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Abstract. In this research paper, it is proved that two arbitrary graphs
are isomorphic if and only if the quadratic forms associated with the two
adjacency matrices are same(upto reordering the monomials). Based on
the proof, a polynomial time algorithm is designed for graph isomor-
phism problem(i.e. effectively deciding whether two graphs are isomor-
phic). The algorithm requires O(N3) comparison operations. It is rea-
soned that there is no algorithm for testing isomorphism of arbitrary
graphs on N vertices whose time complexity is less than O(N3). Thus the
proposed algorithm meets lower bound on time complexityAlso, a poly-
nomial time algorithm for testing whether two graphs are isomorphic is
designed under the condition that the associated adjacency matrices are
non-singular and are related through a symmetric permutation matrix.
The algorithms are essentially based on linear algebraic concepts related
to graphs. Also, some new results in spectral graph theory are discussed.

Keywords: Graph Theory · Edge connectivity · Spectral Graph Theory
· Symmetric matrix · Isomorphism.

1 Introduction

Directed/undirected, weighted/unweighted graphs naturally arise in various ap-
plications. Such graphs are associated with matrices such as weight matrix, inci-
dence matrix, adjacency matrix, Laplacian etc. Such matrices implicitly specify
the number of vertices/ edges, adjacency information of vertices (with edge con-
nectivity) and other related information (such as edge weights). In recent years,
there is explosive interest in capturing networks arising in applications such as
social networks, transportation networks, bio-informatics related networks (e.g.
gene regulatory networks) using suitable graphs. Thus, network science led to
important problems such as community extraction, frequent sub-graph mining
etc. In many applications the problem of deciding whether two given graphs are
isomorphic (i.e. the two graphs are essentially same upto relabeling the vertices)
naturally arises. This research paper provides one possible solution to such a
problem. This research paper is organized in the following manner. In section 2,
relevant research literature is briefly reviewed. In section 3, one polynomial time
algorithm, to test if two graphs are isomorphic is discussed. In section 4, neces-
sary and sufficient condition for two arbitrary graphs to be isomorphic is proved
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and a polynomial time algorithm is proposed. The research paper concludes in
section 5.

2 RELATED RESEARCH LITERATURE

L. Babai [1, 2] recently claimed quasi-polynomial time algorithm for determin-
ing if two graphs are isomorphic [1] . This is the most recent contribution to
the graph isomorphism problem. Specifically, research in [2] showed that graph

isomorphism problem can be solved in exp(logn)
(o(1))

time [2]. For the problem,
the previous known best bound was exp(o(

√
(nlogn))) where n is the number of

vertices. There are other research efforts which provide approximate solutions to
the problem (i.e. approximate algorithms were designed)[3], [4], [5], [6], [8], [11],
[12], [13]. Also, the problem of solving Graph Isomorphism has been attempted
using the quadratic non-negative matrix factorization problem [14].

3 Polynomial Time Algorithm for Graph Isomorphism
Problem(under some Conditions)

We now briefly review relevant results from spectral graph theory.

3.1 Spectral Graph Theory

Spectral graph theory deals with the study of properties of a graph in relation-
ship to the characteristic polynomial, eigenvalues and eigenvectors of matrices
associated with the graph, such as its adjacency matrix or Laplacian matrix.

An undirected graph has a symmetric adjacency matrix A and hence all its
eigenvalues are real. Furthermore, the eigenvectors are orthonormal.

We have the following definition
Definition: An undirected graph’s ”spectrum” is the multiset of real eigenvalues
of its adjacency matrix, A. Graphs whose spectrum is same are called co-spectral.

Remark 1. It is well known that isomorphic graphs are co-spectral. But co-
spectral graphs need not be isomorphic. Thus spectrum being same is only a
necessary condition for graphs to be isomorphic (but not sufficient)[12], [13].
Thus, it is clear that the eigenvectors of adjacency matrices of isomorphic graphs
must be constrained in a suitable manner (orthonormal basis of eigenvectors of
the symmetric adjacency matrices are somehow related for isomorphic graphs)
[9].
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3.2 Polynomial Time Algorithm to determine co-spectral Graphs

.
Lemma 1: The problem of determining if two graphs are Co-Spectral is in P

(i.e. a polynomial time algorithm exists).

