A Base Number Representation on Marriage Problem Predicate Task.

Frank Appiah

EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair.

A Base Number Representation on Marriage Problem Predicate Task.

\author{

- Prof Frank Appiah AKA FAEng PhD appiahnsiahfrank@gmail.com 5.04.2021
}

Abstract

This report is an investigation reference on letter combinatorics showing the predicate sentences in base number representation and setting a table representation of a binary set. In here, octal representation in base - 8 , decimal representation in base-10 and binary representation in base- 2 are calculated for the binary equivalents of the $1 / 0$ set values.

Keywords. sentence, base, representation, words, table, set, binary number.

1 INTRODUCTION

Letter combinatorics is about sentences or phrases and counting problems. It is logical structured and involves discrete operations like subtraction, addition and multiplication. It is about alphanumeric labeling of sentences or phrases and proofing of combinatorial enumerations. The theory of combinatorics of sentences or phrases or words is called Letter Combinatorics (LC) with 8 bulletin requirements. A Marriage Problem (MP) made up of 5 sentences is used in the exploit of letter combinatorics. A generating function is calculated for MP to handle constraints of arrangement /selection and the combinatorial enumerations of MP. The predicate sentences are made from [5]. This work looks at binary number concepts on representation of predicates.
This research is organised as follows :
(1) A Look again on the predicate sentences with binary number representation,
(2) Generate a Tableaux representation from the set[6,7, 8] form,
(3) Apply arithmetics operation on the set state and
(4) Make base representations of the set state

The Marriage Problem states that;
(1) Damn it.

Binary Representation : 010001000110000101101101011011100010000001101001 0111010000101110.
(2) What's wrong?

Binary Representation : 010101110110100001100001011101000010011101110011 00100000011101110111001001101111011011100110011100111111.
(3) It is a combination of 46 letters.

Binary Representation : 010010010111010000100000011010010111001100100000 0110000100100000011000110110111101101101011000100110100101101110 0110000101110100011010010110111101101110001000000110111101100110 0010000000110100001101100010000001101100011001010111010001110100 01100101011100100111001100101110.
(4) Akua will not marry you.

Binary Representation : 010000010110101101110101011000010010000001110111 0110100101101100011011000010000001101110011011110111010000100000 0110110101100001011100100111001001111001001000000111100101101111 011101010010111000100000.
(5) Pokua will not marry you.

Binary Representation : 010100000110111101101011011101010110000100100000 0111011101101001011011000110110000100000011011100110111101110100 0010000001101101011000010111001001110010011110010010000001111001 01101111011101010010111000100000.

2 Binary Number Representation

The MP sentences are represented as predicates with each word captured in the predicate sentence, mpsentence(MpS). The following predicate sentences for the MP example are in [5]. This category predicate is important in this work.
These category predicates will be represented as follows in set forms:

```
1. mpsentence(damn, it).
MpS1={damn, it}.
MbS1={01000100 01100001 01101101 01101110 00100000, 01001001
01110100 }.
```

```
2. mpsentence(what's, wrong).
MpS2={what's, wrong}.
Mbs2={01010111 01101000 01100001 01110100 00100111 01110011,
01010111 01110010 01101111 01101110 01100111}.
```

3. mpsentence(it, is, a, combination, of, 46, letters).
MpS3=\{it, is, a, combination, of, 46, letters\}.
$\operatorname{MbS} 4=\{01001001$ 01110100, $0110100101110011,01100001,01000011$
01101111011011010110001001101001011011100110000101110100
011010010110111101101110,01001111 01100110, 0011010000110110 ,
$01101100011001010111010001110100011001010111001001110011\}$.
4. mpsentence(akua, will, not, marry, you).
MpS4=\{akua, will, not, marry, you\}.
MbS4=\{01000001 011010110111010101100001,0111011101101001
0110110001101100,0110111001101111 01110100, 0110110101100001
0111001001110010 01111001, 011110010110111101110101$\}.$
5. mpsentence(pokua, will, not, marry, you).
MpS5=\{pokua, will, not, marry, you\}.
MbS5=\{01110000 01101111011010110111010101100001,01110111
0110100101101100 01101100, 011011100110111101110100,01101101
011000010111001001110010 01111001, 011110010110111101110101$\}.$
MpS=\{MpS1, MpS2, MpS3, MpS4, MpS5\}

The next predicate is to determine if a sentence is a question or not. There is only one question in all the five sentences. It is represented as mpsentenceask predicate sentence. This category predicate is important in this work.
This will take on two passing values of sentence number and an indicator of a question or not. Yes(Y will be 1) indicates a pass value whiles $\mathrm{No}(\mathrm{N}$ will be 0) does not. The following question stances are:

1. mpsentenceask(1, no).
2. mpsentenceask(2, yes).
3. mpsentenceask(3, no).
4. mpsentenceask (4, no).
5. mpsentenceask(5, no).

