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Abstract—Patients suffering from chronic conditions may need
to make frequent decisions about the management of their condi-
tion in partnership with their health professionals. However, this
may not be possible as appointments are not always scheduled
according to necessity but instead at a fixed frequency. Remote
monitoring technology has the potential to generate patient data
but without intelligent systems capable of analysing the data and
offering advice, more data just increase the person’s dependency
on clinical staff for its interpretation. Decision-support systems
that can give people more autonomy in the management of their
condition can therefore benefit both the affected person and
clinicians. We propose the use of Dynamic Bayesian Networks
built from expert knowledge to interpret data and support
decision-making, offering advice to patients suffering from a
chronic condition. We argue that expert knowledge is needed
as well as data to build such a decision-support system as the
data that would be required to use machine learning will never
be available in the current clinical system with all treatment
decisions made at appointments scheduled at fixed intervals.
We illustrate the methodology using a case study in Gestational
Diabetes.

Index Terms—Dynamic Bayesian Networks, Chronic diseases,
Patient monitoring, Gestational Diabetes Mellitus

I. INTRODUCTION

People suffering from chronic conditions whose treatment
needs to be adjusted must wait for their next appointment
with a clinician. From the point of view of a clinician, the
frequent appointments needed to manage the condition effec-
tively may be a burden, especially when some patients require
no modification to their treatment. The development of sensor
and communication technologies has made it possible to keep
track of vital signs and monitor health using simple devices
and tools such as smartwatches, smart bands and phone apps.
However, the advance in technology able to collect data has
not been accompanied by progress in the interpretation of the
data generated. Without tools that can process and analyse
data in real time, the use of these new technologies to manage
chronic health conditions will be limited as clinicians will not
have the resources to analyse the quantity of data generated.

Gestational Diabetes Mellitus (GDM) is a condition that de-
velops during pregnancy and require close clinical supervision
because of its consequences for both the mother and infant.
The blood glucose levels (BGL) of the pregnant women are
recorded daily as well as dietary and lifestyle factors. Women
with GDM may be seen at hospitals and clinics, for example in
fortnightly appointments, when the treatment can be adjusted
depending on how well the person’s BGL is controlled and on
their treatment adherence. Some women are able to control
their BGL by following a diet and exercise routine whilst
others need medication and frequent adjustments to the dose
taken.

Both patients and clinicians could benefit from a deci-
sion support tool to monitor patients’ BGL to optimize the
frequency of clinic appointments and to further encourage
the person to take more autonomy in the management of
their condition. In Section II we show that BGL control is
complicated by the person’s adherence to the recommended
diet and lifestyle regimes, suggesting that simple deterministic
rules will not be adequate.

We therefore propose a methodology to develop a prob-
abilistic model that takes into account the uncertainty and
dynamics of a disease progression. This model would be
embedded in a decision support system that could be used
to allow increase in patient independence and reduce the
frequency of appointments for patient monitoring when no
adjustment to treatment is necessary. We demonstrate the
methodology using a case study of GDM.

A. Dynamic Bayesian Networks

Bayesian Networks (BNs) are probabilistic graphical models
consisting of a set of nodes and arcs. The nodes represent
random variables and the arcs their direct probabilistic inter-
actions. BNs are widely used in medicine and they offer a
natural way of modelling uncertainties involved in diagnosis,
treatment selection and prognosis of a disease ( [1], [2] and
[3]) .



Dynamic Bayesian networks (DBNs) can incorporate the
causal and temporal nature of medical domain knowledge
elicited from domain experts and offer detailed prognostic
predictions [4]. They were first proposed by [5] and can be
seen as an extension to BNs that enables modelling of changes
over time (e.g., [5], [6], [7], [8]). A DBN is composed by a
set of static and dynamic variables (or nodes), organised in
‘time slices’. An intra-time-slice arc connects variables in the
same time slice, while the inter-time-slice arcs represents the
relationship between variables in different time slices.