Proof: Since the elements of adjacency matrix are 0’s and 1’s, the charac-
teristic polynomial of it is a polynomial with integer coefficients. Thus, there
exists a polynomial time algorithm (PTA algorithm) [7] to compute the ze-
roes of such polynomial i.e. spectrum of associated graph. Thus the problem
of determining if two graphs are co-spectral is in P (class of polynomial time
algorithms) Q.E.D.

Note: By Perron-Frobenius theorem, the spectral radius of an irreducible ad-
jacency matrix (non-negative matrix) is real, positive and simple [10]. Thus, to
check for the necessary condition on isomorphic graphs, a first step is to deter-
mine if the spectral radii of two graphs are exactly same.

Definition: Two graphs are isomorphic, if the vertices of one graph are ob-
tained by relabeling the vertices of another graph.

3.3 Necessary and Sufficient Conditions: Isomorphism of Graphs

Necessary Conditions: Isomorphism of Graphs The following necessary
conditions for isomorphism of graphs with adjacency matrices A, B can be
checked before applying the following algorithm. Check if Trace(A) = Trace(B)
and if Determinant(A) = Determinant(B). Check if Spectral radius of A, B are
same. This can be done using the Jacobi’s algorithm for computing the largest
zero of a polynomial. Since the coefficients of characteristic polynomial are in-
tegers, we expect the computational complexity of this task to be small. If this
step fails, all other zeroes need not be computed [9].

We now formulate the problem of determining the isomorphism of graphs
in two equivalent ways. Let the symmetric matrices A and B be the adjacency
matrices of two graphs.

• Quadratic Non-Negative Matrix Factorization[12],[14]:
The problem of determining isomorphism of two graphs boils down to deter-

mining if a Permutation matrix P exists such that that

B = PAPT (1)

Such a problem is already being attempted using the approach based on
Quadratic Non-Negative Matrix Factorization [14]. The results proposed for such
a problem readily apply for determining isomorphism of two graphs.
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•Algebraic Riccati Equation: Symmetric Permutation Matrix P: The quadratic
matrix equation in (1) (non-linear) has resemblance to the Symmetric Algebraic
Riccati Equation of the following form

XCX −AX −XAT +B = 0

(with compatible matrices X,C,A,B ), where the matrices B and C are symmet-
ric and X is the unknown matrix. As can be readily seen the matrix equation (1)
is a structured symmetric Algebraic Riccati equation with P being a symmetric
unknown matrix. The known algorithms for solving such a Riccati equation may
readily apply for testing isomorphism of two graphs for which P is a symmetric
permutation matrix. Specifically, there are efforts to determine the non-negative
matrix solutions of Riccati equation [15], [16]. It should be kept in mind that
the solution of algebraic Riccati equation that is of interest to us is a structured
{0,1} matrix.

Explicit Solution when the Adjacency Matrices of the graphs are non-singular
and are related through Symmetric Permutation Matrix:

Lemma 2: Under the above assumptions, two graphs with adjacency matrices
{B, C} (whose eigenvalues need NOT be distinct) are isomorphic only if

X = [Matrix Square Root(BC)]C−1

is a Permutation matrix.

Proof:
Necessity: Suppose the graphs with adjacency matrices {B, C} are isomorphic
and are related through a symmetric permutation matrix, P. Then we have that

PCP = B.

Hence multiplying on both sides by C, we have that

(PC)PC = BC = (PC)2

Thus, using well known result from linear algebra BC is positive definite and
hence has a unique positive definite matrix square root. Thus,we have that
PC= Matrix Square root (B C).