General Predicate : mpsentenceask (sentence _no, response).
In generating a set for mpsentenceask(named as MpA), It will give:
$\mathrm{MpA}=\{\mathrm{N}, \mathrm{Y}, \mathrm{N}, \mathrm{N}, \mathrm{N}\}$.
$\mathrm{Mb} A=\{0,1,0,0,0\}$.

The number of words of a sentence is now represented with mpwordsize predicate sentences. . The following details are as follows :

```
1. mpwordsize(1, 2).
2. mpwordsize(2, 2).
3. mpwordsize(3, 6).
4. mpwordsize(4, 5).
5. mpwordsize(5, 5).
```

This category predicate is important in this work. The set
theoretic form is represented as :
MpWs $=\{1.2,2.2,3.6,4.5,5.5\}$.
MbWs=\{1, 1, 1, 1, 1\}.

The set values are changed to decimal forms to indicate index of values. This so because sets does not accept the same values on indexing.

This predicate took its arguments to be the sentence number and the number of words. General predicate is represented as:
General Predicate : mpwordsize (sentence_no, word_number).
Further details on negation sentences are looked at. This will have the predicate sentence, mpnegation. This is explicitly sentences with a not word.
The problem solution are as follows :

```
1. mpnegation(1, no).
2. mpnegation(2, no).
3. mpnegation(3,no).
4. mpnegation(4, yes).
5. mpnegation(5, yes).
```

General Predicate : mpnegation (sentence no, response).
The set representation of Mpnegation is
$\operatorname{MpNg}=\{\mathrm{N}, \mathrm{N}, \mathrm{N}, \mathrm{Y}, \mathrm{Y}\}$.
$\operatorname{MbNg}=\{0,0,0,1,1\}$.

MP example has only two negation statements in total. Statements like "damn it" creates a feeling of regret or disappointment. What's wrong did create sudden worry but does not bring the negation that is not interesting. The predicate sentence is represented as mpregret. These are as follows :

```
1. mpregret(1, yes).
2. mpregret(2, no).
3. mpregret(3, no).
4. mpregret(4, no).
5. mpregret(5, no).
General Predicate : mpregret (sentence _no, response).
The set theoretical form is given by:
MpR={Y, N, N, N, N}.
```

```
MbR={1, 0, 0, 0, 0}
```

mpworry is the predicate sentence for sudden worry. These includes the following :

- mpworry (1, no).
- mpworry(2, yes).
- mpworry(3, no).
- mpworry (4, no).
- mpworry(5, no).

```
General Predicate : mpworry (sentence _no, response).
The set theoretical form is given by:
MpW={N, Y, N, N, N}.
MbW={0, 1, 0, 0, 0}.
```

The problem solver took on statement 3 to bring out an approach. The predicate for this will be mpsolver. The knowledge needed to be programmed are as follows:

```
1. mpsolver(1, no).
2. mpsolver(2, no).
3. mpsolver(3, yes).
4. mpsolver(4, no).
5. mpsolver(5, no).
General Predicate : mpsolver (sentence _no, response).
The set theoretical form is given by:
MpS={N, N, Y, N, N} .
MbS={0, 0, 1, 0, 0}.
```

The third round tried to bring out a solution in the context of problem solving. The 4 and 5 statements are involved with names of female sex. These are Akua and Pokua. The fact base for this representation is captured with predicate sentences, mpnamsex. These will include the following :

- mpnamsex (1, no).
- mpnamsex (2, no).
- mpnamsex (3, no).
- mpnamsex (4, yes).
- mpnamsex (5, yes).

General Predicate : mpnamsex (sentence _no, response).

The set theoretical form is given by:
$\operatorname{MpX}=\{\mathrm{N}, \mathrm{N}, \mathrm{N}, \mathrm{Y}, \mathrm{Y}\}$.
$\mathrm{Mb}=\{0,0,0,1,1\}$.