It is assumed that the time is discretized into a set of
fixed time slices. Conditional probability distributions (CPDs),
also called conditional probability tables (CPTs) in the dis-
crete case, model the relationships between variables. Both
the structure and the CPDs do not change over time [8].
Extensions of DBNs were proposed by relaxing some of the
assumptions described previously (for example, [9], [7], [10],
[11] and [12]).

II. GESTATIONAL DIABETES MELLITUS

During pregnancy, the body produces hormones that can
have a blocking effect on insulin. Gestational diabetes [13]
is a condition in which a hormone produced by the placenta
prevents the body from using insulin effectively, therefore the
level of glucose in the blood remains high. To compensate
the increased amount of glucose in the blood, the body
should produce more insulin. Occasionally, the amount of
insulin produced is not enough to transport glucose into the
cells, or the body cells become more resistant to insulin.
Gestational Diabetes Mellitus can therefore be defined as
carbohydrate intolerance ([14], [15]). Complications related
to GDM include fetal macrossomia, preterm delivery, clinical
neonatal hypoglycemia and cesarean delivery ([16], [17], [18]).
Evidence suggests that early treatment in order to maintain
normal glucose levels can reduce future complications ([19]).

A. GDM management practice

Women with GDM need to control their blood glucose
levels at fasting time (before breakfast) and after each meal.
Lifestyle advice is provided as soon as a diagnosis is given,
including the amount of carbohydrate ingested and appropriate
exercise. Women are asked to record their blood glucose levels
in a logbook (see Figure 1) 4 times a day: when they wake
up, after breakfast, after lunch, and after dinner.

They are also requested to use the same logbook for
comments on their lifestyle choices. As these choices have
an impact on the person’s blood glucose levels (BGL), they
are necessary information for the clinician when selecting the
best treatment for a specific person at a specific time of the
day. The times of the day are often treated separately and the
best treatment is selected based on the blood glucose control at
that specific time of the day. Some people can manage their
blood glucose levels just by following the diet and exercise
recommendations throughout the pregnancy, while others need
medication such as metformin and or insulin either because

Fig. 1. Simulated logbook page showing how BGL and occasionally medi-
cation, diet and exercise information are recorded.

they are unable to comply with the recommendations or be-
cause diet and exercise alone are not enough to maintain their
blood glucose at a normal level. Some people diagnosed with
as GDM can control their BGL without needing medication at
any time of the day, some need medication at specific times
and others at all times.

People with GDM are managed in community settings led
by a midwife when medication is not required, BGL levels
are maintained in the ideal range and there is no risk due
to comorbidities. Decisions regarding the treatment are made
based on how well the BGL is controlled and adherence to
treatment. People have appointments that in general occur
fortnightly until the delivery decision is made by the clinicians.
The clinicians decide which is the best delivery age depending
on the blood glucose control, if the person is taking any
medication and considering other obstetric risks.

B. GDM management data

A dataset containing 127 people diagnosed with GDM in
the Newham University Hospital, part of the Barts Health NHS
Trust in London was collected as part of an audit of GDM
management and made available for this work1. The variables
include age, ethnicity, BMI and other demographic informa-
tion, information about blood tests (RPG, OGTT, HbA1c),
scan results, delivery and neonatal outcomes, and data such
as blood glucose monitoring and lifestyle choices (Figure 1).

The dataset contains information about treatment or adjust-
ment of the treatment prescribed during hospital visits. In
the dataset, only appointments in which the treatment was
modified were recorded so that it is not possible to know
how many appointments each woman had. The distribution
of treatment by patient can be seen in Table I. The diet only
category represents women that did not take medication at any
time of the day at any point during the pregnancy.

1Clinical Audit of the Diabetes in Pregnancy (Gestational Diabetes) Path-
way ID number 9861, approved and registered with Barts Health NHS Trust.



