6.1, we obtain that will be equivalent to

$$
\frac{\pi^{2}}{6} \times \frac{\sigma\left(n^{\prime}\right)}{n^{\prime}} \leq e^{\gamma} \times \log \log n
$$

where $n^{\prime}=q_{1} \times \cdots \times q_{m}$ is the core (n) Cho +07 . However, the Robin's inequality has been proved for all integers n not divisible by 2 (which are bigger than 10) Cho+07. Hence, we only need to prove the Robin's inequality is true when $2 \mid n^{\prime}$. In addition, we know the Robin's inequality is true for every natural number $n>5040$ such that $\nu_{2}(n) \leq 19$, where $\nu_{p}(n)$ is the p-adic order of n Her18. Consequently, we only
need to prove the Robin's inequality is true for all $n>5040$ such that $2^{20} \mid n$ and thus,

$$
e^{\gamma} \times n^{\prime} \times \log \log \left(2^{19} \times \frac{n^{\prime}}{2}\right) \leq e^{\gamma} \times n^{\prime} \times \log \log n
$$

because of $2^{19} \times \frac{n^{\prime}}{2} \leq n$ when $2^{20} \mid n$ and $2 \mid n^{\prime}$. In this way, we only need to prove

$$
\frac{\pi^{2}}{6} \times \sigma\left(n^{\prime}\right) \leq e^{\gamma} \times n^{\prime} \times \log \log \left(2^{19} \times \frac{n^{\prime}}{2}\right)
$$

According to the formula 6.1 and $2 \mid n^{\prime}$, we have

$$
\frac{\pi^{2}}{6} \times 3 \times \sigma\left(\frac{n^{\prime}}{2}\right) \leq e^{\gamma} \times 2 \times \frac{n^{\prime}}{2} \times \log \log \left(2^{19} \times \frac{n^{\prime}}{2}\right)
$$

which is the same as

$$
\frac{\pi^{2}}{6} \times \frac{3}{2} \times \sigma\left(\frac{n^{\prime}}{2}\right) \leq e^{\gamma} \times \frac{n^{\prime}}{2} \times \log \log \left(2^{19} \times \frac{n^{\prime}}{2}\right)
$$

that is true according to the theorem 6.1 [strict] when $3 \nmid \frac{n^{\prime}}{2}$. In addition, we know the Robin's inequality is true for every natural number $n>5040$ such that $\nu_{3}(n) \leq 12$, where $\nu_{p}(n)$ is the p-adic order of n Her18]. Consequently, we only need to prove the Robin's inequality is true for all $n>5040$ such that $2^{20} \mid n$ and $3^{13} \mid n$. To sum up, the proof is completed.

Theorem 7.2. [btw5-7] Robins(n) holds for all $n>5040$ when $5 \nmid n$ or $7 \nmid n$.
Proof. We need to prove

$$
f(n)<e^{\gamma} \times \log \log n
$$

when $\left(2^{20} \times 3^{13}\right) \mid n$. Suppose that $n=2^{a} \times 3^{b} \times m$, where $a \geq 20$, $b \geq 13,2 \nmid m, 3 \nmid m$ and $5 \nmid m$ or $7 \nmid m$. Therefore, we need to prove

$$
f\left(2^{a} \times 3^{b} \times m\right)<e^{\gamma} \times \log \log \left(2^{a} \times 3^{b} \times m\right) .
$$

We know

$$
f\left(2^{a} \times 3^{b} \times m\right)=f\left(3^{b}\right) \times f\left(2^{a} \times m\right)
$$

since f is multiplicative Voj20. In addition, we know $f\left(3^{b}\right)<\frac{3}{2}$ for every natural number b Voj20]. In this way, we have

$$
f\left(3^{b}\right) \times f\left(2^{a} \times m\right)<\frac{3}{2} \times f\left(2^{a} \times m\right) .
$$

