
EasyChair Preprint
№ 9031

Rule-Based Generation of Synthetic Genetic
Circuits

Daisuke Kiga, Kazuteru Miyazaki, Shoya Yasuda, Ritsuki Hamada,
Sota Okuda, Ryoji Sekine, Naoki Kodama and
Masayuki Yamamura

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

October 8, 2022

The research was funded by JST, CREST Grant Number JPMJCR21N4, Japan

Rule-based generation of synthetic genetic circuits

Daisuke Kiga1, Kazuteru Miyazaki2, Shoya Yasuda3, Ritsuki Hamada1, Sota Okuda1,

Ryoji Sekine3, Naoki Kodama4, Masayuki Yamamura3

1Waseda University, Tokyo, Japan, 2National Institution for Academic Degrees and Quality Enhancement of Higher

Education, Tokyo, Japan, 3Tokyo Institute of Technology Kanagawa, Japan, 4Meiji University Kanagawa, Japan

kiga@waseda.jp, teru@niad.ac.jp, my@c.titech.ac.jp

 Introduction

Similar to the expandability of natural biological

systems, that of synthetic biological systems is derived

from the huge combinatorial search space of biological

components, such as protein coding sequences and

regulatory sequences [1]. Due to this huge space,

adequate design strategies are required for the

implementation of synthetic genetic circuits in cells.

One design strategy for genetic circuits is a

combination of sub-circuits. Recent progress in

automated computational design has achieved multi-

layered logic gates [2, 3]. Another direction of

computational design can be reliance on expert

knowledge. Indeed, even manual combinations of sub-

circuits have allowed the implementation of prescribed

cellular behavior [4, 5].

To develop a support tool for genetic-circuit design by

biologists, here, we sought to combine inference

machine and deep learning to generate and screen

candidates of synthetic genetic circuits, respectively.

Once an adequate rulebase is prepared, a logic

programming language such as Prolog allows the

designed cellular behavior to be broken down into

combinations of rules, each understandable by a

biologist. Simultaneously, each combination can

indicate a genetic network topology from which

published tools can estimate adequate parameters and

suggest genetic parts [6, 7]. Although inference engines

can potentially cause combinatorial explosions, using

machine learning for candidate screening before the

numerical simulation can circumvent this problem.

Results and Discussion

1. Combinations of rules provide multiple strategies

for a prescribed cellular behavior

Logic programs can design prescribed cellular

behaviors appearing from a certain combination of

rules. In this work for circuit design, we will prepare a

rulebase on general biological knowledge that is

Figure 1: Multiple strategies for genetic reprogramming can be generated by a combination of rules for the
Inference Engine. (A) Genetic toggle switch structure and ODEs for each repressor of the toggle switch. (B) A process
for genetic reprogramming. (C) Phase space and nullclines for the toggle switch system.

lacI cI ts gfp

x y

HH

H
H

HH

HH

I1, I2 ↑ αx,αy↓

Strategy
in Ref [5]

Alternative
strategy

(B)(A) (C)

Set cell inner state
on a separatrix

 -

-

Gene
overexpression

Expression
inhibition

IWBDA 2022, October 24-26, 2022, Paris Kiga and Miyazaki et al.

independent of specific circuits. A user can then

provide a specification as the goal for the logic program.

After successive dissections into smaller subgoals,

these subgoals indicate the usage of small general

genetic circuits, such as a toggle switch for bistability

(Figure 1A) or a gene overexpression system.

In the case of our genetic reprogramming of a toggle

switch (Figure 1) [5], one of the internal subgoals is

setting an inner state of cells on a separatrix of the

potential landscape (Figure 1B). In our study, this

setting was achieved by gene overexpression, which

increased I1 and I2 in the equations in Figure 1. These

increases make a parallel shift of nullclines to decrease

the number of nullcline intersections (Figure 1C).

Another way to achieve this setting was the inhibition

of the expression of both repressors. From a logic

programming viewpoint, variations of the circuits for

the same prescribed behavior were generated because

two rules shared the same head: “setting an inner state

of cells on a separatrix”. A strong point of the inference

engine is that any user can easily add new rules to the

rulebase, because the logical inference engine

substantially includes consistency checks among rules.