TABLE I
DISTRIBUTION OF TREATMENT TYPE.

Treatment Number of patients (%)
Diet 52 (40,9%)

Insulin only 19 (15%)
Metformin 32 (18,9%)

Metformin + Insulin 24 (25,2%)

Fig. 2. Distribution of number of days of CBG recorded.

TABLE II
DISTRIBUTION OF COMMENTS ON CARBOHYDRATE (CHO) INTAKE AND

EXERCISE BY TYPE.

CHO intake Exercise
Less than usual 0.88% 89.66%

Usual 4.85% 3.45%
More than usual 94.27% 6.90%

117 / 127 people recorded their capillary blood glucose
(CBG) measurements 4 times a day, occasionally adding
comments about diet, exercise, medication taken and reasons
for not recording CBG measurements. These comments were
entered as free text (see Figure 1) and were sometimes difficult
to relate to a specific CBG measurement. The distribution of
the number of days of CBG measurements recorded (Figure
2) reflects the testing regimen (pregnant women are in general
tested at 16 and 24 weeks of pregnancy).

For the 117 people with recorded CBG measurements, 84
had one or more comments on the diet (generally regarding
carbohydrate intake), exercise, medication taken, other health
issues or missed CBG recordings. Comments specifically
about the diet and exercise were recorded by 48 people. The
maximum number of comments recorded per person was 30.
Also, 50% of the people that recorded comments regarding diet
and exercise recorded less than 3 comments. Table II shows
the distribution of the comments on diet and exercise by type.

C. Existing Systems for GDM Management

Some studies suggest that GDM treatment is not cost-
effective ([20], [21]) and it is likely that the cost of a clinic
appointment every 14 days contributes to this. We briefly
survey existing work that has attempted to improve this.
Telemedicine can reduce the need for clinic visits and can
improve the management of GDM ([22], [23]). Tools have
been developed for GDM management, mainly focusing on

blood glucose control but there is less emphasis on increasing
the affected person’s autonomy.

Some tools (for example, [24] and [25], [26] and [27])
allow the BGL to be monitored remotely. Other tools focus on
the diet recommendations since reducing dietary carbohydrate
helps control BGL. In [28], the authors propose the use
of neural networks to estimate the energy expenditure and
determine a meal plan for people with GDM. Tools and models
have been also used to predict the person’s BGL. In [29],
gradient boosting models are used to predict postprandial
blood glucose based on the meal glycemic load, amount of
carbohydrates and starch in the meal, type of meal, amount
of food consumed 6 hours before the current meal and other
factors. [30] developed an app that collects information about
meals, exercises and sleep and using this information predicts
the BGL of people suffering from GDM. The app depends
on the person being able to enter the exact amount of food
ingested, does not consider medication and is supposed to be
used only by women in the third trimester of pregnancy.

DIABNET ([31], [32]) is a tool that offers therapy plan-
ning for GDM. The model’s main parameters are insulin
effectiveness, carbohydrate availability and insulin adequacy.
The model uses information about BGL, meals and ketonuria
to suggest therapy adjustments. A rule is used to propose
quantitative insulin dose modifications and dietary advises are
also supposed to be offered. The tool was developed to assist
clinicians with dietary and insulin therapy adjustments and it is
not directed for patient use. Sinedie ([33], [34]) is a web-based
platform designed to monitor pregnant women suffering from
GDM remotely using BGL data, information about diet and
ketonuria. The person’s metabolic condition is analysed by a
rule-based knowledge base that generates therapy adjustment
recommendations. The system offers dietary advice to patients
whilst proposed adjustments in insulin dose are sent to clini-
cians. The use of the tool was compared to the standard care
and the number of face-to-face hospital visits was reduced,
but clinicians contacted patients by phone, which does not
happened in standard care.

Although tools were developed to support GDM man-
agement, they do not seem to target patient independence
regarding the management of their condition. We propose a
probabilistic model to be embedded in a tool to be used by
people with GDM, using only the data that is already recorded.

