
EasyChair Preprint

№ 1411

Scalable Verification of Designs with Multiple

Properties

Rohit Dureja and Kristin Yvonne Rozier

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

August 24, 2019

Scalable Verification of Designs with Multiple Properties

Rohit Dureja and Kristin Yvonne Rozier
Iowa State University, Ames, USA

Abstract—Many industrial verification tasks entail checking a
large number of properties on the same design. Formal verifi-
cation techniques, such as model checking, can verify multiple
properties concurrently, or sequentially one-at-a-time. State-of-
the-art verification tools do not optimally exploit subproblem
sharing between properties, leaving an opportunity to save
considerable verification resources. A significant need therefore
exists to develop efficient and scalable techniques that intelligently
check multiple properties by utilizing implicit inter-property
logical dependencies and subproblem sharing, and improve tool
orchestration. We report on our investigation of the multi-
property model checking problem, and discuss research results,
and highlight future research directions.

I. INTRODUCTION

The formal verification of a hardware and/or software design
often mandates checking a large number of properties. For
example, equivalence checking compares pairwise equality of
each design output across two designs, and entails a distinct
property per output. Functional verification checks designs
against a large number of properties ranging from low-level
assertions to high-level encompassing properties. Design-space
exploration via model checking [1] verifies multiple properties
against competing system designs differing in core capabilities
or assumptions. However, most research and implementation
efforts in formal verification address the problem of single-
property verification, and multiple properties are verified con-
currently, or one-at-a-time. Possible inter-property relation-
ships and shared subproblems are typically ignored, leaving
an opportunity to save considerable verification resources. For
example, consider properties ϕ1, ϕ2, and ϕ3. If ϕ2 → ϕ1,
then, ϕ1 automatically holds if ϕ2 holds for a design, i.e.,
we do not verify ϕ1 if ϕ2 holds. Moreover, the state-space
information learned by verifying ϕ2 (e.g., inductive clauses in
IC3) can be reused for verifying ϕ3 to save resources.

We develop efficient and scalable techniques for automatic
verification of multiple properties. Our work focuses on three
primary aspects:

1) Inter-property relationships [2] – utilizes logical depen-
dencies to minimize the number of model checking runs,

2) Information reuse [3] – learned state-space information
of the design is reused across different properties, and

3) Improved orchestration [4] – properties with nearly-
identical cone-of-influence (COI) are verified together.

We establish inter-property relationships by performing fast
LTL satisfiability checks on implications between properties,
e.g., if ϕ2 → ϕ1 is unsatisfiable, then ϕ1 holds whenever
ϕ2 holds for a design. Model checking algorithms, like
IC3, incrementally refine the approximate reachable state-
space by blocking and propagating inductive clauses. Most of

these clauses can be reused across different properties albeit
after careful repair (weakening or strengthening). Improved
orchestration helps maximize the reuse of such clauses by
concurrently verifying properties with nearly-identical COI.

II. RESEARCH RESULTS

A. Inter-Property Relationships

Our algorithm, D3 [2] preprocesses the set of properties to
find pairwise logical dependencies. For two LTL properties
ϕ1 and ϕ2, dependencies can be characterized in four ways:
(ϕ1 → ϕ2), (ϕ1 → ¬ϕ2), (¬ϕ1 → ϕ2), and (¬ϕ1 → ¬ϕ2).
The pairwise dependencies are stored in a property table as
shown in Fig. 1. Each row in the table is a (key, value) pair. If

Fig. 1. The D3 algorithm [2] finds inter-property logical dependencies via
LTL satisfiability checking to minimize number of model-checking runs.

(ϕ1 → ϕ2) is unsatisfiable, then the table contains a row (ϕ1 :
T, ϕ2 : T). The dependencies help in minimizing the number
of model-checking runs required to check all properties in the
set. For example, if M 6|= ϕ1, then M 6|= ϕ2, M 6|= ϕ3,
and M |= ϕ6; no model-checking run is required for ϕ2, ϕ3,
and ϕ6. For Boeing-WBS designs [5], D3 finds dependencies
between 220 properties in a few minutes, and runs the model-
checker for <10% of the properties for each design.

B. Information Reuse

Given a model M and property ϕ, the IC3 algorithm
incrementally generates an inductive strengthening of ϕ to
prove whether M |= ϕ. It maintains a sequence of frames
F0, . . . , Fi such that Fi is a conjunction of inductive clauses
and represents an over-approximation of states reachable in up
to i steps. Our algorithm, FuseIC3 [3] sequentially checks each
property by reusing information: reachable state approxima-
tions, counterexamples, and invariants, learned in earlier runs
to reduce total checking time. When the stored information
cannot be reused directly, FuseIC3 repairs and patches the
information using an efficient algorithm. It adds “just enough”
extra information to the saved reachable states, i.e., literals to

Initial ϕ0 ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 ϕ7 ϕ8

Structural ϕ2 ϕ4 ϕ5 ϕ1 ϕ3 ϕ7 ϕ8 ϕ0 ϕ6

Semantic ϕ2 ϕ4 ϕ5 ϕ1 ϕ3 ϕ7 ϕ8 ϕ0 ϕ6

Fig. 2. Orchestration for multi-property verification: structural grouping fol-
lowed by semantic refinement. Properties in a group are verified concurrently.

inductive clauses, to enable reuse. Our experiments on real-
life challenging benchmarks demonstrate that FuseIC3 is on-
average 4.39× faster than checking properties without reuse.