It will be smart to know of the exact names involved. mpname predicate will be used to store facts of name information. These includes the following sentences:

```
1. mpname(1, people).
2. mpname(2, object).
3. mpname(3, thing).
4. mpname(4, person).
5. mpname(5, person).
```

General Predicate : mpname (sentence _no, response).
The set theoretical form is given by:
$\operatorname{MpR}=\{P, \quad O, T, E, E\}$, where p is people, o is object, t is
thing and e person.
$\operatorname{Mb} R=\{01010000$, 01001111, 01010100, 01000101, 01000101\}.

This predicate captures a person's fact to the database. The assertions are as follows :

- mpperson (1, noname).
- mpperson (2, noname).
- mpperson(3, noname).
- mpperson (4. Akua).
- mpperson(2, Pokua).

```
General Predicate : mpperson (sentence _no, response).
The set theoretical form is given by:
MpP={N.1, N.2, N.3, A, P}.
MbP}={0100111000101110 00110001, 01001110 00101110 00110010
01001110 00101110 00110011, 01000001, 01010000}.
```

The name information brings out the predicate concepts that includes mpstate that combines the words people, person, object and thing to the sentences.
The following statements are made:

- mpstate(1, 'Damn it on people').
- mpstate(2, 'What's wrong with you').
- mpstate(3, 'The thing is a combination of 46 letters')
- mpstate(4, 'A person will not marry you').
- mpstate(5, 'A person will not marry you').

General Predicate : mpstate(sentence _no, response).

The set results is represented by:

```
MpT={'1.Damn it on people', '2.What's wrong with you', '3.The
thing is a combination of 46 letters', '4.A person will not marry
you', '5.A person will not marry you'}
```

The Joy of predicates on 5 Secondary sentences is done in conclusion remarks.
Finally, the s-index predicate sentences are enumerated below :

1. sindex (1, 1, 6, 2).
2. sindex $(2,1,10,2)$.
3. sindex (3, 1, 27, 7).
4. sindex (4, 1, 19, 5).
5. sindex (5, 1, 20, 5).
```
General Predicate : sindex ( sentence _no, min_letter, max_letter,
word_count
Si1={1, 6, 2 }
S.b1={0001, 0110, 0010}
Si2={1, 10, 2}
Sb1={0001, 0110, 0010}
Si3={1, 27, 7}
Sb1={00010, 11011, 00111}
Si4={1, 19, 5}
Sb1 ={00001, 10011, 00101}
Si5={1, 20, 5}
Sb1={00001, 10100, 00010}
The following set operations are calculated on Si sets:
(1) Unions: Si1 U Si2 U Si3 U Si4 U Si5= {1, 2, 5, 6, 7, 10, 19,
20}
(2) Si1 intersect Si2= {1, 2}
(3) Si2 intersect Si3= {1}
(4) Si3 intersect Si4= {1}
(4) Si4 intersect Si5= {1, 5}
(5) Sil intersect Si2 intersect Si3 intersect Si4 intersect Si5=
{1}.
```

$\mathrm{Si}=\{\mathrm{Si} 1, \mathrm{Si} 2, \mathrm{Si} 3, \mathrm{Si} 4, \mathrm{Si} 5\}$

The following are used in forming Tableaux representation :
$\mathrm{MpA}=\{\mathrm{N}, \mathrm{Y}, \mathrm{N}, \mathrm{N}, \mathrm{N}\}$,
$M p N g=\{N, N, N, Y, Y\}$,
$M p R=\{Y, N, N, N, N\}$,
$M p W=\{N, Y, N, N, N\}$,
$M p X=\{N, N, N, Y, Y\}$,
$\mathrm{MpS}=\{\mathrm{N}, \mathrm{N}, \mathrm{Y}, \mathrm{N}, \mathrm{N}\}$,

Y/N Tableaux Representations

No	MpA	MpNg	MpR	MpW	MpX	MpS
1	N	N	Y	N	N	N
2	Y	N	N	Y	N	N
3	N	N	N	N	N	Y
4	N	Y	N	N	Y	N
5	N	Y	N	N	Y	N

The following are used in forming Tableaux representation :
$\mathrm{MbA}=\{0,1,0,0,0\}$.
$\operatorname{MbX}=\{0,0,0,1,1\}$.
$\mathrm{MbS}=\{0,0,1,0,0\}$.
$\mathrm{MbR}=\{1,0,0,0,0\}$
$\mathrm{MbW}=\{0,1,0,0,0\}$.
$\mathrm{MbNg}=\{0,0,0,1,1\}$.

