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Abstract
This paper compares different neural network based archi-
tectures on the spoken language identification task. To our
best knowledge such a comparison of different models on
the same dataset and the same set of languages does not yet
exist. We incorporate 7 different models which include the
latest architectures: a spectral images based Resnet model,
a Convolutional Neural Network, a Bi-directional Long
Short-Term Memory, a Convolutional Recurrent Neural Net-
work, Wav2Vec 2.0, a transformer and a conformer. We
also tackle audio with background noise and music by train-
ing on data with similar accoustics. We finally also show
that our models generalize well on third-party data.

1 Introduction & Related Work
Spoken language identification (LID) is the process of clas-
sifying the language spoken in a speech recording [1]. In
fact, it has been a research topic for a long time.

Up until the late 90s, the main focus for LID has been
the feature extraction, where language dependent features
have been extracted to classify the language. [1] sum-
marizes the typical approaches which include: spectral-
similarity, prosody, phone, multilingual speech units, word
Level and continuous speech recognition based approaches.
Spectral-similarity based approaches compute a set of short-
term spectra from training samples and compare them with
those of testing by calculating the distance between them.
Prosody-based approaches use features based on pitch es-
timates alone, while phone-recognition based approaches
hypothesize exactly which phones are being spoken as a
function of time and determines the language based on
the statistics of that phone sequence. Multilingual speech
units based approaches derive either a mixture of language
dependent and independent phones or by deriving tokens
automatically from training data. Word level based ap-
proaches handle an incoming utterance by processing it
through parallel language-dependent phone recognizers. This
is known as a bottom-up approach where phones are rec-
ognized first, followed by words, and the language after-
wards. Finally, continuous speech recognition approaches
create one speech recognizer per language during train-
ing, and then during testing, each of these recognizers is
run in parallel. The recognizer with the highest likelihood
is selected and its corresponding language used for train-
ing is the winning language. Later on, identity vectors
[2] have appeared during speaker verification systems and
have showed great success [3] including LID.

In the last years, neural networks achieved remarkable
results in AI and found their way into the LID domain as
well. Neural networks are used to do the feature extraction
as well as the whole classification tasks. For example, in
[4] and [5], the LID task is treated as an image classifica-
tion task where mel-spectrograms [6] are extracted from

the audio, transformed into images (either gray scale or
RGB) and then fed to a model for the classification. On
the other hand, other papers tackle the LID task in a simi-
lar fashion as automatic speech recognition (ASR). These
systems use acoustic features such as Mel Frequency Cep-
stral Coefficients (MFCCs) or log-mel spectrograms [6] as
input to the neural network architecture. In [7], the au-
thors extract MFCC features from the audio files and feed
those as input to 3 different neural network architectures:
convolutional neural network (CNN), convolutional recur-
rent neural network (CRNN) and CRNN with attention to
classify 13 Indian languages. Similarly, [8] uses MFCC
features [9] as input to a long short-term memory (LSTM)
architecture. Other works rely on i-vectors [10] as input to
the neural network [11].

Recently, transformer [12] based architectures became
popular in many fields such as ASR. In [13], a conformer
[14] has been used in a joint task between ASR and LID.
A decoder for each target language has been added for fea-
ture extraction followed by a ResNet architecture with 1D-
convolutional layers for LID. Wav2vec2.0 [15] is also one
of the latest models based on transformers to be used for
ASR and audio classification tasks. [16] has used a pre-
trained Wav2Vec 2.0 for speaker verification and LID by
building on the features created by Wav2Vec an average
pooling layer and a fully connected layer that is then fine-
tuned on the actual recognition task.

Although neural networks have been widely used for
LID, a detailed comparison of these approaches on a publicly-
available data set with the same set of languages has not
been done yet to our best knowledge. This is important
because with all the different models out there, it is dif-
ficult to compare the models and tell which one of them
works best when different datasets and languages are used.
In this work, we give an overview of the current state-of-
the-art neural network architectures for LID. We compare
and evaluate the performance of 7 different models on the
LID task for 6 European languages on two public available
data sets. These models include: a spectral images based
Resnet [17] model, a CNN [18], a Bi-directional LSTM
(BLSTM)[19], a CRNN [20], the self-supervised Wav2Vec
2.0 [15], a transformer [12] and a conformer [14]. We also
carry out an investigation on how noise and background
music can be tackled by incorporating corpora with differ-
ent acoustic conditions, which was also not done before on
all those different models yet to our best knowledge.