Now, consider

$$
\frac{3}{2} \times f\left(2^{a} \times m\right)=\frac{9}{8} \times f(3) \times f\left(2^{a} \times m\right)=\frac{9}{8} \times f\left(2^{a} \times 3 \times m\right)
$$

where $f(3)=\frac{4}{3}$ since f is multiplicative Voj20]. Nevertheless, we have

$$
\frac{9}{8} \times f\left(2^{a} \times 3 \times m\right)<f(5) \times f\left(2^{a} \times 3 \times m\right)=f\left(2^{a} \times 3 \times 5 \times m\right)
$$

and

$$
\frac{9}{8} \times f\left(2^{a} \times 3 \times m\right)<f(7) \times f\left(2^{a} \times 3 \times m\right)=f\left(2^{a} \times 3 \times 7 \times m\right)
$$

where $5 \nmid m$ or $7 \nmid m, f(5)=\frac{6}{5}$ and $f(7)=\frac{8}{7}$. However, we know the Robin's inequality is true for $2^{a} \times 3 \times 5 \times m$ and $2^{a} \times 3 \times 7 \times m$ when $a \geq 20$, since this is true for every natural number $n>5040$ such that $\nu_{3}(n) \leq 12$, where $\nu_{p}(n)$ is the p-adic order of n Her18. Hence, we would have
$f\left(2^{a} \times 3 \times 5 \times m\right)<e^{\gamma} \times \log \log \left(2^{a} \times 3 \times 5 \times m\right)<e^{\gamma} \times \log \log \left(2^{a} \times 3^{b} \times m\right)$
and
$f\left(2^{a} \times 3 \times 7 \times m\right)<e^{\gamma} \times \log \log \left(2^{a} \times 3 \times 7 \times m\right)<e^{\gamma} \times \log \log \left(2^{a} \times 3^{b} \times m\right)$
when $b \geq 13$.
Theorem 7.3. [btw11-47] Robins(n) holds for all $n>5040$ when a prime number $q_{m} \nmid n$ for $11 \leq q_{m} \leq 47$.

Proof. We know the Robin's inequality is true for every natural number $n>5040$ such that $\nu_{7}(n) \leq 6$, where $\nu_{p}(n)$ is the p-adic order of n Her18. We need to prove

$$
f(n)<e^{\gamma} \times \log \log n
$$

when $\left(2^{20} \times 3^{13} \times 7^{7}\right) \mid n$. Suppose that $n=2^{a} \times 3^{b} \times 7^{c} \times m$, where $a \geq 20, b \geq 13, c \geq 7,2 \nmid m, 3 \nmid m, 7 \nmid m, q_{m} \nmid m$ and $11 \leq q_{m} \leq 47$. Therefore, we need to prove

$$
f\left(2^{a} \times 3^{b} \times 7^{c} \times m\right)<e^{\gamma} \times \log \log \left(2^{a} \times 3^{b} \times 7^{c} \times m\right) .
$$

We know

$$
f\left(2^{a} \times 3^{b} \times 7^{c} \times m\right)=f\left(7^{c}\right) \times f\left(2^{a} \times 3^{b} \times m\right)
$$

since f is multiplicative Voj20. In addition, we know $f\left(7^{c}\right)<\frac{7}{6}$ for every natural number c Voj20. In this way, we have

$$
f\left(7^{c}\right) \times f\left(2^{a} \times 3^{b} \times m\right)<\frac{7}{6} \times f\left(2^{a} \times 3^{b} \times m\right) .
$$

However, that would be equivalent to

$$
\frac{49}{48} \times f(7) \times f\left(2^{a} \times 3^{b} \times m\right)=\frac{49}{48} \times f\left(2^{a} \times 3^{b} \times 7 \times m\right)
$$