1/0 Binary Representations

No	MpA	MpNg	MpR	MpW	MpX	MpS
N1	0	0	1	0	0	0
N2	1	0	0	1	0	0
N3	0	0	0	0	0	1
N4	0	1	0	0	1	0
N5	0	1	0	0	1	0

3 Base Operation

The arithmetics field of algebra will be performed on the six sets which will transformed into values in assessment.
The arithmetic operations are as follows:

- $A+B$
- $A-B$
- $A \times B$
- A / B
- $A \% B$

The set will be equalised to the following in base 2 :

- $\mathrm{MbA}=01000$
- $\mathrm{MbX}=00011$
- $\mathrm{MbS}=00100$
- $\mathrm{MbR}=10000$
- $M b W=01000$
- $\mathrm{MbNg}=00011$

The representation in base 10 [9] are as follows :

- $\mathrm{MbA}=8$
- $\mathrm{MbX}=3$
- $\mathrm{MbS}=4$
- $\mathrm{MbR}=16$
- $\mathrm{MbW}=8$
- $\mathrm{MbNg}=3$

The arithmetic operation will be done in base -10 and then in base- 2 to base -8 .

Base-10 Representation

Operation	MbA operand	MbX operand	Result
-	8	3	5
+	8	3	11
x	8	3	24
I	8	3	2.6666
$\%$	8	3	5

Result in base Representations

Base-10	Base-2	Base-8
5	00101	5
11	01011	13
24	11000	30
2.666	10.10101010	2.52477371
5	00101	5

Calculating 2.666 to binary

Converting 2.666 to octal representation

Enter decimal number				Divide by the base 8 to get the digits from the remainders:			
2.666			10				
= Convert	\times Reset	t7 Swap		Division by 8	Quotient	Rema inder (Digit)	Digi \#
Octal number				(44728058)/8	5591007	2	0
$\begin{aligned} & 2.5247737166621320712 \\ & 6 \end{aligned}$			8	(5591007)/8	698875	7	1
Hex number				(698875)/8	87359	3	2
				(87359)/8	10919	7	3
2.AA7EF9DB22D0E56041			16				
				(10919)/8	1364	7	4
Decimal to octal calculation steps				(1364)/8	170	4	5
Multiply the decimal number with the base raised to the power of decimals in result:				(170)/8	21	2	6
				(21)/8	2	5	7
	$2.666 \times 8^{8}=44728058$			(2)/8	0	2	8

Representation Table

Name	Base 2	Base 10	Base 8
MbA	01000	8	10
MbX	00011	3	3
MbS	00100	4	4
MbR	10000	16	20
MbW	01000	8	10
MbNg	00011	3	3

The calculations for the base-8 in table are shown below :

4 Conclusion

This work on binary representation and Computer arithmetics concludes with the following remarks:

- Six $1 / 0$ response set are achieved.
- Five non-response set are achieved.
- Table representation of the $1 / 0$ set is achieved.
- Binary operation on s-index is achieved.
- S-index set has 5 subset in achieving.
- The MpS set has 5 member subsets.
- MpWs set is a binary number memberset.
- Base representation in 10, 8 and 2 are achieved.

Further Reading.

(1) Appiah Frank. Letter Combinatorics : Theory on counting problems. EPSRC UK Turing Al Letter. 2020
(2) Appiah Frank. Letter Combinatorics : Theory on counting problems. Marriage Problem. Mendeley Publication. 2020
(3) Hooper, Joan B. On assertive predicates.In Syntax and Semantics volume 4, pp. 91-124. Brill, 1975.
(4) Yoon, Youngeun. Total and partial predicates and the weak and strong interpretations. Natural language semantics 4, no. 3 (1996): 217-236.
(5) Frank Appiah. Representative Artificials On LetterCombinatorics Case With Predicate Sentences. Easychair No 4556. November 13, 2020.
(6) Jech, T. (2013). Set theory. Springer Science \& Business Media.
(7) Fraenkel, A. A., Bar-Hillel, Y., \& Levy, A. (1973). Foundations of set theory. Elsevier.
(8) Enderton, H. B. (1977). Elements of set theory. Academic press.
(9) Number Unit Conversion. 2021. Accessed Online:
http://www.unitconversion.org/numbers/binary-to-base-10-conversion.html
(10) String Conversion. 2021. Accessed Online :
https://www.convertbinary.com/text-to-binary/