C. Improved Orchestration

It is well known [6] that grouping saves substantial re-
source by concurrent verification of high-affinity properties
in a group. However, no scalable online grouping proce-
dure exists. In [4], we present a near-linear runtime, fully-
automated algorithm to partition properties into provably high-
affinity groups based on structural COI similarity. COI sup-
port information is maintained as bitvectors, and grouping
is performed in three configurable levels based on: identical
COI, strongly-connected components (SCC) in the COI, and
Hamming distance. Fig. 2 shows our two-step orchestration:
structural grouping followed by semantic partitioning. We
advance state-of-the-art in localization by providing an optimal
multi-property solution that offers on-average 4.8× end-to-end
verification speedup.

III. RELATED WORK

The framework of local and global proofs [8] has been
used to derive a “debugging set” of properties to fix before
verifying others, implying a property ordering similar to
property dependencies found by [2]. Methods to incremen-
tally reuse information across multiple properties accelerate
specific algorithms [9, 10]; these approaches might improve
performance of FuseIC3. Algorithms to group properties based
on high-level design descriptions extract similarity criteria
from high-level information unavailable in low-level designs
and benchmark formats such as AIGs [11]. The utility of
ideal grouping is experimentally demonstrated in [6] as proof-
of-concept using computationally-prohibitive grouping algo-
rithms; we complement their method by providing a fast online
grouping procedure, and improved orchestration strategy.

IV. FUTURE DIRECTIONS

We identify several research directions to further enhance
scalability of multi-property verification. Some of these are:

a) Avoiding missed grouping opportunities: Despite the prov-
able threshold of Level-3 grouping in [4], there is some
asymmetry in the approach. Two fairly-high-affinity support
bitvectors that differ too much in a single segment will not be
merged, whereas if the difference was small per-segment with
multiple segments differentiated, they may be merged, albeit

respecting the quality bound. We plan to investigate methods
to mitigate this asymmetry by re-running the analysis on

1) randomized bitvector indices, or
2) different segment-partitioning of the bitvectors.

Clever data structures, such as MA FSA [7], search for fairly-
high-affinity bitvectors that differ in only a few n-bit segments,
thereby avoid missed Level-3 grouping opportunities.

b) Structural vs. semantic grouping: The proof or counterex-
ample for properties may only depend on a small subset of
their COI. Structural grouping may end up differentiating such
properties based on “unimportant” differences in their COI.
On the other hand, semantic-based grouping may group such
properties based on refinement information (important COI
logic) learned during localization abstraction. The question
remains: When to use structural vs. semantic grouping? It is
not trivial to discern what COI subset appears relevant to what
property until verification resources are expended. We plan
to investigate design preprocessing heuristics and algorithms
that help predict the applicability of the two grouping methods
without expending significant resources.

c) Enhance grouping scalability: The memory requirement
of the support bitvectors remains a bottleneck in end-to-end
verification scalability [4]. Future work includes:

1) Compaction of support bitvector bits to improve perfor-
mance, e.g., support variables present in every property
can be projected out of the bitvectors, and

2) Dynamic prefix matching that discounts differences in
small SCCs for properties to improve Level-2 grouping.

Lastly, we plan to investigate how semantic information
from BMC and IC3 can be used to perform property grouping.

REFERENCES

[1] M. Gario, A. Cimatti, C. Mattarei, S. Tonetta, and K. Y. Rozier,
“Model Checking at Scale: Automated Air Traffic Control Design Space
Exploration,” in CAV, July 2016.

[2] R. Dureja and K. Y. Rozier, “More Scalable LTL Model Checking via
Discovering Design-Space Dependencies (D3),” in TACAS, April 2018.

[3] R. Dureja and K. Y. Rozier, “FuseIC3: An algorithm for checking large
design spaces,” in FMCAD, Oct 2017.

[4] R. Dureja, J. Baumgartner, A. Ivrii, R. Kanzelman, and K. Y. Rozier,
“Boosting Verification Scalability via Structural Grouping and Semantic
Partitioning of Properties,” in FMCAD, Oct 2019.

[5] M. Bozzano, A. Cimatti, A. Fernandes Pires, D. Jones, G. Kimberly,
T. Petri, R. Robinson, and S. Tonetta, “Formal Design and Safety
Analysis of AIR6110 Wheel Brake System,” in CAV, Jul 2015.

[6] G. Cabodi, P. E. Camurati, C. Loiacono, M. Palena, P. Pasini, D. Patti,
and S. Quer, “To split or to group: from divide-and-conquer to sub-task
sharing for verifying multiple properties in model checking,” STTT, Jun
2017.

[7] J. Daciuk, S. Mihov, B. W. Watson, and R. E. Watson, “Incremental
construction of minimal acyclic finite-state automata,” Computational
Linguistics, vol. 26, no. 1, pp. 3–16, 2000.

[8] E. Goldberg, M. Güdemann, D. Kroening, and R. Mukherjee, “Efficient
verification of multi-property designs (The benefit of wrong assump-
tions),” in DATE, March 2018.

[9] Z. Khasidashvili, A. Nadel, A. Palti, and Z. Hanna, “Simultaneous SAT-
based model checking of safety properties,” in HVC, November 2005.

[10] H. Chockler, A. Ivrii, A. Matsliah, S. Moran, and Z. Nevo, “Incremental
Formal Verification of Hardware,” in FMCAD, Oct 2011.

[11] M. Chen and P. Mishra, “Functional test generation using efficient
property clustering and learning techniques,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., March 2010.

	Introduction
	Research Results
	Inter-Property Relationships
	Information Reuse
	Improved Orchestration

	Related Work
	Future Directions
	References