where $f(7)=\frac{8}{7}$ since f is multiplicative Voj20. In addition, we know $\frac{49}{48} \times f\left(2^{a} \times 3^{b} \times 7 \times m\right)<f\left(q_{m}\right) \times f\left(2^{a} \times 3^{b} \times 7 \times m\right)=f\left(2^{a} \times 3^{b} \times 7 \times q_{m} \times m\right)$ where $q_{m} \nmid m, f\left(q_{m}\right)=\frac{q_{m}+1}{q_{m}}$ and $11 \leq q_{m} \leq 47$. Nevertheless, we know the Robin's inequality is true for $2^{a} \times 3^{b} \times 7 \times q_{m} \times m$ when $a \geq 20$ and $b \geq 13$, since this is true for every natural number $n>5040$ such that $\nu_{7}(n) \leq 6$, where $\nu_{p}(n)$ is the p-adic order of n Her18. Hence, we would have

$$
\begin{aligned}
f\left(2^{a} \times 3^{b} \times 7 \times q_{m} \times m\right) & <e^{\gamma} \times \log \log \left(2^{a} \times 3^{b} \times 7 \times q_{m} \times m\right) \\
& <e^{\gamma} \times \log \log \left(2^{a} \times 3^{b} \times 7^{c} \times m\right)
\end{aligned}
$$

when $c \geq 7$ and $11 \leq q_{m} \leq 47$.

8. Proof of Main Theorems

Theorem 8.1. Robins (n) holds for all $n>5040$ when a prime number $q_{m} \nmid n$ for $q_{m} \leq 47$.
Proof. This is a compendium of the results from the Theorems 7.1 [btw2-3], 7.2 [btw5-7] and 7.3 [btw11-47].
Theorem 8.2. Let $n>5040$ and $n=r \times q_{m}$, where $q_{m} \geq 47$ denotes the largest prime factor of n. We prove if Lagarias (r) holds, then Lagarias(n) holds.

Proof. We need to prove

$$
\sigma(n) \leq H_{n}+\exp \left(H_{n}\right) \times \log H_{n}
$$

We have that

$$
\sigma(r) \leq H_{r}+\exp \left(H_{r}\right) \times \log H_{r}
$$

since Lagarias (r) holds. If we multiply by $\left(q_{m}+1\right)$ the both sides of the previous inequality, then we obtain that

$$
\sigma(r) \times\left(q_{m}+1\right) \leq\left(q_{m}+1\right) \times H_{r}+\left(q_{m}+1\right) \times \exp \left(H_{r}\right) \times \log H_{r}
$$

We know that σ is submultiplicative (that is $\sigma(n)=\sigma\left(q_{m} \times r\right) \leq$ $\left.\sigma\left(q_{m}\right) \times \sigma(r)\right)$ Cho+07. Moreover, we know that $\sigma\left(q_{m}\right)=\left(q_{m}+\right.$ 1) Cho+07. In this way, we obtain that

$$
\sigma(n)=\sigma\left(q_{m} \times r\right) \leq\left(q_{m}+1\right) \times H_{r}+\left(q_{m}+1\right) \times \exp \left(H_{r}\right) \times \log H_{r} .
$$

Hence, it is enough to prove that

$$
\begin{aligned}
& \left(q_{m}+1\right) \times H_{r}+\left(q_{m}+1\right) \times \exp \left(H_{r}\right) \times \log H_{r} \\
& \leq H_{n}+\exp \left(H_{n}\right) \times \log H_{n} \\
& =H_{q_{m} \times r}+\exp \left(H_{q_{m} \times r}\right) \times \log H_{q_{m} \times r} .
\end{aligned}
$$

If we apply the lemma 2.3 [harmonic-bound] to the previous inequality, then we could only need to show that

$$
\begin{aligned}
& \left(q_{m}+1\right) \times \log \left(e^{\gamma} \times(r+1)\right)+\left(q_{m}+1\right) \times e^{\gamma} \times(r+1) \times \log \log \left(e^{\gamma} \times(r+1)\right) \\
& \leq \log \left(e^{\gamma} \times q_{m} \times r\right)+e^{\gamma} \times q_{m} \times r \times \log \log \left(e^{\gamma} \times q_{m} \times r\right) .
\end{aligned}
$$