Since, C is non-singular, we have that

P = [Matrix Square Root(BC)]C−1

which is necessarily a permutation matrix. Thus the above condition is neces-
sary. Thus, if the graphs are isomorphic, the test declares the correct result.
Q.E.D.
Note: The above condition need not be sufficient, if the matrix square root is
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not unique.

Note: Unique postive definite Matrix square root of a positive definite matrix
can easily be computed in polynomial time using well known results in linear
algebra. Duplication of details is avoided for brevity.

•Algorithm:(If graphs are isomorphic, the algorithm declares them correctly).
From well known facts from linear algebra, the condition in the above lemma
can be checked using a polynomial time algorithm.
Algorithm : Since

X = [Matrix Square Root(BC)]C−1

the testing of necessary condition involves the following steps
i) Multiplication of symmetric matrices B,C.
ii) Computation of Matrix Square root of BC.
iii) Inversion of symmetric matrix ’C’.
iv) Multiplication of [Matrix Square Root(BC)] and C−1. v) Checking if X is
a permutation matrix.

Note: The research efforts based on strassen′s algorithm for matrix multipli-
cation readily apply in this case.

From well known complexity of linear algebraic algorithms, the steps (i), (ii),
(iii) take O(N3) operations (multiplication, addition). If ’BC’ is positive definite
and diagonalizable, its unique matrix square root takes O(N3) operations.

Also, if BC is a positive definite diagnonalizable matrix i.e.

BC = V̄ D̄V̄ −1,

where D̄ is a diagonal matrix of positive eigenvalues. The unique positive definite
matrix square root of BC is given by V̄ D̄1/2V̄ −1, where D̄1/2 is the diagonal
matrix of positive square roots of eigenvalues of B̄C̄.

From linear algebra, a polynomial time algorithm is readily available for the
above computation of positive definite square root of B̄C̄.

Detailed description of the algorithm is avoided for brevity.
Note: In the case of matrix equation, X C X=B, if BC is a positive definite

matrix, unique solution which is positive definite can be determined using ap-
proach similar to Lemma 2.

Remark 2: In view of the above two equivalent problems, the results available
for solution of one problem can be utilized in the solution of other problems.

Example: Consider the following two graphs with two vertices.
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Let their symmetric adjacency matrices be given by

B̄ =

[
1 1
1 0

]

C̄ =

[
0 1
1 1

]
Both the matrices{B̄, C̄} are nonsingular and are isomorphic. We have that,
with

P̄ =

[
0 1
1 0

]
= P̄T

it readily follows that

P̄ C̄P̄T =

[
0 1
1 0

] [
0 1
1 1

] [
0 1
1 0

]
=

[
0 1
1 0

] [
1 0
1 1

]
=

[
1 1
1 0

]
= B̄ (as expected).

We now check the test in Lemma 2. We have that

C−1 =

[
−1 1
1 0

]
We would like to determine the matrix square root of B̄C̄

We have that

B̄C̄ =

[
1 1
1 0

] [
0 1
1 1

]
=

[
1 2
0 1

]
Let the square root of B̄C̄ be the matrix G =

[
a b
c d

]
.

We have that

G2 =

[
a b
c d

] [
a b
c d

]
=

[
1 2
0 1

]
Solving the equations we have that c = 0, b =1 and a = d = +-1. Thus, we

get atleast two solutions for Ḡ i.e.

Ḡ =

[
1 1
0 1

]
,−Ḡ =

[
−1 −1
0 −1

]
But, the only positive definite square root of B̄C̄ (a positive definite matrix with
eigenvalues 1, 1) is [

1 1
0 1

]
.

It follows that

[Matrix Square root(BC)]C−1 =

[
1 1
0 1

] [
−1 1
1 0

]
=

[
0 1
1 0

]
a permutation matrix
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4 Spectral Graph Theory: Polynomial time algorithm for
testing isomorphism of arbitrary graphs.

Fact: While the adjacency matrix depends on the vertex labeling, its spectrum
is graph invariant i.e. suppose adjacency matrix B̄ is obtained by relabeling the
vertices of a graph with adjacency matrix Ā (i.e. edge connectivity in Ā is
preserved in B̄). Then Ā,B̄ have the same set of eigenvalues.