III. METHODOLOGY FOR MODEL BUILDING

When working with BNs and DBNs it is possible to build
the structure of the model and define the CPDs using expert
knowledge, data or hybrid approaches. This section explains
the approach used to define the structure and CPDs of the
model.

A. Defining the structure

The structure of the model, including the choice of vari-
ables, was elicited from experts. A team of 3 clinicians and
a midwife composed the panel of experts. Regular meetings
were conducted to build and validate the structure of the



model. The structure uses idioms ([35], [36], [37]) and medical
idioms [38]. All variables in the model are discrete, i.e. they
have a finite number of states. The software AgenaRisk [39]
was used to build the models.

B. Options for Defining the CPTs

The data needed to learn the BN’s CPTs are not available
within the current health system since the treatment decisions
are made at appointments scheduled at fixed intervals. Addi-
tionally, the BN model contains latent variables, so called be-
cause they correspond to underlying states rather than directly-
observed quantities. Our approach is therefore to define all
CPTs using expert knowledge .

However, eliciting CPTs directly from experts can be cum-
bersome task, rarely cost-effective, and can result in incoherent
distributions ([40], [41]). When the variables in the BN are
discrete and their states are expressed on an ordinal scale, the
use of ranked nodes [40] can simplify the process of eliciting
CPTs. In our model, the CPTs of the variables were defined
using three techniques: rules, ranked nodes as presented in
[40] and an elaboration of this, explained in the next section.

C. Use of Ranked Nodes for Defining the CPTs

The method of using ranked nodes allows the variable
defined as ranked to be a weighted average of its parents. It
is assumed that each state of the variable corresponds to one
subinterval of [0,1]. A doubly truncated Normal distribution
with mean µ defined as the weighted average of the parent’s
variable and variance σ2 is used to calculate the probability
of each state of the variable as the probability of a random
variable X ∼ TN(µ, σ2) belonging to each of the sub-
intervals.

Even when it is illogical to define the variable as a weighted
average of its parents, the use of probability distributions with
parameters depending on the parent variables can facilitate the
construction of the CPTs. We use a doubly truncated Normal
distribution on the interval [0,1], with both the mean µ and
the variance σ2 defined depending on assumptions made about
the combination of the parents’ states and their relationships.
We chose to use a Truncated Normal distributions as used as
in [40] because we found that it is easy to define the mean
and variance using logic extracted from expert knowledge, but
other probability distributions could be used.

IV. DBN FOR GLUCOSE CONTROL SUPPORT

In this section, we explain the model’s variables, CPTs
and structure. In Section IV-A we describe the variables that
represent the model’s input. In Sections IV-B, IV-C, IV-D and
IV-E we describe fragments of the model. In Section IV-F
we suggest how the model should be used. The complete BN
model is shown in Figure 3.

A. Evidence variables

The variables representing the model’s input are called
evidence variables and use the daily records kept by women
with GDM. In our model the evidence variables (shaded grey
in Figure 3) are:

• CBG measurement: the BGL measured using the capillary
blood glucose test,

• Carbohydrate intake: the amount of carbohydrate in the
meal compared with the usual amount and

• Exercise after meal: the amount of exercise after the meal,
also compared to usual routine.

The meaning of these variables varies depending on the time
of the day the tool is used: when using the tool at fasting
time (just after waking up) the CBG measurement is set from
a measurement at that time, but Carbohydrate intake and
Exercise after meal are given by what happened at the end
of the previous day.

The additional variable Data input is not directly entered but
inferred from the other inputs. It is used to handle the case that
the woman with GDM does not enter any information for the
other inputs for the specific time on a given day. Rather than
using a prior distribution for the variables CBG measurement,
Carbohydrate intake and Exercise after meal, the distributions
used when evidence is not entered depend on Data input.
If Data input is No, past information about the person is
used instead of a prior since data was not entered. If the
Data input is yes, these variables have a uniform distribution.
This technique prevents the information entered from flowing
backwards to the previous day’s variables.