2 Model Architectures
In this work, seven different model architectures are com-
pared: a Spectral Images based model, a CNN, a BLSTM,
a CRNN, a Wav2Vec, a transformer and a conformer ar-
chitecture. We present the model architectures and the cor-
responding features which are mostly reported in literature
and which gives us the best results.



2.1 Spectral Images Based
This model follows the work in [5], where LID is treated
as an image classification task. The 40-dimensional mel-
spectrograms extracted from the raw audio are scaled to
RGB images resulting in the shape (40, T , 3) with T be-
ing the number of frames. These features are referred to as
spectral images. A pre-trained Resnet50 with 2 linear lay-
ers of size 2048 followed by a softmax layer is fine-tuned
on the spoken LID task by feeding in the spectral images.

2.2 Convolutional Neural Network
23-dimensional MFCCs from the raw audio are z-normalized
per sequence and are fed into a TDNN architecture follow-
ing [21], which is a 1D CNN with dilations. Table 1 shows
the TDNN architecture in detail.

Layer Layer context Total context In x out
Frame1 [t-2, t+2] 5 5Fx512
Frame2 {t-2, t, t+2} 9 1536x512
Frame3 {t-3, t, t+3} 15 1536x512
Frame4 {t} 15 512x512
Frame5 {t} 15 512x1500

Stats pooling [0,T} T 1500Tx3000
Segment6 {0} T 3000x512
Segment7 {0} T 512x512
Softmax {0} T 512xL

Table 1: TDNN architecture from [21]

2.3 Bi-directional Long Short-Term Memory
40-dimensional MFCCs which are z-normalized per se-
quence are fed as input to a BLSTM with 2 layers and 512
units each. The output layer combines the forward and
backward pass into a single vector and then feeds it to a
softmax layer. The vector is obtained by:

o= [−→o ,←−o ] (1)

where:
−→o =

∑
T
t=1
−−−−→
LSTM(ht)

T
(2)

←−o =
∑

1
t=T

←−−−−
LSTM(ht)

T
(3)

and h is the hidden unit and t is the frame index

2.4 Convolutional Recurrent Neural Network
This model combines the CNN and BLSTM models men-
tioned in the previous sections. First, the 23-dimensional
z-normalized MFCCs are fed into the CNN component fol-
lowed by the BLSTM architecture.

2.5 Wav2Vec 2.0
Wav2Vec 2.0 is a self-supervised model, pre-trained on un-
labeled data and can be fine-tuned on labeled data after-
wards. We first review the pre-training of the Wav2Vec
2.0 [15]. Then we introduce how to apply the pre-trained
model to downstream tasks. As shown in Figure 1 the
Wav2Vec 2.0 model consists of two parts: a front-end CNN
network followed by a Transformer model. Wav2Vec 2.0
takes the raw audio sequence xT

1 as input. Then, latent
speech representations zT1 are obtained followed by con-
textualized representations cT1 . The latent speech repre-
sentations are also quantized to qT1 . A masking scheme
is introduced here where part of the transformer’s input is

masked and the aim is to guess the masked latent feature
vector representation zt.

The loss used for self-supervised pre-training is defined
as follows:

L=
1

|Tmasked| ∑
t∈Tmasked

−log s(qt, ct)

∑q̃∈Q̃t
s(q̃t, ct)

(4)

where Tmasked are the masked samples and

s(qt, ct) = exp(
1
T
· qT1 ct
∥qt∥ · ∥ct∥

) (5)

with Q̃t containing the true sample qt and N-1 negative
samples and s(qt, ct) is a similarity function.

Figure 1: Wav2Vec 2.0 Architecture taken from [15]

Another model based on Wav2Vec 2.0 is the XLSR-53
[22] model. The model is pre-trained on 53 different lan-
guages (very inclusive languages from all over the world
and from very different kind of families) and overall 56k
hours from MLS [23], CommonVoice [24] and BABEL
[25]. Detailed description of both models are given in the
original papers [15] and [22].