2. Generation of genetic networks by Inference engine

and Screening of the generated network

Although combinatorial explosion is a known weak

point for generation by an inference machine, we think

that recent developments in machine learning will

allow appropriate screening of the genetic circuits

generated as candidates.

Figure 2 shows our design process. Step 1: Generation

of candidates. As described in the previous section, an

inference engine generates network candidates by

combinations of rules. Step 2: Screening by

comparison of features between a designed circuit and

each of the circuits in a database. By using ML, we will

evaluate the similarity to a known genetic network, and

decide the searching priority by reinforced learning.

Step 3: Numerical calculations for various sets of

parameters for the topology of a circuit. This step

requires the highest computational cost in the whole

process. Thus, pruning or ranking of candidates at Step

2 is important. Step 4: Corresponding to the parameters

of the screened candidate, appropriate biological

components are selected from the database. At Steps 3

and 4, we can use published design tools if they can be

integrated with a Prolog compiler.

3. Semi-automated collection of articles for synthetic

genetic circuits

 Towards the construction of the genetic circuit

database, we started a collection of network topology

figures in synthetic biology articles. For the semi-

automated collection of articles, we used machine

learning of network topology figures of related studies.

By manual classification, we provided positive

example papers, each with at least one figure for the

topology of the synthetic gene network. Papers that

lacked any network topology figure were also manually

classified as negative example papers. As positive

examples, we chose 361 figures from 70 positive

example papers in ACS Synthetic Biology. To avoid

bias, we must use similar numbers of negative and

positive papers. As negative examples, we thus used

505 figures from 85 ACS Synthetic Biology papers not

related to genetic circuits. After training, 46 genetic

circuit articles from other journals, as well as 185

negative example papers, were evaluated (Table 1).

Further developments will allow more accurate

classification.

candidate １
candidate ２
candidate ３
candidate ４
candidate ５

・
・

Output:
DNA

sequence

Rulebase ML matching
between
features

BioDOS

N
u

m
erical

calcu
latio

n

Database for
protein and

regulatory sequence

Data from biological experimentgenetic circuits from literature

Database
for genetic circuit

Generation

Input:
Cellular behavior

Feature extraction by ML

(Step 1)

(Step 2) (Step 3)

(Step 4)

Figure 2: Generation and screening process of candidate circuits for a cellular behavior.

IWBDA 2022, October 24-26, 2022, Paris Kiga and Miyazaki et al.

Collected literature will be used not only for screening

the candidate circuits generated by the inference engine,

but also for providing information to researchers who

will expand the rulebase of the inference engine.

Table 1: Classification of genetic circuit papers

Future Directions

Using Prolog, we started a description of the rules to

generate circuit topologies and parameters for cellular

behavior, as shown in Figure 1. The accumulation of

such rules will allow researchers with biology

backgrounds to write new rules for the rule base and to

implement new circuits showing what life could

potentially be.

REFERENCES

[1] A Casas, et al., R Kitney. Removing the Bottleneck: Introducing

cMatch - A Lightweight Tool for Construct-Matching in Synthetic

Biology. Front Bioeng Biotechnol. 9 (2022), 785131.

[2] T Jones, et al., D Densmore. Genetic circuit design automation with

Cello 2.0. Nat Protoc. 17 (2022) 171097-1113.

[3] H Tas, et al., V de Lorenzo. Automated design and implementation

of a NOR gate in Pseudomonas putida. Synth Biol (Oxf). 6 (2021)

6ysab024.

[4] R Sekine, et al., and D Kiga. Tunable synthetic phenotypic

diversification on Waddington’s landscape through autonomous

signaling. PNAS. 108 (2011) 17969-17973.

[5] K Ishimatsu, et al., and D Kiga. General Applicability of Synthetic

Gene-Overexpression for Cell-Type Ratio Control via

Reprogramming. ACS Synth. Biol., 3, (2013) 638–644.

[6] Y Boada, et al., A Vignoni. Multi-objective optimization framework

to obtain model-based guidelines for tuning biological synthetic

devices: an adaptive network case. BMC Syst Biol. 10 (2016) 27.

[7] N Dalchau, et al., A Phillips. Towards the rational design of

synthetic cells with prescribed population dynamics. J R Soc

Interface. 9 (2012) 2883-98.

 percentage

correctly

classified

Positive example

papers
61.8

negative example

papers
63.3