B. Alternative explanation for hyperglycemia episodes

The variable Glycemia explanation represents whether there
is an alternative explanation for hyperglycemia that is not
directly a symptom of GDM, either because the person had a
meal with high amount of carbohydrates or because the person
did not exercise after the meal (see Figure 4). Since the expla-
nation for a hyperglycemia episode is a balance between the
carbohydrate intake and exercise, an increase in carbohydrate
intake could, for example, be compensated by more intense
exercising. We considered that the weight of carbohydrate
intake variable to be twice as the weight of the exercise
variable, meaning that even a small increase in carbohydrate
ingested would require a lot more exercise to compensate for
the effect on the BGL and avoid hyperglycemia.

We use the methodology in section III-C to define the
CPT of the variable Glycemia explanation. The mean of the
distribution for each combination of the states of Carbohydrate
intake and Exercise after meal is defined by the weighted
average of the combination, with weight 2 for Carbohydrate
intake and 1 for exercise. The variance is defined following
the logic: when the states of Carbohydrate intake and Exercise
after meal have the same effect on the BGL (such as eating less
carbohydrate and exercising more) the variance is small. When
the states of Carbohydrate intake and Exercise after meal have
an opposing effect on the BGL the variance is larger. If only
one of the diet or exercise differs from usual, the variance lies
in between the previous cases.

For tracking if the person has not been following the
recommendations for diet and exercise, the variables Diet
adherence and Exercise adherence are used. They represent
the consistency of the behaviour of the person related to the



Fig. 3. Two Time-Slices of the DBN for Managing Glucose Control (Using AgenaRisk [39]).

lifestyle choices. We also used the methodology in section
III-C to define the CPT tables of Diet adherence and Exercise
adherence variables. Both variables are defined as a weighted
average between adherence in the past and the adherence in
the current day.

We assigned values for each state of the parent variables as
the center of the interval depending on whether they represent
adherence or not. The mean is then calculated as a weighted
average with weight 4 for the past adherence and 1 for the
current day. We use variance σ2 = 0.02. The weights represent
how quickly we want the adherence to adapt to the most recent
information about diet and exercise.

C. Blood glucose control

The variables (see Figure 4) that model the increased BGL
caused by insulin resistance in a woman with GDM are:

• CBG measurement: the evidence variable described
above,

• Glycemia explanation: the alternative explanation for any
abnormal BGL (also described above) and

• Underlying BGL: representing the blood glucose levels
adjusted for the effect of any alternative explanations.

Each CBG measurement state corresponds to one of the
states of the Underlying BGL. Using the methodology in sec-
tion III-C, when there is no alternative source of disturbance
in the BGL (as an increased carbohydrate intake), the mean µ
of the distribution will be defined as the center of the interval
corresponding to the state of the CBG measurement.

In case the increase in the BGL is caused by one of
the alternative explanations for a hyperglycemia episode, the
effect is possibly reversible without an increase in the dose
of the medication. If there is no alternative explanation for
a rise in the BGL, it is often assumed that the rise was
caused by a worsening of the condition and an increase in
the dose is prescribed. A hyperglycemia episode motivated
by non-concordance to the diet and exercise recommendations

Fig. 4. Blood glucose control (Using AgenaRisk [39]).

dislocates the true state of Underlying BGL to a higher level.
For this reason, when there is a hyperglycemia explanation, we
define the mean of the distribution no longer as the center of
the interval correspondent to the state of the CBG measurement
but as the center subtracted by a fraction of the interval size.
The variance used in all cases was σ2 = 0.002.