Note: We use the terminology that graphs are co-spectral/isomorphic if their
adjacency matrices Ā, B̄ are co-spectral/isomorphic.

We now provide an interesting proof of the above fact. In fact, the corollary 1
of theorem 1 is a much stronger result. We need the following well know theorem.
Rayleigh’s theorem: The local optima of the quadratic form associated with a
symmetric matrix A on the unit Euclidean hypersphere {X : XTX = 1} occur
at the eigenvectors with the corresponding value of the quadratic form being the
eigenvalue.

• Theorem 1:
i) Eigenvalues of the adjacency matrix of an undirected graph, Ā are in-

variant(remains same) under relabeling of the vertices i.e. Adjacency matrices
Ā, B̄ are co-spectral (with B̄ being the adjacency matrix of graph obtained by
relabeling the vertices of graph Ā).

ii) Furthermore, graphs with adjacency matrices Ā, B̄ are isomorphic if and
only if (i.e. necessary and sufficient condition) the quadratic forms associated
with Ā, B̄ are same (upto reordering the monomials).

Proof: In Rayleigh’s theorem, eigenvalues of Ā,B̄ are the local optimum of as-
sociated quadratic forms evaluated on the unit hyper sphere respectively. Thus,
to prove that graphs Ā, B̄ (i.e. graphs with adjacency matrices Ā, B̄) are co-
spectral, it is sufficient to reason that the quadratic form remains invariant under
relabeling of the vertices.

Proof of part(i): We have that

XTAX =

N∑
i=1

N∑
j=1

aijxixj

= x1(xi1 + xi2 + ...+ xiN ) + x2(xj1 + xj2 + ...+ xjN ) + ...+

xN (xN1 + xN2 + ...+ xNN
)

where, for instance, i1, i2, ....iN are the vertices connected to the vertex 1(one)
(and similarly other vertices).

Now, under relabeling of vertices, the monomials are just reordered in the
quadratic form expression i.e. XTAX. Hence, from the above expression, it is
clear that the quadratic form remains invariant under relabeling of the vertices.
Thus by Rayleigh’s theorem, eigenvalues of A remain invariant under relabeling
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of vertices.
Summarizing, it is clear that the quadratic form remains invariant under rela-
beling of the vertices. Specifically, relabeling just reorders the expressions. Thus,
the eigenvalues of A remain invariant under relabeling of vertices.

Proof of part(ii): From part(i) above, if two graphs with adjacent matrices
Ā, B̄ are isomorphic, it is necessary that the quadratic forms associated with Ā,
B̄ are same(upon reordering o the monomials).

Now, we prove that the condition is also sufficient. To this end, we need to
reason that, if the quadratic forms associated with adjacency matrices Ā,B̄ are
same, then B̄ = P̄ ĀP̄T where B̄ is a permutation matrix.

We have that XTAX = XTBX. But monomials in XTBX are reordered
from those of XTAX. For instance, Node 1 based monomials are mapped to
node l1’based monomials.
Thus

XTBX =

N∑
i=1

N∑
j=1

bi,jxixj

= xl1(xs1 +xs2 + ...+xsk)+xl2(xr1 +xr2 + ...+xrl)+ ...+xlN (xt1 +xt2 + ...+xtm)

. Thus, the monomials in XTBX are obtained by permuting those in XTAX.
Equivalently, One adjacency matrix B̄ is obtained by reordering the elements
of other adjacency matrix, Ā.

Hence B̄ = P̄ ĀP̄T , where P̄ is permutation matrix. Thus, the condition that
XTAX = XTBX is sufficient for the associated graphs to be isomorphic. Q.E.D

Note: Showing that X̄TAX = XTBX, is much stronger than ensuring that
Ā, B̄ are co-spectral.

Corollary 1: Since the quadratic form remains invariant under relabeling of
the vertices, the local optima of the quadratic form over various constraint sets
remain invariant. For instance, the stable values (i.e. local optima of quadratic
form associated with a symmetric matrix over the unit hypercube) remain same
under relabeling of the vertices of graph.