In this work, 2 different setups are implemented for the
Wav2Vec 2.0 model:

• XLSR-finetune: fine-tuning of the Wav2Vec 2.0 XLSR-
53 [22] on the LID task using the raw audio as in-
put. The Wav2Vec 2.0 XLSR-53 model is modified
by adding two additional linear layers of size 1024 and
a softmax layer at the end.

• Wav2Vec-pre-train:
– Pre-training of the Wav2Vec 2.0 model on the LID

data only. Due to the size of the training data, the
model is reduced in the size and contains only 4 at-
tention heads, 8 layers, 256 hidden dimension, and
1024 intermediate dimension. Again, 2 linear lay-
ers and a softmax layer are added.

– Fine-tuning on the LID task.

2.6 Transformer
40-dimensional MFCCs which are z-normalized per se-
quence are fed as input to a Transformer architecture with
only an encoder of 10 layers, 4 attention heads, 256 model
dimension and 1024 hidden dimension. No positional en-
coding was used. The frames obtained after the encoder
layer are pooled by their mean to a single vector. A linear
layer was added before the encoder with size 256 and one
after with size 1024 followed by a softmax.



2.7 Conformer
Similar to the Transformer, same feature extraction and
model architecture are used with the exception of adding
intermediate depth-wise convolutions inside the conformer
block of kernel size 31.

3 Experiments and Results
3.1 Training and Testing Corpora
In this work, the following 6 European languages have
been chosen for language identification: English, German,
French, Spanish, Italian and Russian. The training and
testing data are taken from two public data sets which al-
lows readers to easily reproduce the results obtained in this
work 1. The data sets cover different acoustic conditions,
e.g. clean speech and speech with background noise and
music. The two public data sets are VoxForge [26] and
Voxlingua107 [27] and are introduced briefly below.

3.1.1 VoxForge

VoxForge [26] includes material from popular classic fic-
tion, poetry, plays and religious texts. It mainly consists of
audio utterances with clean speech and are on the shorter
side. Out of available languages the 6 languages mentioned
above are chosen.

3.1.2 Voxlingua107

On the other hand, Voxlingua107 [27] includes speech seg-
ments that are automatically extracted from Youtube videos.
The audio consists of noise and music in the background
and is a more realistic speech collection. The videos are
segmented to shorter segments with around 10 seconds of
speech. The full training set consists of 107 languages but
we only select the same 6 languages as for VoxForge 2.

3.1.3 Corpus Splits

Set Characteristic English German Russian Italian Spanish French
Avg Length [s] 5 5 8 7 8 6
# of Speakers 291 90 193 152 280 195Train
# of Hours [h] 13.6 13.6 13.6 13.6 13.6 13.6
Avg Length [s] 5 5 5 7 7.5 6.5
# of Speakers 27 7 7 16 10 8Validation
# of Hours [h] 1 1 1 1 1 1
Avg Length [s] 5 5 3 7 7 6
# of Speakers 41 7 8 15 18 9Test
# of Hours [h] 3 3 3 3 3 3

Table 2: Data Statistics on VoxForge

Set Characteristic English German Russian Italian Spanish French
Avg Length [s] 10.5 11 10.5 9 10 9
# of Speakers 199 194 126 185 207 139Train
# of Hours [h] 13.6 13.6 13.6 13.6 13.6 13.6
Avg Length [s] 10.5 11 10 8 10 9
# of Speakers 22 20 10 18 7 8Validation
# of Hours [h] 1 1 1 1 1 1
Avg Length [s] 11 10.5 10 9.5 10.5 9.5
# of Speakers 62 52 33 44 34 27Test
# of Hours [h] 3 3 3 3 3 3

Table 3: Data Statistics on Voxlingua6

There is no pre-defined split into train, validation and
test sets available. Therefore, we create these sets for each
data source with the following constrains: no speaker over-
lap in the different sets, different accents and gender in
all sets and the same prior probabilities for each language.
Overall, each data set and each language consists of 7000
utterances for training, 500 utterances for validation and

1Link to the data splits will be provided later.
2We call this dataset Voxlingua6.