D. Overall blood glucose dynamics

Figure 5 shows the variable in this fragment of the BN.
The variable BG average level represents the weighted average
of the previous and current Underlying BGL and is used to
evaluate if the person is having problems controlling their
BGL; if the average is high it could indicate that the person
needs medication. We used a ranked node with a weighted
mean with weight 5 for BG average level in the previous day
and 1 for Underlying BGL in the current day and variance
0.0003.

It is also important to keep track of the progression of the
BGL; if the blood glucose level is increasing, the person could
soon need medication, while if the BGL is decreasing after an



intervention, it could indicate that the intervention succeeded.
The Change variable represents the change in the Underlying
BGL from the previous to the current day. The CPT table
contains 147 entries and was defined by a simple rule: when
the Underlying BGL for the current day is higher than the
previous day the Change state is ‘Increase’, when it is lower
‘Decrease’ and when it is the same ‘No change’.

The variable Trend is used to keep track of the BGL
dynamics and it depends on the variables Change and Trend
in the previous day. We defined this variable as Ranked with
a weighted mean with weight 5 for Trend in the previous day
and 1 for Change and variance 0.0003.

The combined information about the BG average level and
Trend is necessary for defining which people need support.
If the average of the blood glucose levels of two people are
high but for one the trend is increasing and for the second
the trend is decreasing, the first person is more likely to
need medication. The variable Glycemic state is therefore a
combination of BG average level and Trend and represents
the person’s overall state (figure 5).

The CPT of the variable Glycemic state was defined using
the method explained in section III-C. The mean of the
distribution was defined depending on the states of the BG
average level variable. For example, if the BG average level
of the person is High, she is more likely to be in the state
Alarm, so the mean of the distribution over the states of the
Glycemic state variable when the BG average level is High
should belong to the interval corresponding to Alarm state.
We propose to define the variance of the distribution depending
on the combination of the states BG average level and Trend.
For example, for the combination of states High and Trend
Increasing, Stable and Decreasing we follow the logic: the
mean of the distribution is located in the state Alarm so the
distribution for the combination High and Increasing should
have a small variance since the combination represents high
risk for the pregnant woman. The variance for the distribution
of High and Decreasing, on the other hand, should be larger
than the previous one since there is indication that the person’s
state is improving and then we should be more uncertain
about the person’s Glycemic state being Alarm. The same
logic is applied for the remaining combinations except the
ones including the states High and Low of the variable BG
average level, for which the mean was also modified for each
combination.

E. Recommendation

People not achieving BGL targets on diet control may
require further lifestyle advice or medication to improve
glycemic control. If the woman is following the recommen-
dations but still has a high and increasing average BGL she
is likely to need an appointment to determine whether she
needs medication. If the person’s BGL is ‘controlled’ on diet
and lifestyle and there are no other pregnancy complications or
the person is not considered at high obstetric or fetal risk, then
that person could be safely managed with fewer appointments
in the clinic.

Fig. 5. Overall blood glucose dynamics (Using AgenaRisk [39]).

TABLE III
CPT FOR THE VARIABLE Treatment adherence.

Diet adherence No Yes
Exercise adherence No Yes No Yes

Improve Diet 0.0 1.0 0.0 0.0
Improve Exercise 0.0 0.0 1.0 0.0

Improve Diet + Exercise 1.0 0.0 0.0 0.0
Well done 0.0 0.0 0.0 1.0

The variables expressing this reasoning (see Figure 3) are:

• The variable Treatment adherence represents the overall
adherence to the treatment. The CPT for this variable is
defined in table III.

• The variable Advice is defined by the Glycemic state
and Treatment adherence variables and represents the
advice that should be given. The states of the variable
are: Schedule an appointment, Treatment adherence and
Monitor.

The CPT table for the Advice variable is given by the
following rules:

1) If the Glycemic state is ‘Alarm’ the Advice should be
‘Schedule an appointment’ for any possible state of
Treatment adherence.