Corollary 2: Isomorphism of Graphs: From the above proof, it is clear that if
two graphs (with associated adjacency matrices A, B ) are isomorphic, the asso-
ciated quadratic form being same is a necessary condition. Also, if the quadratic
forms associated with adjacency matrices are same, then it readily follows that
one adjacency matrix can be obtained by reordering the elements of other ad-
jacency matrix. Thus, the author reasons that it is also a sufficient condition.
Hence, in the following a polynomial time algorithm is designed to check if the
quadratic forms associated with two adjacency matrices are same (by matching
the second degree monomials in the associated quadratic forms).
Polynomial Time Algorithm : Consider an arbitrary row of Ā(e.g row ’i’)
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i.e. consider ith node of the graph. Let the nodes{j1, j2, ..., jl} be connected
to it i.e. in the quadratic form associated with Ā, the monomials based on
(i, j1), (i, j2), ..., (i, jl) are present (1 ≤ i ≤ N).

Step: Matching monomials associated with node ’i’ with those at all -other
nodes of graph B̄.

Consider node ’k’. Check if the non zero tuples associated with node ’k’
(k,r): {1 ≤ r ≤ N} for some (1 ≤ k ≤ N, k ̸= i) match with the tuples
(i, js) : 1 ≤ js ≤ N}.
This procedure takes atmost N2 matching/comparisons. If ith node based tuples
donot match with the tuples associated with any other node of graph B̄, the
procedure terminates and the graphs are not isomorphic. Else, let ’h’ be the
node which matches with i. Remove row ’i’ from Ā and row ’h’ from B̄.

Repeat the above step with the remaining nodes of graph(matching tuples
associated with the remaining nodes). Thus we have O(N3) algorithm..

Note: At any stage of iteration, tuples in the matrix ’A’ are matched with
those in B̄

Claim: Since Ā, B̄ are symmetric matrices, the number of comparisons re-
quired are much smaller. The above algorithm based on part(ii) of theorem 1 is
equivalent to the following algorithm.

Step 1: Check if row 1 of Ā matrix is same as any one of the N rows of B̄ i.e.
for 1 ≤ j ≤ N, check if row 1 is exactly equal to atleast one row j (while rows
in Ā, B̄ are not matched). If No, graphs are not isomorphic. If YES, let row 1
equal row ’k’. Remove row 1 from Ā and row ’k’ from B̄, and proceed to step2.

Step 2: If rows in Ā, B̄ are larger than or equal to 1, then proceed to step 1
=⇒ O(N3) algorithm.

Note: The two algorithms are equivalent.

Under appropriate conditions, we can prove that there is no serial algorithm
for testing isomorphism of two arbitrary graphs whose complexity is less than
O(N3).

Note: Since Ā, B̄ are symmetric, the number of comparisons are reduced.

Lemma 3: There is no serial algorithm for testing isomorphism of two arbi-
trary graphs on N vertices, whose time complexity is less than O(N3).

Proof: Any algorithmic procedure for testing isomorphism of two graphs nec-
essarily requires checking if vertices in the adjacency matrix of A have the same
connectivity pattern (i.e. match the rows in Ā with those of graph B̄). The above
algorithm essentially perform the same steps. Hence it meets the lower bound
on time complexity of a serial algorithm. Q. E. D.

Note: Consider a Homogeneous multi-variate polynomial associated with, say,
a Fully Symmetric Tensor. The local optima of such a homogeneous form over
various constraint sets such as Euclidean Unit Hypersphere, multi-dimensional
hypercube remain invariant under relabeling of nodes of a non-planar graph.
Effectively relabeling of vertices, reorders the monomials (terms in multivariate
polynomial).
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5 Conclusion

In this research paper, results in spectral graph theory of structured graphs are
discussed. Polynomial time algorithms for testing if two graphs are isomorphic
are discussed.
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