1500 utterances for testing. Tables 2 and 3 below show the
data statistics on our data used.

3.1.4 Voxlingua107 Dev Set

Voxlingua107 provides a dedicated development set, which
contains a few samples for most of the 107 languages but
is not balanced as shown in Table 4. The utterances within
this set contain audio with more background noise. We
used the data set for more insights of the models’ perfor-
mance.
Characteristic English German Russian Italian Spanish French
Avg Length [s] 11.5 10 11.5 8 10.5 10
# of Speakers 80 82 29 49 55 100
# of Samples 80 82 29 49 55 100

Table 4: Data Statistics on the Voxlingua Dev set

3.2 Experimental Setup
3 different dataset settings are used for the model train-
ing. Each of the models are trained only on voxForge and
VoxLingua6 as well as on both sets. We add cross data
set evaluation to see the performance gain when switching
from a single data set to both sets. The normal training
includes the whole utterance, but an alternative model is
trained on a reduced audio length. In such a case the la-
tency is low and language dependent actions can be trig-
gered earlier. The reduced audio lengths chosen are 3 and
5 seconds. The average length for the different data sets
are shown in Table 2 and Table 3.

Finally, a data augmentation scheme called SpecAug-
ment [28] is included for all models. All our models are
implemented in the pyTorch framework [29] and the Wav2Vec
models are from Hugging Face [30].

3.3 Training and Hyper-parameters
For the spectral images based model, stochastic gradient
descent with a maximum learning rate of 0.1 and 0.9 mo-
mentum are used. 1-Cycle learning rate scheduler [31] is
used with cycle length of 8, which anneals the learning rate
from an initial learning rate to a maximum learning rate of
0.1 and then back to some minimum learning rate much
lower than the initial one.

For the CNN, BLSTM and CRNN models, AdamW
optimizer [32] and constant learning rate of 0.001 are used
as well as dropout [33] of 0.3 right after every fully con-
nected layer.

For XLSR-finetune, AdamW optimizer and a linear learn-
ing rate scheduler with 500 warmup steps is used, which
linearly increases the learning rate to a maximum of 3e-4
and then linearly decreases it again.

For Wav2Vec-pre-train, pre-traning is done with the
contrastive loss, AdamW optimizer and a linear learning
rate scheduler with 9,000 warm up steps and a maximum
learning rate of 5e-5 are used. For fine-tuning, AdamW
optimizer and a linear learning rate scheduler with 5000
warm up steps and a maximum learning rate of of 3e-4.

For Transformer and Conformer, AdamW optimizer
and a linear scheduler with a wamup of 1/3 the total num-
ber of steps and a maximum learning rate of 0.001 are used.

All models use the cross entropy loss for training ex-
cept for the pre-training of Wav2Vec-pre-train and are trained
for 32 epochs except the spectral images based.

3.4 Results and Discussion
Table 3.4 summarizes the size of each model trained. Be-
sides the XLSR-finetune model, all models are designed to



Model Spec-
Augment

VoxForge Voxlingua6 VoxForge+Voxlingua6
VoxForge Voxlingua6

Input Length [s]
3 5 full 3 5 full 3 5 full 3 5 full

Spectral Images no 5.01 3.46 2.92 16.03 9.12 6.10 4.78 2.98 2.12 14.15 7.68 4.57

BLSTM no 9.86 4.35 4.97 21.41 14.32 9.12 7.99 4.72 3.74 19.88 11.95 8.73
yes 6.45 3.97 3.66 19.85 11.24 8.01 6.14 3.10 2.79 16.78 11.12 7.31

CNN no 6.47 4.22 3.15 20.78 10.16 7.02 7.82 3.23 2.91 19.13 11.01 6.91
yes 6.03 3.87 3.05 17.25 9.39 7.54 5.89 2.76 2.11 16.45 9.93 5.23

CRNN no 5.46 3.97 3.92 19.64 9.91 6.96 5.03 3.04 2.68 14.17 7.84 4.21
yes 4.07 1.96 1.54 16.88 8.78 6.43 4.11 1.45 1.01 13.83 6.76 3.97