2) If the Glycemic state is ‘Attention’ and Treatment ad-
herence is ‘Well done’ the Advice should be ‘Schedule
an appointment’ and for any other state of Treatment
adherence the Advice should be ‘Treatment adherence’.

3) If the Glycemic state is ‘Control’ and Treatment ad-
herence is ‘Well done’ the Advice should be ‘Monitor’
otherwise the Advice should be ‘Treatment adherence’.

F. Proposed Use for Decision-Support

The probabilistic model should be part of a tool to be used
by pregnant women 4 times a day, entering information for
the evidence variables (explained in the section IV-A and rep-
resented in grey in Figure 3). The output would be the advice:
scheduling the frequency of health-professional appointments
when the BGL are uncontrolled and the person has been
complying with the treatment, treatment adherence when the
person is not following the treatment recommendations and



TABLE IV
DESCRIPTION OF THE INVENTED SCENARIOS.

Person BGL Trend CHO intake and Exercise
1 Normal Stable Usual
2 Normal Increasing Usual
3 Very high Decreasing Usual
4 High Stable Usual
5 Very high Stable Usual
5’ Very high Stable Unusual

self-monitoring when the BGL is controlled and the person is
following the treatment recommended.

We propose using four different models for tracking a
person’s overall glycemic control: one for each time of the
day. For example, when tracking BGL control at lunch, the
evidence entered for the variable CBG measurement would
represent the CBG measured at the current day at lunch time.
It means that the evidence entered in the previous day’s CBG
measurement would correspond to the CBG measured in the
previous day at the same time. The same is true for all the
evidence variables. This model would only make predictions
for lunch time. The final advice would be schedule an ap-
pointment, improve treatment adherence, or to continue to
monitor (when the BGL is controlled). The complete structure
of the model can be seen in Figure 3. A model with the same
structure would be used for each of the other times of the day
and if the advice from any of the models is to schedule an
appointment, that would be the final advice given.

V. EVALUATION

In this section we present the results of two tests of the
BN model. It was first tested using invented scenarios and
then separately with two real cases from the data set. The
AgenaRisk API was used to perform inference in the model.
The problem of testing the model using real data is that the
model’s main recommendation is to seek an appointment,
whereas in the data the appointments are at fixed intervals.
Therefore a precise correspondence is not possible; instead
we look for an appointment where a change was made close
to the time this is recommended by the model.

A. Testing with scenarios

To test the model’s reasoning, we have invented 6 scenarios
covering different simple cases. Each scenario defines the
evidence entered over 14 days. The invented scenarios are not
necessarily a faithful representation of real people, but they
can be used as a first step in the validation of the model. The
characteristics of each scenario are described in Table IV.

We used 14 days of fictitious data to test the models
reasoning. We do not show the predictions for the first 4 days
(since with no past data these are not specific), so the first day
in Figure 6 represents the fifth day of the monitoring. .

1) Advice in the Invented Scenarios: Figure 6 shows the
probabilities for each state of the variable Advice for people 1
to 5 in Table IV (all with usual diet and exercise). The advice

Fig. 6. Probability of Each State of Variable Advice, Invented Scenarios.

given in each scenario to the imaginary person seems to be
consistent with the simulated health state.

• For person 1 who has a controlled BGL within the normal
limits, the state of largest probability is the state Monitor.
We also observe that there is still a reasonably high
probability for the state Treatment adherence. This is due
to the approach used to define the mean and variance of
the distribution for the states of the Treatment adherence
variable and this can be easily adjusted.

• For the people 2 and 3 that simulate scenarios in which
a person’s health is improving or deteriorating, the prob-
ability of the states of the Advice variable are coherent
with the BGL trajectory.

• People 4 and 5 simulate the difference between a person
whose BGL is clearly outside the normal ranges and a
person that can be considered borderline. The probability
for the states of the Advice variable shows that the person
whose BGL is Very high would be given the advice to
schedule an appointment after fewer days.