We know this last inequality is true since we can easily check that the subtraction of

$$
\log \left(e^{\gamma} \times q_{m} \times r\right)+e^{\gamma} \times q_{m} \times r \times \log \log \left(e^{\gamma} \times q_{m} \times r\right)
$$

with
$\left(q_{m}+1\right) \times \log \left(e^{\gamma} \times(r+1)\right)+\left(q_{m}+1\right) \times e^{\gamma} \times(r+1) \times \log \log \left(e^{\gamma} \times(r+1)\right)$
is monotonically increasing as much as q_{m} and r become larger just starting with the initial values of $q_{m}=47$ and $r=1$, where q_{m} is a prime number and r is a natural number. Actually, this evidence seems more obvious when the values of q_{m} and r are incremented much more even for real numbers. Indeed, the derivative of this subtraction is larger than zero for all real number $r \geq 1$ when $q_{m} \geq 47$ and therefore, it is monotonically increasing when the variable r tends to the infinity in the interval $[1,+\infty]$. Since there is nothing that can avoid this increasing behavior since this subtraction is continuous in that interval, then we could state this theorem is always true.

In fact, a function $f(r)$ of a real variable r is monotonically increasing in some interval if the derivative of $f(r)$ is larger than zero and the function $f(r)$ is continuous over that interval [AVV06]. Certainly, the derivative of this subtraction is larger than zero over the evaluation of r in $[1,+\infty]$ just because of the impact that has the value of $q_{m} \geq 47$ in the whole differentiation, where we know the derivative of $\log x$ and $\log \log x$ is $\frac{1}{x}$ and $\frac{1}{x \times \log x}$ respectively [SLL09]. Of course, this result is not true for some small values in the range of $1<q_{m}<47$, that's why it's so important this detail. Consequently, if this subtraction is monotonically increasing for the real numbers, then this will be the same when $q_{m} \geq 47$ is a prime number and r is a natural number. In this way, we can claim that Lagarias (n) has been checked for $n=r \times q_{m}$ when Lagarias (r) holds and the largest prime factor q_{m} of n complies with $q_{m} \geq 47$.

Acknowledgments

I thank Richard J. Lipton for helpful comments.

References

[AVV06] Glen Anderson, Mavina Vamanamurthy, and Matti Vuorinen. "Monotonicity Rules in Calculus". In: The American Mathematical Monthly 113.9 (2006), pp. 805-816. DOI: 10. 1080/00029890.2006.11920367.
[Cho+07] YoungJu Choie et al. "On Robin's criterion for the Riemann hypothesis". In: Journal de Théorie des Nombres de Bordeaux 19.2 (2007), pp. 357-372. DOI: 10.5802/jtnb. 591.
[Edw01] Harold M. Edwards. Riemann's Zeta Function. Dover Publications, 2001. ISBN: 0-486-41740-9.
[Her18] Alexander Hertlein. "Robin's Inequality for New Families of Integers". In: Integers 18 (2018).
[Lag02] Jeffrey C. Lagarias. "An Elementary Problem Equivalent to the Riemann Hypothesis". In: The American Mathematical Monthly 109.6 (2002), pp. 534-543. DOI: 10.2307/2695443.
[RS62] J. Barkley Rosser and Lowell Schoenfeld. "Approximate Formulas for Some Functions of Prime Numbers". In: Illinois Journal of Mathematics 6.1 (1962), pp. 64-94. DOI: 10.1215/ijm/1255631807.
[Rob84] Guy Robin. "Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann". In: J. Math. pures appl 63.2 (1984), pp. 187-213.
[SLL09] Murray R. Spiegel, Seymour Lipschutz, and John Liu. Schaum's Outlines: Mathematical Handbook of Formulas and Tables. Vol. 2. McGraw-Hill New York, 2009. ISBN: 978-0-07-1548557.
[Voj20] Robert Vojak. "On numbers satisfying Robin's inequality, properties of the next counterexample and improved specific bounds". In: arXiv preprint arXiv:2005.09307 (2020).

CopSonic, 1471 Route de Saint-Nauphary 82000 Montauban, France E-mail address: vega.frank@gmail.com