XLSR-finetune yes 2.97 1.32 1.12 6.43 3.68 2.31 2.12 0.98 0.33 4.78 2.95 1.47
Wav2Vec-pre-train yes 10.53 7.24 3.81 24.05 14.92 8.65 9.21 6.32 4.22 22.04 12.11 7.29
Transformer yes 5.13 3.72 2.88 16.91 10.11 6.77 4.38 2.93 2.09 14.09 7.02 4.00
Conformer yes 3.24 1.89 1.31 9.22 5.56 4.41 2.82 1.26 0.93 6.67 4.63 2.69

Table 5: Error Rates in [%] for all the models trained on the different datasets

have a comparable number of parameters.

Model # of Parameters [million]
Spectral Images 23.5
BLSTM 8.5
CNN 6.0
CRNN 19.5
XLSR-finetune 316.0
Wav2Vec-pre-train 11.7
Transformer 8.0
Conformer 15.5

Table 6: Total Number of Parameters of Each Model

3.4.1 VoxForge and Voxlingua
Table 3.3 summarizes the comparison of the different mod-
els trained on the different data sets and the different au-
dio length. The table shows that all models perform better
on VoxForge than Voxlingua6 due to the nois accoustics
found in the latter. XLSR-finetune model outperforms all
the other models. This is mainly due to the large model
size (316 million parameters) and the very long number of
hours that the model was pre-trained on. Therefore, in or-
der to be fair, we have to look at the table while ignoring
that model and compare the other models. We therefore
observe that the Conformer model gives the best results
among all models on all datasets: VoxForge, Voxlingua6
and the combination of both. The results are also very im-
pressive and close to the XLSR-finetune model knowing
the former is only trained on our relatively small datasets
and number of parameters. The CRNN model comes in
second place after adding SpecAugment followed by the
Transformer. The spectral images based model also shows
some promising results. This can be explained by the fact
that mel-spectograms converted to images can be more ro-
bust than MFCCs with capturing language features. Fur-
thermore, we also deduce that training on noisy data can
help tackle noise and background music and that is by
training on Voxlingua6. Training on both datasets also
boosts the performance on each of the datasets and makes
the model more robust. This can be seen in all models
that when trained on the combination of the datasets, the
model’s performance is boosted on the individual datasets.

3.4.2 Voxlingua107 dev set
Table 3.4.2 shows the results on the dedicated Voxlingua107
dev set, where the model has been trained on the full utter-

Model Error Rate [%]

Spectral Images 12.44
BLSTM 11.24
CNN 7.18
CRNN 11.35
XLSR-finetune 2.09
Wav2Vec-pre-train 11.26
Transformer 8.56
Conformer 5.27

Table 7: Error Rates [%] of all models tested on Voxlingua
Dev set

ance including SpecAugment. Ignoring the XLSR-finetune
results for the same reason mentioned in the previous sec-
tion, the Conformer model also gives the best results with
5.27% error rate. The CNN model surprisingly comes in
the second place with 7.18% error rate followed by Trans-
former and BLSTM. Other models show some promising
results as well. The models trained in this work seem to be
robust and can generalize well on unseen harder data.

4 Conclusions
In this work, we implemented different neural network ar-
chitectures and investigated the different approaches that
can be used for LID. We also utilized the latest state-of-
the-art (SOTA) models such as Wav2Vec 2.0 [15], Trans-
former [12] and Conformer [14] for LID. This comparison
including the latest models has not been done yet to our
knowledge. We also tried to tackle data with background
noise and music by training on acoustically matching data.
We concluded that the Conformer model was the best per-
forming model and the SOTA for not only speech recog-
nition but also LID. We also observed that simple neural
networks with very few parameters are very good for LID.
A larger model does not necessarily mean a better perfor-
mance as seen with the Conformer, Transformer and CNN
models, and pre-training on long number of hours helps
a lot as seen with the XLSR-finetune model and with our
training on both datasets. In the future, several things can
still be explored such as adding more languages from dif-
ferent roots. It would be also interesting to see if adding
any phonetic information to the models as done in [34] can
help boost the performance even more.
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