2) Hyperglycemia explanation versus no hyperglycemia ex-
planation: For people whose BGL are outside the normal
range, possible explanations for hyperglycemia should be
considered. In cases where the person has not followed the diet
and exercise recommendations, the clinician might emphasise
their importance and reevaluate the person’s state in the next
appointment. In cases where the person’s BGL is uncontrolled
and there are no possible explanations related to diet and
exercise, the clinician might prescribe metformin, insulin, or
both.

Figure 6 shows the probabilities of each state of the moni-
toring and advice variables for people 5 and 5’. A comparison
between these 2 people with the same BGL but different input
in the explanations show that for person 5 the model’s advice is
to schedule an appointment whilst for the person 5’ the model
suggests the person adheres to the treatment at first, but after
a longer period of uncontrolled BGL and no change in the
adherence, the model suggests that an appointment should be
scheduled .



Fig. 7. BGL (modified by a random offset) and advice for a person on lunch
time medication.

B. Results from Audit Data

We tested the model using 129 days of lunch time monitor-
ing data (CBG measurement, diet and exercise) for two people
from audit data. Figure 7 shows the CBG measurements for
each day starting from the 5th day. To preserve confidentiality,
the actual CBG data plotted in the upper part of the two
figures have been modified using a small random offset. At
first, the person in Figure 7 was not taking medication, but
started taking metformin on the day 113 (shown in the figure
by a red vertical dotted line). The dotted blue vertical lines
represent days for which the person did not follow the diet or
exercise recommendations.

We observe that in the first 20 days of monitoring the person
seemed not to adhere to diet and exercise recommendations.
Figure 7 shows that the most probable state at that period was
Treatment adherence. It is not possible to affirm if the person
was offered advice regarding diet and exercise frequency and
improved her treatment adherence or if the person simply
did not record when she did not follow diet and exercise
recommendations after that period but no other days of unusual
diet choices or exercise pattern were found in the data.

After approximately 3 months of monitoring, the BGL
appears to be uncontrolled. At that time, the model indicates
(probability of the state ‘Schedule an appointment’ in Figure
7) that the person should schedule an appointment. If we
consider the advice that should be given as the most probable
state at each day, the model would advise this person to
schedule an appointment on day 95 in Figure 7, 14 days before
the person had an appointment in which the medication was
changed. We cannot confirm that the person did not have an
appointment before the date in which the medication treatment
was initiated, but we can say that the model suggested the
person should have an appointment 14 days before the first
modification of the treatment.

We also tested the model using 127 days of monitoring data
for lunch time for a person who did not have medication for
controlling after lunch BGL during the entire pregnancy and

Fig. 8. BGL (modified by a random offset) and advice for a person not taking
medication.

seemed compliant to the diet recommendations and exercise
routine. We observe (Figure 8) that the model seems to capture
the periods in which the person’s BGL was outside the normal
range but the final advice for the person during the entire
period was to continue monitoring.

VI. CONCLUSION

In this paper we have described the difficulties of moni-
toring people suffering from chronic conditions and the need
for decision-support models directed to patient use that can
interpret frequent monitoring data. Often, the data that might
be used to build these models will not be available in full. We
have used a case study in GDM management to present these
difficulties and propose solutions.

We propose a probabilistic model to be part of a tool to be
used by people suffering from GDM when monitoring their
condition. The model is a DBN built from expert knowledge.
The structure was elicited from a team of clinicians and we
used different techniques to define the CPT tables. We tested
the model using invented scenarios and audit data from two
real people; the results of both tests show that the model
behaves as expected.

We plan to conduct a more extensive evaluation of the
model by looking at the time between the model advising a
person to schedule an appointment and when the person had
an appointment in which medication was initiated or adjusted
for everyone in the audit data. We will use experts to evaluate
the model’s incorrect predictions and make modifications to
the model if necessary. We are also developing a model to
support people on medication.
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